Cemu/dependencies/ih264d/common/x86/ih264_ihadamard_scaling_sse42.c

257 lines
10 KiB
C

/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ih264_ihadamard_scaling_sse42.c
*
* @brief
* Contains definition of functions for h264 inverse hadamard 4x4 transform and scaling
*
* @author
* Mohit
*
* @par List of Functions:
* - ih264_ihadamard_scaling_4x4_sse42()
* - ih264_ihadamard_scaling_2x2_uv_ssse42()
*
* @remarks
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264_trans_macros.h"
#include "ih264_macros.h"
#include "ih264_trans_data.h"
#include "ih264_size_defs.h"
#include "ih264_structs.h"
#include "ih264_trans_quant_itrans_iquant.h"
#include <immintrin.h>
#include <smmintrin.h>
#ifdef __GNUC__
#define ATTRIBUTE_SSE42 __attribute__((target("sse4.2")))
#else
#define ATTRIBUTE_SSE42
#endif
/*
********************************************************************************
*
* @brief This function performs a 4x4 inverse hadamard transform on the 4x4 DC coefficients
* of a 16x16 intra prediction macroblock, and then performs scaling.
* prediction buffer
*
* @par Description:
* The DC coefficients pass through a 2-stage inverse hadamard transform.
* This inverse transformed content is scaled to based on Qp value.
*
* @param[in] pi2_src
* input 4x4 block of DC coefficients
*
* @param[out] pi2_out
* output 4x4 block
*
* @param[in] pu2_iscal_mat
* pointer to scaling list
*
* @param[in] pu2_weigh_mat
* pointer to weight matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
ATTRIBUTE_SSE42
void ih264_ihadamard_scaling_4x4_sse42(WORD16* pi2_src,
WORD16* pi2_out,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD32* pi4_tmp)
{
__m128i src_r0_r1, src_r2_r3;
__m128i src_r0, src_r1, src_r2, src_r3;
__m128i temp0, temp1, temp2, temp3;
__m128i add_rshift = _mm_set1_epi32((u4_qp_div_6 < 6) ? (1 << (5 - u4_qp_div_6)) : 0);
__m128i mult_val = _mm_set1_epi32(pu2_iscal_mat[0] * pu2_weigh_mat[0]);
UNUSED (pi4_tmp);
src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row
src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row
//sign_reg = _mm_cmpgt_epi16(zero_8x16b, src_r0_r1);
src_r0 = _mm_cvtepi16_epi32(src_r0_r1);
src_r0_r1 = _mm_srli_si128(src_r0_r1, 8);
src_r1 = _mm_cvtepi16_epi32(src_r0_r1);
src_r2 = _mm_cvtepi16_epi32(src_r2_r3);
src_r2_r3 = _mm_srli_si128(src_r2_r3, 8);
src_r3 = _mm_cvtepi16_epi32(src_r2_r3);
/* Perform Inverse transform */
/*-------------------------------------------------------------*/
/* IDCT [ Horizontal transformation ] */
/*-------------------------------------------------------------*/
// Matrix transpose
/*
* a0 a1 a2 a3
* b0 b1 b2 b3
* c0 c1 c2 c3
* d0 d1 d2 d3
*/
temp0 = _mm_unpacklo_epi32(src_r0, src_r1); //a0 b0 a1 b1
temp2 = _mm_unpacklo_epi32(src_r2, src_r3); //c0 d0 c1 d1
temp1 = _mm_unpackhi_epi32(src_r0, src_r1); //a2 b2 a3 b3
temp3 = _mm_unpackhi_epi32(src_r2, src_r3); //c2 d2 c3 d3
src_r0 = _mm_unpacklo_epi64(temp0, temp2); //a0 b0 c0 d0
src_r1 = _mm_unpackhi_epi64(temp0, temp2); //a1 b1 c1 d1
src_r2 = _mm_unpacklo_epi64(temp1, temp3); //a2 b2 c2 d2
src_r3 = _mm_unpackhi_epi64(temp1, temp3); //a3 b3 c3 d3
temp0 = _mm_add_epi32(src_r0, src_r3);
temp1 = _mm_add_epi32(src_r1, src_r2);
temp2 = _mm_sub_epi32(src_r1, src_r2);
temp3 = _mm_sub_epi32(src_r0, src_r3);
src_r0 = _mm_add_epi32(temp0, temp1);
src_r1 = _mm_add_epi32(temp2, temp3);
src_r2 = _mm_sub_epi32(temp0, temp1);
src_r3 = _mm_sub_epi32(temp3, temp2);
/*-------------------------------------------------------------*/
/* IDCT [ Vertical transformation ] */
/*-------------------------------------------------------------*/
// Matrix transpose
/*
* a0 b0 c0 d0
* a1 b1 c1 d1
* a2 b2 c2 d2
* a3 b3 c3 d3
*/
temp0 = _mm_unpacklo_epi32(src_r0, src_r1); //a0 a1 b0 b1
temp2 = _mm_unpacklo_epi32(src_r2, src_r3); //a2 a3 b2 b3
temp1 = _mm_unpackhi_epi32(src_r0, src_r1); //c0 c1 d0 d1
temp3 = _mm_unpackhi_epi32(src_r2, src_r3); //c2 c3 d2 d3
src_r0 = _mm_unpacklo_epi64(temp0, temp2); //a0 a1 a2 a3
src_r1 = _mm_unpackhi_epi64(temp0, temp2); //b0 b1 b2 b3
src_r2 = _mm_unpacklo_epi64(temp1, temp3); //c0 c1 c2 c3
src_r3 = _mm_unpackhi_epi64(temp1, temp3); //d0 d1 d2 d3
temp0 = _mm_add_epi32(src_r0, src_r3);
temp1 = _mm_add_epi32(src_r1, src_r2);
temp2 = _mm_sub_epi32(src_r1, src_r2);
temp3 = _mm_sub_epi32(src_r0, src_r3);
src_r0 = _mm_add_epi32(temp0, temp1);
src_r1 = _mm_add_epi32(temp2, temp3);
src_r2 = _mm_sub_epi32(temp0, temp1);
src_r3 = _mm_sub_epi32(temp3, temp2);
src_r0 = _mm_mullo_epi32(src_r0, mult_val);
src_r1 = _mm_mullo_epi32(src_r1, mult_val);
src_r2 = _mm_mullo_epi32(src_r2, mult_val);
src_r3 = _mm_mullo_epi32(src_r3, mult_val);
//Scaling
if(u4_qp_div_6 >= 6)
{
src_r0 = _mm_slli_epi32(src_r0, u4_qp_div_6 - 6);
src_r1 = _mm_slli_epi32(src_r1, u4_qp_div_6 - 6);
src_r2 = _mm_slli_epi32(src_r2, u4_qp_div_6 - 6);
src_r3 = _mm_slli_epi32(src_r3, u4_qp_div_6 - 6);
}
else
{
temp0 = _mm_add_epi32(src_r0, add_rshift);
temp1 = _mm_add_epi32(src_r1, add_rshift);
temp2 = _mm_add_epi32(src_r2, add_rshift);
temp3 = _mm_add_epi32(src_r3, add_rshift);
src_r0 = _mm_srai_epi32(temp0, 6 - u4_qp_div_6);
src_r1 = _mm_srai_epi32(temp1, 6 - u4_qp_div_6);
src_r2 = _mm_srai_epi32(temp2, 6 - u4_qp_div_6);
src_r3 = _mm_srai_epi32(temp3, 6 - u4_qp_div_6);
}
src_r0_r1 = _mm_packs_epi32(src_r0, src_r1);
src_r2_r3 = _mm_packs_epi32(src_r2, src_r3);
_mm_storeu_si128((__m128i *) (&pi2_out[0]), src_r0_r1);
_mm_storeu_si128((__m128i *) (&pi2_out[8]), src_r2_r3);
}
ATTRIBUTE_SSE42
void ih264_ihadamard_scaling_2x2_uv_sse42(WORD16* pi2_src,
WORD16* pi2_out,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD32* pi4_tmp)
{
__m128i src, plane_0, plane_1, temp0, temp1, sign_reg;
__m128i zero_8x16b = _mm_setzero_si128();
__m128i scale_val = _mm_set1_epi32((WORD32)(pu2_iscal_mat[0] * pu2_weigh_mat[0]));
UNUSED(pi4_tmp);
src = _mm_loadu_si128((__m128i *) pi2_src); //a0 a1 a2 a3 b0 b1 b2 b3
sign_reg = _mm_cmpgt_epi16(zero_8x16b, src);
plane_0 = _mm_unpacklo_epi16(src, sign_reg); //a0 a1 a2 a3 -- 32 bits
plane_1 = _mm_unpackhi_epi16(src, sign_reg); //b0 b1 b2 b3 -- 32 bits
temp0 = _mm_hadd_epi32(plane_0, plane_1); //a0+a1 a2+a3 b0+b1 b2+b3
temp1 = _mm_hsub_epi32(plane_0, plane_1); //a0-a1 a2-a3 b0-b1 b2-b3
plane_0 = _mm_hadd_epi32(temp0, temp1); //a0+a1+a2+a3 b0+b1+b2+b3 a0-a1+a2-a3 b0-b1+b2-b3
plane_1 = _mm_hsub_epi32(temp0, temp1); //a0+a1-a2-a3 b0+b1-b2-b3 a0-a1-a2+a3 b0-b1-b2+b3
temp0 = _mm_unpacklo_epi32(plane_0, plane_1); //a0+a1+a2+a3 a0+a1-a2-a3 b0+b1+b2+b3 b0+b1-b2-b3
temp1 = _mm_unpackhi_epi32(plane_0, plane_1); //a0-a1+a2-a3 a0-a1-a2+a3 b0-b1+b2-b3 b0-b1-b2+b3
plane_0 = _mm_unpacklo_epi64(temp0, temp1); //a0+a1+a2+a3 a0+a1-a2-a3 a0-a1+a2-a3 a0-a1-a2+a3
plane_1 = _mm_unpackhi_epi64(temp0, temp1); //b0+b1+b2+b3 b0+b1-b2-b3 b0-b1+b2-b3 b0-b1-b2+b3
plane_0 = _mm_shuffle_epi32(plane_0, 0xd8); //a0+a1+a2+a3 a0-a1+a2-a3 a0+a1-a2-a3 a0-a1-a2+a3
plane_1 = _mm_shuffle_epi32(plane_1, 0xd8); //b0+b1+b2+b3 b0-b1+b2-b3 b0+b1-b2-b3 b0-b1-b2+b3
temp0 = _mm_mullo_epi32(scale_val, plane_0); //multiply by pu2_iscal_mat[0] * pu2_weigh_mat[0]
temp1 = _mm_mullo_epi32(scale_val, plane_1); //multiply by pu2_iscal_mat[0] * pu2_weigh_mat[0]
temp0 = _mm_slli_epi32(temp0, u4_qp_div_6);
temp1 = _mm_slli_epi32(temp1, u4_qp_div_6);
temp0 = _mm_srai_epi32(temp0, 5);
temp1 = _mm_srai_epi32(temp1, 5);
temp0 = _mm_packs_epi32(temp0, temp1); //Final values are 16-bits only.
_mm_storeu_si128((__m128i *) (&pi2_out[0]), temp0);
}