CfgUSBLoader/source/pngu/pngu.c
2015-01-17 10:11:08 +00:00

1562 lines
54 KiB
C

/********************************************************************************************
PNGU Version : 0.2a
Coder : frontier
More info : http://frontier-dev.net
********************************************************************************************/
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include "png.h"
#include "pngu.h"
#include "pngu_impl.h"
#ifndef SAFE_FREE
#define SAFE_FREE(p) if(p){free(p);p=NULL;}
#endif
#if 0
// moved to pngu_impl.h
// Constants
#define PNGU_SOURCE_BUFFER 1
#define PNGU_SOURCE_DEVICE 2
// Prototypes of helper functions
int pngu_info (IMGCTX ctx);
int pngu_decode (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, PNGU_u32 stripAlpha);
int pngu_decode_add_alpha (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, PNGU_u32 stripAlpha, int force32bit);
void pngu_free_info (IMGCTX ctx);
void pngu_read_data_from_buffer (png_structp png_ptr, png_bytep data, png_size_t length);
void pngu_write_data_to_buffer (png_structp png_ptr, png_bytep data, png_size_t length);
void pngu_flush_data_to_buffer (png_structp png_ptr);
int pngu_clamp (int value, int min, int max);
// PNGU Image context struct
struct _IMGCTX
{
int source;
void *buffer;
char *filename;
PNGU_u32 cursor;
PNGU_u32 buf_size; // buffer size
PNGU_u32 propRead;
PNGUPROP prop;
PNGU_u32 infoRead;
png_structp png_ptr;
png_infop info_ptr;
FILE *fd;
png_bytep *row_pointers;
png_bytep img_data;
};
#endif
// PNGU Implementation //
IMGCTX PNGU_SelectImageFromBufferX (const void *buffer, int size)
{
IMGCTX ctx = NULL;
if (!buffer)
return NULL;
ctx = calloc (sizeof (struct _IMGCTX), 1);
if (!ctx)
return NULL;
ctx->buffer = (void *) buffer;
ctx->source = PNGU_SOURCE_BUFFER;
ctx->cursor = 0;
ctx->filename = NULL;
ctx->propRead = 0;
ctx->infoRead = 0;
ctx->buf_size = size;
return ctx;
}
IMGCTX PNGU_SelectImageFromBuffer (const void *buffer)
{
return PNGU_SelectImageFromBufferX(buffer, 0);
}
IMGCTX PNGU_SelectImageFromDevice (const char *filename)
{
IMGCTX ctx = NULL;
if (!filename)
return NULL;
ctx = calloc (sizeof (struct _IMGCTX), 1);
if (!ctx)
return NULL;
ctx->buffer = NULL;
ctx->source = PNGU_SOURCE_DEVICE;
ctx->cursor = 0;
ctx->filename = malloc (strlen (filename) + 1);
if (!ctx->filename)
{
free (ctx);
return NULL;
}
strcpy(ctx->filename, filename);
ctx->propRead = 0;
ctx->infoRead = 0;
return ctx;
}
void PNGU_ReleaseImageContext (IMGCTX ctx)
{
if (!ctx)
return;
if (ctx->filename)
free (ctx->filename);
if ((ctx->propRead) && (ctx->prop.trans))
free (ctx->prop.trans);
pngu_free_info (ctx);
free (ctx);
}
int PNGU_GetImageProperties (IMGCTX ctx, PNGUPROP *imgprop)
{
int res;
if (!ctx->propRead)
{
res = pngu_info (ctx);
if (res != PNGU_OK)
return res;
}
*imgprop = ctx->prop;
return PNGU_OK;
}
int PNGU_DecodeToYCbYCr (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride)
{
int result;
PNGU_u32 x, y, buffWidth;
// width needs to be divisible by two
if (width % 2)
return PNGU_ODD_WIDTH;
// stride needs to be divisible by two
if (stride % 2)
return PNGU_ODD_STRIDE;
result = pngu_decode (ctx, width, height, 1);
if (result != PNGU_OK)
return result;
// Copy image to the output buffer
buffWidth = (width + stride) / 2;
for (y = 0; y < height; y++)
for (x = 0; x < (width / 2); x++)
((PNGU_u32 *)buffer)[y*buffWidth+x] = PNGU_RGB8_TO_YCbYCr (*(ctx->row_pointers[y]+x*6), *(ctx->row_pointers[y]+x*6+1), *(ctx->row_pointers[y]+x*6+2),
*(ctx->row_pointers[y]+x*6+3), *(ctx->row_pointers[y]+x*6+4), *(ctx->row_pointers[y]+x*6+5));
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
int PNGU_DecodeToRGB565 (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride)
{
int result;
PNGU_u32 x, y, buffWidth;
result = pngu_decode (ctx, width, height, 1);
if (result != PNGU_OK)
return result;
buffWidth = width + stride;
// Copy image to the output buffer
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
((PNGU_u16 *)buffer)[y*buffWidth+x] =
(((PNGU_u16) (ctx->row_pointers[y][x*3] & 0xF8)) << 8) |
(((PNGU_u16) (ctx->row_pointers[y][x*3+1] & 0xFC)) << 3) |
(((PNGU_u16) (ctx->row_pointers[y][x*3+2] & 0xF8)) >> 3);
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
int PNGU_DecodeToRGBA8 (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride, PNGU_u8 default_alpha)
{
int result;
PNGU_u32 x, y, buffWidth;
result = pngu_decode (ctx, width, height, 0);
if (result != PNGU_OK)
return result;
buffWidth = width + stride;
// Check is source image has an alpha channel
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) )
{
// Alpha channel present, copy image to the output buffer
for (y = 0; y < height; y++)
memcpy (buffer + (y * buffWidth * 4), ctx->row_pointers[y], width * 4);
}
else
{
// No alpha channel present, copy image to the output buffer
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
((PNGU_u32 *)buffer)[y*buffWidth+x] =
(((PNGU_u32) ctx->row_pointers[y][x*3]) << 24) |
(((PNGU_u32) ctx->row_pointers[y][x*3+1]) << 16) |
(((PNGU_u32) ctx->row_pointers[y][x*3+2]) << 8) |
((PNGU_u32) default_alpha);
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
int PNGU_DecodeTo4x4RGB565 (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer)
{
int result;
PNGU_u32 x, y, qwidth, qheight;
// width and height need to be divisible by four
if ((width % 4) || (height % 4))
return PNGU_INVALID_WIDTH_OR_HEIGHT;
result = pngu_decode (ctx, width, height, 1);
if (result != PNGU_OK)
return result;
// Copy image to the output buffer
qwidth = width / 4;
qheight = height / 4;
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 4;
PNGU_u64 field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*12));
PNGU_u64 field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4]+x*12+8));
((PNGU_u64 *) buffer)[blockbase] =
(((field64 & 0xF800000000000000ULL) | ((field64 & 0xFC000000000000ULL) << 3) | ((field64 & 0xF80000000000ULL) << 5)) |
(((field64 & 0xF800000000ULL) << 8) | ((field64 & 0xFC000000ULL) << 11) | ((field64 & 0xF80000ULL) << 13)) |
(((field64 & 0xF800ULL) << 16) | ((field64 & 0xFCULL) << 19) | ((field32 & 0xF8000000ULL) >> 11)) |
(((field32 & 0xF80000ULL) >> 8) | ((field32 & 0xFC00ULL) >> 5) | ((field32 & 0xF8ULL) >> 3)));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+1]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+1] =
(((field64 & 0xF800000000000000ULL) | ((field64 & 0xFC000000000000ULL) << 3) | ((field64 & 0xF80000000000ULL) << 5)) |
(((field64 & 0xF800000000ULL) << 8) | ((field64 & 0xFC000000ULL) << 11) | ((field64 & 0xF80000ULL) << 13)) |
(((field64 & 0xF800ULL) << 16) | ((field64 & 0xFCULL) << 19) | ((field32 & 0xF8000000ULL) >> 11)) |
(((field32 & 0xF80000ULL) >> 8) | ((field32 & 0xFC00ULL) >> 5) | ((field32 & 0xF8ULL) >> 3)));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+2]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+2] =
(((field64 & 0xF800000000000000ULL) | ((field64 & 0xFC000000000000ULL) << 3) | ((field64 & 0xF80000000000ULL) << 5)) |
(((field64 & 0xF800000000ULL) << 8) | ((field64 & 0xFC000000ULL) << 11) | ((field64 & 0xF80000ULL) << 13)) |
(((field64 & 0xF800ULL) << 16) | ((field64 & 0xFCULL) << 19) | ((field32 & 0xF8000000ULL) >> 11)) |
(((field32 & 0xF80000ULL) >> 8) | ((field32 & 0xFC00ULL) >> 5) | ((field32 & 0xF8ULL) >> 3)));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+3]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+3] =
(((field64 & 0xF800000000000000ULL) | ((field64 & 0xFC000000000000ULL) << 3) | ((field64 & 0xF80000000000ULL) << 5)) |
(((field64 & 0xF800000000ULL) << 8) | ((field64 & 0xFC000000ULL) << 11) | ((field64 & 0xF80000ULL) << 13)) |
(((field64 & 0xF800ULL) << 16) | ((field64 & 0xFCULL) << 19) | ((field32 & 0xF8000000ULL) >> 11)) |
(((field32 & 0xF80000ULL) >> 8) | ((field32 & 0xFC00ULL) >> 5) | ((field32 & 0xF8ULL) >> 3)));
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
int PNGU_DecodeTo4x4RGB5A3 (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u8 default_alpha)
{
int result;
PNGU_u32 x, y, qwidth, qheight;
PNGU_u64 alphaMask;
// width and height need to be divisible by four
if ((width % 4) || (height % 4))
return PNGU_INVALID_WIDTH_OR_HEIGHT;
result = pngu_decode (ctx, width, height, 0);
if (result != PNGU_OK)
return result;
// Init some vars
qwidth = width / 4;
qheight = height / 4;
// Check is source image has an alpha channel
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) )
{
// Alpha channel present, copy image to the output buffer
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 4;
PNGU_u64 tmp;
PNGU_u64 fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*16));
PNGU_u64 fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*16+8));
// If first pixel is opaque set MSB to 1 and encode colors in RGB555, else set MSB to 0 and encode colors in ARGB3444
if ((fieldA & 0xE000000000ULL) == 0xE000000000ULL)
tmp = 0x8000000000000000ULL | ((fieldA & 0xF800000000000000ULL) >> 1) | ((fieldA & 0xF8000000000000ULL) << 2) | ((fieldA & 0xF80000000000ULL) << 5);
else
tmp = ((fieldA & 0xE000000000ULL) << 23) | ((fieldA & 0xF000000000000000ULL) >> 4) | (fieldA & 0xF0000000000000ULL) | ((fieldA & 0xF00000000000ULL) << 4);
// If second pixel is opaque set MSB to 1 and encode colors in RGB555, else set MSB to 0 and encode colors in ARGB3444
if ((fieldA & 0xE0ULL) == 0xE0ULL)
tmp = tmp | 0x800000000000ULL | ((fieldA & 0xF8000000ULL) << 15) | ((fieldA & 0xF80000ULL) << 18) | ((fieldA & 0xF800ULL) << 21);
else
tmp = tmp | ((fieldA & 0xE0ULL) << 39) | ((fieldA & 0xF0000000ULL) << 12) | ((fieldA & 0xF00000ULL) << 16) | ((fieldA & 0xF000ULL) << 20);
// If third pixel is opaque set MSB to 1 and encode colors in RGB555, else set MSB to 0 and encode colors in ARGB3444
if ((fieldB & 0xE000000000ULL) == 0xE000000000ULL)
tmp = tmp | 0x80000000ULL | ((fieldB & 0xF800000000000000ULL) >> 33) | ((fieldB & 0xF8000000000000ULL) >> 30) | ((fieldB & 0xF80000000000ULL) >> 27);
else
tmp = tmp | ((fieldB & 0xE000000000ULL) >> 9) | ((fieldB & 0xF000000000000000ULL) >> 36) | ((fieldB & 0xF0000000000000ULL) >> 32) | ((fieldB & 0xF00000000000ULL) >> 28);
// If fourth pixel is opaque set MSB to 1 and encode colors in RGB555, else set MSB to 0 and encode colors in ARGB3444
if ((fieldB & 0xE0ULL) == 0xE0ULL)
tmp = tmp | 0x8000ULL | ((fieldB & 0xF8000000ULL) >> 17) | ((fieldB & 0xF80000ULL) >> 14) | ((fieldB & 0xF800ULL) >> 11);
else
tmp = tmp | ((fieldB & 0xE0ULL) << 7) | ((fieldB & 0xF0000000ULL) >> 20) | ((fieldB & 0xF00000ULL) >> 16) | ((fieldB & 0xF000ULL) >> 12);
((PNGU_u64 *) buffer)[blockbase] = tmp;
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*16+8));
if ((fieldA & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = 0x8000000000000000ULL | ((fieldA & 0xF800000000000000ULL) >> 1) | ((fieldA & 0xF8000000000000ULL) << 2) | ((fieldA & 0xF80000000000ULL) << 5);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = ((fieldA & 0xE000000000ULL) << 23) | ((fieldA & 0xF000000000000000ULL) >> 4) | (fieldA & 0xF0000000000000ULL) | ((fieldA & 0xF00000000000ULL) << 4);
if ((fieldA & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x800000000000ULL | ((fieldA & 0xF8000000ULL) << 15) | ((fieldA & 0xF80000ULL) << 18) | ((fieldA & 0xF800ULL) << 21);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldA & 0xE0ULL) << 39) | ((fieldA & 0xF0000000ULL) << 12) | ((fieldA & 0xF00000ULL) << 16) | ((fieldA & 0xF000ULL) << 20);
if ((fieldB & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x80000000ULL | ((fieldB & 0xF800000000000000ULL) >> 33) | ((fieldB & 0xF8000000000000ULL) >> 30) | ((fieldB & 0xF80000000000ULL) >> 27);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE000000000ULL) >> 9) | ((fieldB & 0xF000000000000000ULL) >> 36) | ((fieldB & 0xF0000000000000ULL) >> 32) | ((fieldB & 0xF00000000000ULL) >> 28);
if ((fieldB & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x8000ULL | ((fieldB & 0xF8000000ULL) >> 17) | ((fieldB & 0xF80000ULL) >> 14) | ((fieldB & 0xF800ULL) >> 11);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE0ULL) << 7) | ((fieldB & 0xF0000000ULL) >> 20) | ((fieldB & 0xF00000ULL) >> 16) | ((fieldB & 0xF000ULL) >> 12);
((PNGU_u64 *) buffer)[blockbase+1] = tmp;
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*16+8));
if ((fieldA & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = 0x8000000000000000ULL | ((fieldA & 0xF800000000000000ULL) >> 1) | ((fieldA & 0xF8000000000000ULL) << 2) | ((fieldA & 0xF80000000000ULL) << 5);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = ((fieldA & 0xE000000000ULL) << 23) | ((fieldA & 0xF000000000000000ULL) >> 4) | (fieldA & 0xF0000000000000ULL) | ((fieldA & 0xF00000000000ULL) << 4);
if ((fieldA & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x800000000000ULL | ((fieldA & 0xF8000000ULL) << 15) | ((fieldA & 0xF80000ULL) << 18) | ((fieldA & 0xF800ULL) << 21);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldA & 0xE0ULL) << 39) | ((fieldA & 0xF0000000ULL) << 12) | ((fieldA & 0xF00000ULL) << 16) | ((fieldA & 0xF000ULL) << 20);
if ((fieldB & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x80000000ULL | ((fieldB & 0xF800000000000000ULL) >> 33) | ((fieldB & 0xF8000000000000ULL) >> 30) | ((fieldB & 0xF80000000000ULL) >> 27);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE000000000ULL) >> 9) | ((fieldB & 0xF000000000000000ULL) >> 36) | ((fieldB & 0xF0000000000000ULL) >> 32) | ((fieldB & 0xF00000000000ULL) >> 28);
if ((fieldB & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x8000ULL | ((fieldB & 0xF8000000ULL) >> 17) | ((fieldB & 0xF80000ULL) >> 14) | ((fieldB & 0xF800ULL) >> 11);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE0ULL) << 7) | ((fieldB & 0xF0000000ULL) >> 20) | ((fieldB & 0xF00000ULL) >> 16) | ((fieldB & 0xF000ULL) >> 12);
((PNGU_u64 *) buffer)[blockbase+2] = tmp;
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*16+8));
if ((fieldA & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = 0x8000000000000000ULL | ((fieldA & 0xF800000000000000ULL) >> 1) | ((fieldA & 0xF8000000000000ULL) << 2) | ((fieldA & 0xF80000000000ULL) << 5);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = ((fieldA & 0xE000000000ULL) << 23) | ((fieldA & 0xF000000000000000ULL) >> 4) | (fieldA & 0xF0000000000000ULL) | ((fieldA & 0xF00000000000ULL) << 4);
if ((fieldA & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x800000000000ULL | ((fieldA & 0xF8000000ULL) << 15) | ((fieldA & 0xF80000ULL) << 18) | ((fieldA & 0xF800ULL) << 21);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldA & 0xE0ULL) << 39) | ((fieldA & 0xF0000000ULL) << 12) | ((fieldA & 0xF00000ULL) << 16) | ((fieldA & 0xF000ULL) << 20);
if ((fieldB & 0xE000000000ULL) == 0xE000000000ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x80000000ULL | ((fieldB & 0xF800000000000000ULL) >> 33) | ((fieldB & 0xF8000000000000ULL) >> 30) | ((fieldB & 0xF80000000000ULL) >> 27);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE000000000ULL) >> 9) | ((fieldB & 0xF000000000000000ULL) >> 36) | ((fieldB & 0xF0000000000000ULL) >> 32) | ((fieldB & 0xF00000000000ULL) >> 28);
if ((fieldB & 0xE0ULL) == 0xE0ULL)
// Opaque pixel, so set MSB to 1 and encode colors in RGB555
tmp = tmp | 0x8000ULL | ((fieldB & 0xF8000000ULL) >> 17) | ((fieldB & 0xF80000ULL) >> 14) | ((fieldB & 0xF800ULL) >> 11);
else
// Tranlucid pixel, so set MSB to 0 and encode colors in ARGB3444
tmp = tmp | ((fieldB & 0xE0ULL) << 7) | ((fieldB & 0xF0000000ULL) >> 20) | ((fieldB & 0xF00000ULL) >> 16) | ((fieldB & 0xF000ULL) >> 12);
((PNGU_u64 *) buffer)[blockbase+3] = tmp;
}
}
else
{
// No alpha channel present, copy image to the output buffer
default_alpha = (default_alpha >> 5);
if (default_alpha == 7)
{
// The user wants an opaque texture, so set MSB to 1 and encode colors in RGB555
alphaMask = 0x8000800080008000ULL;
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 4;
PNGU_u64 field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*12));
PNGU_u64 field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4]+x*12+8));
((PNGU_u64 *) buffer)[blockbase] =
alphaMask | ((field64 & 0xF800000000000000ULL) >> 1) | ((field64 & 0xF8000000000000ULL) << 2) |
((field64 & 0xF80000000000ULL) << 5) | ((field64 & 0xF800000000ULL) << 7) | ((field64 & 0xF8000000ULL) << 10) |
((field64 & 0xF80000ULL) << 13) | ((field64 & 0xF800ULL) << 15) | ((field64 & 0xF8ULL) << 18) |
((field32 & 0xF8000000ULL) >> 11) | ((field32 & 0xF80000ULL) >> 9) | ((field32 & 0xF800ULL) >> 6) | ((field32 & 0xF8ULL) >> 3);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+1]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+1] =
alphaMask | ((field64 & 0xF800000000000000ULL) >> 1) | ((field64 & 0xF8000000000000ULL) << 2) |
((field64 & 0xF80000000000ULL) << 5) | ((field64 & 0xF800000000ULL) << 7) | ((field64 & 0xF8000000ULL) << 10) |
((field64 & 0xF80000ULL) << 13) | ((field64 & 0xF800ULL) << 15) | ((field64 & 0xF8ULL) << 18) |
((field32 & 0xF8000000ULL) >> 11) | ((field32 & 0xF80000ULL) >> 9) | ((field32 & 0xF800ULL) >> 6) | ((field32 & 0xF8ULL) >> 3);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+2]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+2] =
alphaMask | ((field64 & 0xF800000000000000ULL) >> 1) | ((field64 & 0xF8000000000000ULL) << 2) |
((field64 & 0xF80000000000ULL) << 5) | ((field64 & 0xF800000000ULL) << 7) | ((field64 & 0xF8000000ULL) << 10) |
((field64 & 0xF80000ULL) << 13) | ((field64 & 0xF800ULL) << 15) | ((field64 & 0xF8ULL) << 18) |
((field32 & 0xF8000000ULL) >> 11) | ((field32 & 0xF80000ULL) >> 9) | ((field32 & 0xF800ULL) >> 6) | ((field32 & 0xF8ULL) >> 3);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+3]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+3] =
alphaMask | ((field64 & 0xF800000000000000ULL) >> 1) | ((field64 & 0xF8000000000000ULL) << 2) |
((field64 & 0xF80000000000ULL) << 5) | ((field64 & 0xF800000000ULL) << 7) | ((field64 & 0xF8000000ULL) << 10) |
((field64 & 0xF80000ULL) << 13) | ((field64 & 0xF800ULL) << 15) | ((field64 & 0xF8ULL) << 18) |
((field32 & 0xF8000000ULL) >> 11) | ((field32 & 0xF80000ULL) >> 9) | ((field32 & 0xF800ULL) >> 6) | ((field32 & 0xF8ULL) >> 3);
}
}
else
{
// The user wants a translucid texture, so set MSB to 0 and encode colors in ARGB3444
default_alpha = (default_alpha << 4);
alphaMask = (((PNGU_u64) default_alpha) << 56) | (((PNGU_u64) default_alpha) << 40) |
(((PNGU_u64) default_alpha) << 24) | (((PNGU_u64) default_alpha) << 8);
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 4;
PNGU_u64 field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*12));
PNGU_u64 field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4]+x*12+8));
((PNGU_u64 *) buffer)[blockbase] =
alphaMask | ((field64 & 0xF000000000000000ULL) >> 4) | (field64 & 0xF0000000000000ULL) | ((field64 & 0xF00000000000ULL) << 4) |
((field64 & 0xF000000000ULL) << 4) | ((field64 & 0xF0000000ULL) << 8) | ((field64 & 0xF00000ULL) << 12) |
((field64 & 0xF000ULL) << 12) | ((field64 & 0xF0ULL) << 16) | ((field32 & 0xF0000000ULL) >> 12) |
((field32 & 0xF00000ULL) >> 12) | ((field32 & 0xF000ULL) >> 8) | ((field32 & 0xF0ULL) >> 4);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+1]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+1] =
alphaMask | ((field64 & 0xF000000000000000ULL) >> 4) | (field64 & 0xF0000000000000ULL) | ((field64 & 0xF00000000000ULL) << 4) |
((field64 & 0xF000000000ULL) << 4) | ((field64 & 0xF0000000ULL) << 8) | ((field64 & 0xF00000ULL) << 12) |
((field64 & 0xF000ULL) << 12) | ((field64 & 0xF0ULL) << 16) | ((field32 & 0xF0000000ULL) >> 12) |
((field32 & 0xF00000ULL) >> 12) | ((field32 & 0xF000ULL) >> 8) | ((field32 & 0xF0ULL) >> 4);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+2]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+2] =
alphaMask | ((field64 & 0xF000000000000000ULL) >> 4) | (field64 & 0xF0000000000000ULL) | ((field64 & 0xF00000000000ULL) << 4) |
((field64 & 0xF000000000ULL) << 4) | ((field64 & 0xF0000000ULL) << 8) | ((field64 & 0xF00000ULL) << 12) |
((field64 & 0xF000ULL) << 12) | ((field64 & 0xF0ULL) << 16) | ((field32 & 0xF0000000ULL) >> 12) |
((field32 & 0xF00000ULL) >> 12) | ((field32 & 0xF000ULL) >> 8) | ((field32 & 0xF0ULL) >> 4);
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+3]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+3] =
alphaMask | ((field64 & 0xF000000000000000ULL) >> 4) | (field64 & 0xF0000000000000ULL) | ((field64 & 0xF00000000000ULL) << 4) |
((field64 & 0xF000000000ULL) << 4) | ((field64 & 0xF0000000ULL) << 8) | ((field64 & 0xF00000ULL) << 12) |
((field64 & 0xF000ULL) << 12) | ((field64 & 0xF0ULL) << 16) | ((field32 & 0xF0000000ULL) >> 12) |
((field32 & 0xF00000ULL) >> 12) | ((field32 & 0xF000ULL) >> 8) | ((field32 & 0xF0ULL) >> 4);
}
}
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
int PNGU_DecodeTo4x4RGBA8 (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u8 default_alpha)
{
int result;
PNGU_u32 x, y, qwidth, qheight;
PNGU_u64 alphaMask;
// width and height need to be divisible by four
if ((width % 4) || (height % 4))
return PNGU_INVALID_WIDTH_OR_HEIGHT;
result = pngu_decode (ctx, width, height, 0);
if (result != PNGU_OK)
return result;
// Init some variables
qwidth = width / 4;
qheight = height / 4;
// Check is source image has an alpha channel
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) )
{
// Alpha channel present, copy image to the output buffer
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 8;
PNGU_u64 fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*16));
PNGU_u64 fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*16+8));
((PNGU_u64 *) buffer)[blockbase] =
((fieldA & 0xFF00000000ULL) << 24) | ((fieldA & 0xFF00000000000000ULL) >> 8) |
((fieldA & 0xFFULL) << 40) | ((fieldA & 0xFF000000ULL) << 8) |
((fieldB & 0xFF00000000ULL) >> 8) | ((fieldB & 0xFF00000000000000ULL) >> 40) |
((fieldB & 0xFFULL) << 8) | ((fieldB & 0xFF000000ULL) >> 24);
((PNGU_u64 *) buffer)[blockbase+4] =
((fieldA & 0xFFFF0000000000ULL) << 8) | ((fieldA & 0xFFFF00ULL) << 24) |
((fieldB & 0xFFFF0000000000ULL) >> 24) | ((fieldB & 0xFFFF00ULL) >> 8);
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*16+8));
((PNGU_u64 *) buffer)[blockbase+1] =
((fieldA & 0xFF00000000ULL) << 24) | ((fieldA & 0xFF00000000000000ULL) >> 8) |
((fieldA & 0xFFULL) << 40) | ((fieldA & 0xFF000000ULL) << 8) |
((fieldB & 0xFF00000000ULL) >> 8) | ((fieldB & 0xFF00000000000000ULL) >> 40) |
((fieldB & 0xFFULL) << 8) | ((fieldB & 0xFF000000ULL) >> 24);
((PNGU_u64 *) buffer)[blockbase+5] =
((fieldA & 0xFFFF0000000000ULL) << 8) | ((fieldA & 0xFFFF00ULL) << 24) |
((fieldB & 0xFFFF0000000000ULL) >> 24) | ((fieldB & 0xFFFF00ULL) >> 8);
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*16+8));
((PNGU_u64 *) buffer)[blockbase+2] =
((fieldA & 0xFF00000000ULL) << 24) | ((fieldA & 0xFF00000000000000ULL) >> 8) |
((fieldA & 0xFFULL) << 40) | ((fieldA & 0xFF000000ULL) << 8) |
((fieldB & 0xFF00000000ULL) >> 8) | ((fieldB & 0xFF00000000000000ULL) >> 40) |
((fieldB & 0xFFULL) << 8) | ((fieldB & 0xFF000000ULL) >> 24);
((PNGU_u64 *) buffer)[blockbase+6] =
((fieldA & 0xFFFF0000000000ULL) << 8) | ((fieldA & 0xFFFF00ULL) << 24) |
((fieldB & 0xFFFF0000000000ULL) >> 24) | ((fieldB & 0xFFFF00ULL) >> 8);
fieldA = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*16));
fieldB = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*16+8));
((PNGU_u64 *) buffer)[blockbase+3] =
((fieldA & 0xFF00000000ULL) << 24) | ((fieldA & 0xFF00000000000000ULL) >> 8) |
((fieldA & 0xFFULL) << 40) | ((fieldA & 0xFF000000ULL) << 8) |
((fieldB & 0xFF00000000ULL) >> 8) | ((fieldB & 0xFF00000000000000ULL) >> 40) |
((fieldB & 0xFFULL) << 8) | ((fieldB & 0xFF000000ULL) >> 24);
((PNGU_u64 *) buffer)[blockbase+7] =
((fieldA & 0xFFFF0000000000ULL) << 8) | ((fieldA & 0xFFFF00ULL) << 24) |
((fieldB & 0xFFFF0000000000ULL) >> 24) | ((fieldB & 0xFFFF00ULL) >> 8);
}
}
else
{
// No alpha channel present, copy image to the output buffer
alphaMask = (((PNGU_u64)default_alpha) << 56) | (((PNGU_u64)default_alpha) << 40) |
(((PNGU_u64)default_alpha) << 24) | (((PNGU_u64)default_alpha) << 8);
for (y = 0; y < qheight; y++)
for (x = 0; x < qwidth; x++)
{
int blockbase = (y * qwidth + x) * 8;
PNGU_u64 field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4]+x*12));
PNGU_u64 field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4]+x*12+8));
((PNGU_u64 *) buffer)[blockbase] =
(((field64 & 0xFF00000000000000ULL) >> 8) | (field64 & 0xFF00000000ULL) |
((field64 & 0xFF00ULL) << 8) | ((field32 & 0xFF0000ULL) >> 16) | alphaMask);
((PNGU_u64 *) buffer)[blockbase+4] =
(((field64 & 0xFFFF0000000000ULL) << 8) | ((field64 & 0xFFFF0000ULL) << 16) |
((field64 & 0xFFULL) << 24) | ((field32 & 0xFF000000ULL) >> 8) | (field32 & 0xFFFFULL));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+1]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+1]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+1] =
(((field64 & 0xFF00000000000000ULL) >> 8) | (field64 & 0xFF00000000ULL) |
((field64 & 0xFF00ULL) << 8) | ((field32 & 0xFF0000ULL) >> 16) | alphaMask);
((PNGU_u64 *) buffer)[blockbase+5] =
(((field64 & 0xFFFF0000000000ULL) << 8) | ((field64 & 0xFFFF0000ULL) << 16) |
((field64 & 0xFFULL) << 24) | ((field32 & 0xFF000000ULL) >> 8) | (field32 & 0xFFFFULL));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+2]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+2]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+2] =
(((field64 & 0xFF00000000000000ULL) >> 8) | (field64 & 0xFF00000000ULL) |
((field64 & 0xFF00ULL) << 8) | ((field32 & 0xFF0000ULL) >> 16) | alphaMask);
((PNGU_u64 *) buffer)[blockbase+6] =
(((field64 & 0xFFFF0000000000ULL) << 8) | ((field64 & 0xFFFF0000ULL) << 16) |
((field64 & 0xFFULL) << 24) | ((field32 & 0xFF000000ULL) >> 8) | (field32 & 0xFFFFULL));
field64 = *((PNGU_u64 *)(ctx->row_pointers[y*4+3]+x*12));
field32 = (PNGU_u64) *((PNGU_u32 *)(ctx->row_pointers[y*4+3]+x*12+8));
((PNGU_u64 *) buffer)[blockbase+3] =
(((field64 & 0xFF00000000000000ULL) >> 8) | (field64 & 0xFF00000000ULL) |
((field64 & 0xFF00ULL) << 8) | ((field32 & 0xFF0000ULL) >> 16) | alphaMask);
((PNGU_u64 *) buffer)[blockbase+7] =
(((field64 & 0xFFFF0000000000ULL) << 8) | ((field64 & 0xFFFF0000ULL) << 16) |
((field64 & 0xFFULL) << 24) | ((field32 & 0xFF000000ULL) >> 8) | (field32 & 0xFFFFULL));
}
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
//########################################################################################
//---------- Start CMPR added section ---------------------------------------------------
//########################################################################################
static inline PNGU_u16 rgb8ToRGB565(PNGU_u8 *color)
{
return ((color[0] >> 3) << 11) | ((color[1] >> 2) << 5) | (color[2] >> 3);
}
static int colorDistance(const PNGU_u8 *c0, const PNGU_u8 *c1)
{
return (c1[0] - c0[0]) * (c1[0] - c0[0]) + (c1[1] - c0[1]) * (c1[1] - c0[1]) + (c1[2] - c0[2]) * (c1[2] - c0[2]);
}
static void getBaseColors(PNGU_u8 *color0, PNGU_u8 *color1, const PNGU_u8 *srcBlock)
{
int maxDistance = -1;
int i;
int j;
for (i = 0; i < 15; ++i)
for (j = i + 1; j < 16; ++j)
{
int distance = colorDistance(srcBlock + i * 4, srcBlock + j * 4);
if (distance > maxDistance)
{
maxDistance = distance;
*(PNGU_u32 *)color0 = ((PNGU_u32 *)srcBlock)[i];
*(PNGU_u32 *)color1 = ((PNGU_u32 *)srcBlock)[j];
}
}
if (rgb8ToRGB565(color0) < rgb8ToRGB565(color1))
{
PNGU_u32 tmp;
tmp = *(PNGU_u32 *)color0;
*(PNGU_u32 *)color0 = *(PNGU_u32 *)color1;
*(PNGU_u32 *)color1 = tmp;
}
}
static PNGU_u32 colorIndices(const PNGU_u8 *color0, const PNGU_u8 *color1, const PNGU_u8 *srcBlock)
{
PNGU_u16 colors[4][4];
PNGU_u32 res = 0;
int i;
// Make the 4 colors available in the block
colors[0][0] = (color0[0] & 0xF8) | (color0[0] >> 5);
colors[0][1] = (color0[1] & 0xFC) | (color0[1] >> 6);
colors[0][2] = (color0[2] & 0xF8) | (color0[2] >> 5);
colors[1][0] = (color1[0] & 0xF8) | (color1[0] >> 5);
colors[1][1] = (color1[1] & 0xFC) | (color1[1] >> 6);
colors[1][2] = (color1[2] & 0xF8) | (color1[2] >> 5);
colors[2][0] = (2 * colors[0][0] + 1 * colors[1][0]) / 3;
colors[2][1] = (2 * colors[0][1] + 1 * colors[1][1]) / 3;
colors[2][2] = (2 * colors[0][2] + 1 * colors[1][2]) / 3;
colors[3][0] = (1 * colors[0][0] + 2 * colors[1][0]) / 3;
colors[3][1] = (1 * colors[0][1] + 2 * colors[1][1]) / 3;
colors[3][2] = (1 * colors[0][2] + 2 * colors[1][2]) / 3;
for (i = 15; i >= 0; --i)
{
int c0 = srcBlock[i * 4 + 0];
int c1 = srcBlock[i * 4 + 1];
int c2 = srcBlock[i * 4 + 2];
int d0 = abs(colors[0][0] - c0) + abs(colors[0][1] - c1) + abs(colors[0][2] - c2);
int d1 = abs(colors[1][0] - c0) + abs(colors[1][1] - c1) + abs(colors[1][2] - c2);
int d2 = abs(colors[2][0] - c0) + abs(colors[2][1] - c1) + abs(colors[2][2] - c2);
int d3 = abs(colors[3][0] - c0) + abs(colors[3][1] - c1) + abs(colors[3][2] - c2);
int b0 = d0 > d3;
int b1 = d1 > d2;
int b2 = d0 > d2;
int b3 = d1 > d3;
int b4 = d2 > d3;
int x0 = b1 & b2;
int x1 = b0 & b3;
int x2 = b0 & b4;
res |= (x2 | ((x0 | x1) << 1)) << ((15 - i) << 1);
}
return res;
}
int PNGU_DecodeToCMPR_Trim(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer)
{
int result;
PNGU_u8 srcBlock[16 * 4];
PNGU_u8 color0[4];
PNGU_u8 color1[4];
PNGU_u8 *outBuf = (PNGU_u8 *)buffer;
int ii;
int jj;
int k;
//check for alpha channel
result = pngu_decode_add_alpha (ctx, width, height, 0, 1);
if (result != PNGU_OK)
return result;
// trim down
width = width & ~7u;
height = height & ~7u;
// Alpha channel present, copy image to the output buffer
for (jj = 0; jj < height; jj += 8)
for (ii = 0; ii < width; ii += 8)
for (k = 0; k < 4; ++k)
{
int j = jj + ((k >> 1) << 2); // jj + 0, jj + 0, jj + 4, jj + 4
int i = ii + ((k & 1) << 2); // ii + 0, ii + 4, ii + 0, ii + 4
memcpy(srcBlock, ctx->row_pointers[j] + i * 4, 16);
memcpy(srcBlock + 4 * 4, ctx->row_pointers[j + 1] + i * 4, 16);
memcpy(srcBlock + 8 * 4, ctx->row_pointers[j + 2] + i * 4, 16);
memcpy(srcBlock + 12 * 4, ctx->row_pointers[j + 3] + i * 4, 16);
getBaseColors(color0, color1, srcBlock);
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color0);
outBuf += 2;
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color1);
outBuf += 2;
*(PNGU_u32 *)outBuf = colorIndices(color0, color1, srcBlock);
outBuf += 4;
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
// if width or height is not divisible by 8
// then the remaining will be padded with last row/column
// buffer must be allocated with width and height rounded up
int PNGU_DecodeToCMPR_Pad(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer)
{
int result;
PNGU_u8 srcBlock[16 * 4];
PNGU_u8 color0[4];
PNGU_u8 color1[4];
PNGU_u8 *outBuf = (PNGU_u8 *)buffer;
int ii;
int jj;
int k;
//check for alpha channel
result = pngu_decode_add_alpha (ctx, width, height, 0, 1);
if (result != PNGU_OK)
return result;
// Alpha channel present, copy image to the output buffer
for (jj = 0; jj < height; jj += 8) {
for (ii = 0; ii < width; ii += 8) {
for (k = 0; k < 4; ++k) {
// k(i,j)
// 0(0,0) 1(4,0)
// 2(4,0) 3(4,4)
int i = ii + ((k & 1) << 2); // ii + 0, ii + 4, ii + 0, ii + 4
int j = jj + ((k >> 1) << 2); // jj + 0, jj + 0, jj + 4, jj + 4
int ny; // 4 lines
int px = 4; // num columns to copy
if (i >= width) i = width - 1;
if (i + px > width) px = width - i;
for (ny=0; ny<4; ny++) {
if (j >= height) j = height - 1;
memcpy(srcBlock + ny * 4 * 4,
ctx->row_pointers[j] + i * 4, px * 4);
if (px < 4) {
// repeat last column (4-px) times
int x = width - 1;
int nx;
for (nx = px; nx < 4; nx++) {
memcpy(srcBlock + ny * 4 * 4 + nx * 4,
ctx->row_pointers[j] + x * 4, 4);
}
}
j++;
}
getBaseColors(color0, color1, srcBlock);
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color0);
outBuf += 2;
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color1);
outBuf += 2;
*(PNGU_u32 *)outBuf = colorIndices(color0, color1, srcBlock);
outBuf += 4;
}
}
}
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
// Success
return PNGU_OK;
}
void ExtractBlock( PNGU_u8 *inPtr, int y, int x, PNGU_u32 width, int i, PNGU_u8 colorBlock[] ) {
PNGU_u32 offset;
PNGU_u8 r, g, b, a;
offset = (((y >> 2)<<4)*width) + ((x >> 2)<<6) + ((((y&3) << 2) + (x&3) ) << 1);
//offset = (((y >> 2) << 4)*width) + ((x >> 2) << 6) + (((y % 4 << 2) + x % 4) << 1);
//get rgba values based on the RGBA8 offsets
a = *(inPtr+offset);
r = *(inPtr+offset+1);
g = *(inPtr+offset+32);
b = *(inPtr+offset+33);
colorBlock[i*4] = r;
colorBlock[i*4+1] = g;
colorBlock[i*4+2] = b;
colorBlock[i*4+3] = a;
}
/**
* by usptactical
* Converts a 4x4 RGBA8 image to CMPR.
*/
int PNGU_4x4RGBA8_To_CMPR(void *buf_rgb, PNGU_u32 width, PNGU_u32 height, void *buf_cmpr)
{
PNGU_u8 srcBlock[16 * 4];
PNGU_u8 color0[4];
PNGU_u8 color1[4];
PNGU_u8 *outBuf = (PNGU_u8 *)buf_cmpr;
PNGU_u8 *rgba = (PNGU_u8 *)buf_rgb;
int jj, ii, i, j, k;
width = width & ~7u;
height = height & ~7u;
// loop over blocks
//CMPR needs 4x4 block of pixels:
//image row 0: 0, 1, 2, 3 (first 16 block)
//image row 1: 0, 1, 2, 3 (second 16 block)
//image row 2: 0, 1, 2, 3 (third 16 block)
//image row 3: 0, 1, 2, 3 (last 16 block)
//image row 0: 4, 5, 6, 7 (first 16 block)
//image row 1: 4, 5, 6, 7 (second 16 block)
//image row 2: 4, 5, 6, 7 (third 16 block)
//image row 3: 4, 5, 6, 7 (last 16 block)
//image row 4: 0, 1, 2, 3 (first 16 block)
//image row 5: 0, 1, 2, 3 (second 16 block)
//image row 6: 0, 1, 2, 3 (third 16 block)
//image row 7: 0, 1, 2, 3 (last 16 block)
//image row 4: 4, 5, 6, 7 (first 16 block)
//image row 5: 4, 5, 6, 7 (second 16 block)
//image row 6: 4, 5, 6, 7 (third 16 block)
//image row 7: 4, 5, 6, 7 (last 16 block)
for(jj = 0; jj < height; jj += 8)
for(ii = 0; ii < width; ii += 8)
for (k=0; k < 4; k++)
{
j = jj + ((k >> 1) << 2); // jj + 0, jj + 0, jj + 4, jj + 4
i = ii + ((k & 1) << 2); // ii + 0, ii + 4, ii + 0, ii + 4
ExtractBlock(rgba, j, i, width, 0, srcBlock);
ExtractBlock(rgba, j, i+1, width, 1, srcBlock);
ExtractBlock(rgba, j, i+2, width, 2, srcBlock);
ExtractBlock(rgba, j, i+3, width, 3, srcBlock);
ExtractBlock(rgba, j+1, i, width, 4, srcBlock);
ExtractBlock(rgba, j+1, i+1, width, 5, srcBlock);
ExtractBlock(rgba, j+1, i+2, width, 6, srcBlock);
ExtractBlock(rgba, j+1, i+3, width, 7, srcBlock);
ExtractBlock(rgba, j+2, i, width, 8, srcBlock);
ExtractBlock(rgba, j+2, i+1, width, 9, srcBlock);
ExtractBlock(rgba, j+2, i+2, width, 10, srcBlock);
ExtractBlock(rgba, j+2, i+3, width, 11, srcBlock);
ExtractBlock(rgba, j+3, i, width, 12, srcBlock);
ExtractBlock(rgba, j+3, i+1, width, 13, srcBlock);
ExtractBlock(rgba, j+3, i+2, width, 14, srcBlock);
ExtractBlock(rgba, j+3, i+3, width, 15, srcBlock);
getBaseColors(color0, color1, srcBlock);
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color0);
outBuf += 2;
*(PNGU_u16 *)outBuf = rgb8ToRGB565(color1);
outBuf += 2;
*(PNGU_u32 *)outBuf = colorIndices(color0, color1, srcBlock);
outBuf += 4;
}
// Success
return PNGU_OK;
}
// if width or height is not divisible by 8
// then the remaining will be padded with last row/column
// buffer must be allocated with width and height rounded up
int PNGU_RGBA8_To_CMPR(void *buf_rgb, PNGU_u32 width, PNGU_u32 height, void *buf_cmpr)
{
PNGU_u8 srcBlock[16 * 4];
PNGU_u8 color0[4];
PNGU_u8 color1[4];
PNGU_u8 *src, *block;
PNGU_u8 *cmpr = (PNGU_u8 *)buf_cmpr;
PNGU_u8 *rgba = (PNGU_u8 *)buf_rgb;
int jj, ii, i, j, k;
int x, y; // counter
int px, py; // pixel coord
for(jj = 0; jj < height; jj += 8) {
for(ii = 0; ii < width; ii += 8) {
for (k=0; k < 4; k++) {
i = ii + ((k & 1) << 2); // ii + 0, ii + 4, ii + 0, ii + 4
j = jj + ((k >> 1) << 2); // jj + 0, jj + 0, jj + 4, jj + 4
block = srcBlock;
for (y=0; y<4; y++) {
py = j + y;
if (py >= height) py = height - 1;
src = rgba + py * width * 4;
for (x=0; x<4; x++) {
px = i + x;
if (px >= width) px = width - 1;
memcpy(block, src + px * 4, 4);
block += 4;
}
}
getBaseColors(color0, color1, srcBlock);
*(PNGU_u16 *)cmpr = rgb8ToRGB565(color0);
cmpr += 2;
*(PNGU_u16 *)cmpr = rgb8ToRGB565(color1);
cmpr += 2;
*(PNGU_u32 *)cmpr = colorIndices(color0, color1, srcBlock);
cmpr += 4;
}
}
}
// Success
return PNGU_OK;
}
/**
* added by usptactical
* handles png error messages
*/
void user_error (png_structp png_ptr, png_const_charp c)
{
longjmp(png_jmpbuf(png_ptr), 1);
}
//########################################################################################
//---------- End CMPR added section -----------------------------------------------------
//########################################################################################
int PNGU_EncodeFromYCbYCr (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride)
{
png_uint_32 rowbytes;
PNGU_u32 x, y, buffWidth;
// Erase from the context any readed info
pngu_free_info (ctx);
ctx->propRead = 0;
// Check if the user has selected a file to write the image
if (ctx->source == PNGU_SOURCE_BUFFER);
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Open file
if (!(ctx->fd = fopen (ctx->filename, "wb")))
return PNGU_CANT_OPEN_FILE;
}
else
return PNGU_NO_FILE_SELECTED;
// Allocation of libpng structs
ctx->png_ptr = png_create_write_struct (PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!(ctx->png_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
ctx->info_ptr = png_create_info_struct (ctx->png_ptr);
if (!(ctx->info_ptr))
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
if (ctx->source == PNGU_SOURCE_BUFFER)
{
// Installation of our custom data writer function
ctx->cursor = 0;
png_set_write_fn (ctx->png_ptr, ctx, pngu_write_data_to_buffer, pngu_flush_data_to_buffer);
}
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Default data writer uses function fwrite, so it needs to use our FILE*
png_init_io (ctx->png_ptr, ctx->fd);
}
// Setup output file properties
png_set_IHDR (ctx->png_ptr, ctx->info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
// Allocate memory to store the image in RGB format
rowbytes = width * 3;
if (rowbytes % 4)
rowbytes = ((rowbytes / 4) + 1) * 4; // Add extra padding so each row starts in a 4 byte boundary
ctx->img_data = malloc (rowbytes * height);
if (!ctx->img_data)
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
ctx->row_pointers = malloc (sizeof (png_bytep) * height);
if (!ctx->row_pointers)
{
png_destroy_write_struct (&(ctx->png_ptr), (png_infopp)NULL);
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
// Encode YCbYCr image into RGB8 format
buffWidth = (width + stride) / 2;
for (y = 0; y < height; y++)
{
ctx->row_pointers[y] = ctx->img_data + (y * rowbytes);
for (x = 0; x < (width / 2); x++)
PNGU_YCbYCr_TO_RGB8 ( ((PNGU_u32 *)buffer)[y*buffWidth+x],
((PNGU_u8 *) ctx->row_pointers[y]+x*6), ((PNGU_u8 *) ctx->row_pointers[y]+x*6+1),
((PNGU_u8 *) ctx->row_pointers[y]+x*6+2), ((PNGU_u8 *) ctx->row_pointers[y]+x*6+3),
((PNGU_u8 *) ctx->row_pointers[y]+x*6+4), ((PNGU_u8 *) ctx->row_pointers[y]+x*6+5) );
}
// Tell libpng where is our image data
png_set_rows (ctx->png_ptr, ctx->info_ptr, ctx->row_pointers);
// Write file header and image data
png_write_png (ctx->png_ptr, ctx->info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
// Tell libpng we have no more data to write
png_write_end (ctx->png_ptr, (png_infop) NULL);
// Free resources
free (ctx->img_data);
free (ctx->row_pointers);
png_destroy_write_struct (&(ctx->png_ptr), &(ctx->info_ptr));
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
// Success
return PNGU_OK;
}
// This function is taken from a libogc example
PNGU_u32 PNGU_RGB8_TO_YCbYCr (PNGU_u8 r1, PNGU_u8 g1, PNGU_u8 b1, PNGU_u8 r2, PNGU_u8 g2, PNGU_u8 b2)
{
int y1, cb1, cr1, y2, cb2, cr2, cb, cr;
y1 = (299 * r1 + 587 * g1 + 114 * b1) / 1000;
cb1 = (-16874 * r1 - 33126 * g1 + 50000 * b1 + 12800000) / 100000;
cr1 = (50000 * r1 - 41869 * g1 - 8131 * b1 + 12800000) / 100000;
y2 = (299 * r2 + 587 * g2 + 114 * b2) / 1000;
cb2 = (-16874 * r2 - 33126 * g2 + 50000 * b2 + 12800000) / 100000;
cr2 = (50000 * r2 - 41869 * g2 - 8131 * b2 + 12800000) / 100000;
cb = (cb1 + cb2) >> 1;
cr = (cr1 + cr2) >> 1;
return (PNGU_u32) ((y1 << 24) | (cb << 16) | (y2 << 8) | cr);
}
void PNGU_YCbYCr_TO_RGB8 (PNGU_u32 ycbycr, PNGU_u8 *r1, PNGU_u8 *g1, PNGU_u8 *b1, PNGU_u8 *r2, PNGU_u8 *g2, PNGU_u8 *b2)
{
PNGU_u8 *val = (PNGU_u8 *) &ycbycr;
int r, g, b;
r = 1.371f * (val[3] - 128);
g = - 0.698f * (val[3] - 128) - 0.336f * (val[1] - 128);
b = 1.732f * (val[1] - 128);
*r1 = pngu_clamp (val[0] + r, 0, 255);
*g1 = pngu_clamp (val[0] + g, 0, 255);
*b1 = pngu_clamp (val[0] + b, 0, 255);
*r2 = pngu_clamp (val[2] + r, 0, 255);
*g2 = pngu_clamp (val[2] + g, 0, 255);
*b2 = pngu_clamp (val[2] + b, 0, 255);
}
int pngu_info (IMGCTX ctx)
{
png_byte magic[8];
png_uint_32 width;
png_uint_32 height;
png_color_16p background;
png_bytep trans;
png_color_16p trans_values;
int scale, i;
// Check if there is a file selected and if it is a valid .png
if (ctx->source == PNGU_SOURCE_BUFFER)
memcpy (magic, ctx->buffer, 8);
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Open file
if (!(ctx->fd = fopen (ctx->filename, "rb")))
return PNGU_CANT_OPEN_FILE;
// Load first 8 bytes into magic buffer
if (fread (magic, 1, 8, ctx->fd) != 8)
{
fclose (ctx->fd);
return PNGU_CANT_READ_FILE;
}
}
else
return PNGU_NO_FILE_SELECTED;;
if (png_sig_cmp(magic, 0, 8) != 0)
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_FILE_IS_NOT_PNG;
}
// Allocation of libpng structs
ctx->png_ptr = png_create_read_struct (PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!(ctx->png_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
return PNGU_LIB_ERROR;
}
ctx->info_ptr = png_create_info_struct (ctx->png_ptr);
if (!(ctx->info_ptr))
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
png_destroy_read_struct (&(ctx->png_ptr), (png_infopp)NULL, (png_infopp)NULL);
return PNGU_LIB_ERROR;
}
if (ctx->source == PNGU_SOURCE_BUFFER)
{
// Installation of our custom data provider function
ctx->cursor = 0;
png_set_read_fn (ctx->png_ptr, ctx, pngu_read_data_from_buffer);
}
else if (ctx->source == PNGU_SOURCE_DEVICE)
{
// Default data provider uses function fread, so it needs to use our FILE*
png_init_io (ctx->png_ptr, ctx->fd);
png_set_sig_bytes (ctx->png_ptr, 8); // We have read 8 bytes already to check PNG authenticity
}
// Read png header
png_read_info (ctx->png_ptr, ctx->info_ptr);
// Query image properties if they have not been queried before
if (!ctx->propRead)
{
png_get_IHDR(ctx->png_ptr, ctx->info_ptr, &width, &height,
(int *) &(ctx->prop.imgBitDepth),
(int *) &(ctx->prop.imgColorType),
NULL, NULL, NULL);
ctx->prop.imgWidth = width;
ctx->prop.imgHeight = height;
switch (ctx->prop.imgColorType)
{
case PNG_COLOR_TYPE_GRAY:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY_ALPHA;
break;
case PNG_COLOR_TYPE_PALETTE:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_PALETTE;
break;
case PNG_COLOR_TYPE_RGB:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB_ALPHA;
break;
default:
ctx->prop.imgColorType = PNGU_COLOR_TYPE_UNKNOWN;
break;
}
// Constant used to scale 16 bit values to 8 bit values
scale = 1;
if (ctx->prop.imgBitDepth == 16)
scale = 256;
// Query background color, if any.
ctx->prop.validBckgrnd = 0;
if (((ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA)) &&
(png_get_bKGD (ctx->png_ptr, ctx->info_ptr, &background)))
{
ctx->prop.validBckgrnd = 1;
ctx->prop.bckgrnd.r = background->red / scale;
ctx->prop.bckgrnd.g = background->green / scale;
ctx->prop.bckgrnd.b = background->blue / scale;
}
else if (((ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA)) &&
(png_get_bKGD (ctx->png_ptr, ctx->info_ptr, &background)))
{
ctx->prop.validBckgrnd = 1;
ctx->prop.bckgrnd.r = ctx->prop.bckgrnd.g = ctx->prop.bckgrnd.b = background->gray / scale;
}
// Query list of transparent colors, if any.
ctx->prop.numTrans = 0;
ctx->prop.trans = NULL;
if (((ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA)) &&
(png_get_tRNS (ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)))
{
if (ctx->prop.numTrans)
{
ctx->prop.trans = malloc (sizeof (PNGUCOLOR) * ctx->prop.numTrans);
if (ctx->prop.trans)
for (i = 0; i < ctx->prop.numTrans; i++)
{
ctx->prop.trans[i].r = trans_values[i].red / scale;
ctx->prop.trans[i].g = trans_values[i].green / scale;
ctx->prop.trans[i].b = trans_values[i].blue / scale;
}
else
ctx->prop.numTrans = 0;
}
}
else if (((ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA)) &&
(png_get_tRNS (ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)))
{
if (ctx->prop.numTrans)
{
ctx->prop.trans = malloc (sizeof (PNGUCOLOR) * ctx->prop.numTrans);
if (ctx->prop.trans)
for (i = 0; i < ctx->prop.numTrans; i++)
ctx->prop.trans[i].r = ctx->prop.trans[i].g = ctx->prop.trans[i].b =
trans_values[i].gray / scale;
else
ctx->prop.numTrans = 0;
}
}
ctx->propRead = 1;
}
// Success
ctx->infoRead = 1;
return PNGU_OK;
}
int pngu_decode_add_alpha (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, PNGU_u32 stripAlpha, int force32bit)
{
png_uint_32 rowbytes;
int i;
int chunk;
int rowsLeft;
png_bytep *curRow;
int mem_err = 0;
// Read info if it hasn't been read before
if (!ctx->infoRead)
{
i = pngu_info (ctx);
if (i != PNGU_OK)
return i;
}
// Check if the user has specified the real width and height of the image
if ( (ctx->prop.imgWidth != width) || (ctx->prop.imgHeight != height) )
return PNGU_INVALID_WIDTH_OR_HEIGHT;
// Check if color type is supported by PNGU
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_PALETTE) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_UNKNOWN) )
return PNGU_UNSUPPORTED_COLOR_TYPE;
//*************************************************
//* added by usptactical to catch corrupted pngs *
jmp_buf save_jmp;
memcpy(save_jmp, png_jmpbuf(ctx->png_ptr), sizeof(save_jmp));
if (setjmp(png_jmpbuf(ctx->png_ptr))) {
error:
memcpy(png_jmpbuf(ctx->png_ptr), save_jmp, sizeof(save_jmp));
SAFE_FREE(ctx->row_pointers);
SAFE_FREE(ctx->img_data);
pngu_free_info (ctx);
//printf("*** This is a corrupted image!!\n"); sleep(5);
return (mem_err)?PNGU_LIB_ERROR:-666;
}
//override default error handler to suppress warning messages from libpng
png_set_error_fn (ctx->png_ptr, NULL, user_error, user_error);
//*************************************************
// Scale 16 bit samples to 8 bit
if (ctx->prop.imgBitDepth == 16)
png_set_strip_16 (ctx->png_ptr);
// Remove alpha channel if we don't need it
if (stripAlpha && ((ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA)))
png_set_strip_alpha (ctx->png_ptr);
// Expand 1, 2 and 4 bit samples to 8 bit
if (ctx->prop.imgBitDepth < 8)
png_set_packing (ctx->png_ptr);
// Transform grayscale images to RGB
if ( (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA) )
png_set_gray_to_rgb (ctx->png_ptr);
// Transform RBG images to RGBA
if (force32bit && (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY || ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB))
png_set_filler(ctx->png_ptr, 0xFF, PNG_FILLER_AFTER);
// Flush transformations
png_read_update_info (ctx->png_ptr, ctx->info_ptr);
// Allocate memory to store the image
rowbytes = png_get_rowbytes (ctx->png_ptr, ctx->info_ptr);
if (rowbytes % 4)
rowbytes = ((rowbytes / 4) + 1) * 4; // Add extra padding so each row starts in a 4 byte boundary
ctx->img_data = malloc (rowbytes * ctx->prop.imgHeight);
if (!ctx->img_data)
{
//pngu_free_info (ctx);
//return PNGU_LIB_ERROR;
mem_err = 1;
goto error;
}
ctx->row_pointers = malloc (sizeof (png_bytep) * ctx->prop.imgHeight);
if (!ctx->row_pointers)
{
//free (ctx->img_data);
//pngu_free_info (ctx);
//return PNGU_LIB_ERROR;
mem_err = 1;
goto error;
}
for (i = 0; i < (int)ctx->prop.imgHeight; i++)
ctx->row_pointers[i] = ctx->img_data + (i * rowbytes);
// Transform the image and copy it to our allocated memory
if (png_get_interlace_type(ctx->png_ptr, ctx->info_ptr) != PNG_INTERLACE_NONE)
png_read_image (ctx->png_ptr, ctx->row_pointers);
else
{
rowsLeft = ctx->prop.imgHeight;
curRow = ctx->row_pointers;
while (rowsLeft > 0)
{
chunk = rowsLeft > 0x80 ? 0x80 : rowsLeft;
png_read_rows(ctx->png_ptr, curRow, NULL, chunk);
//usleep(1000);
curRow += chunk;
rowsLeft -= chunk;
}
}
// restore default error handling
memcpy(png_jmpbuf(ctx->png_ptr), save_jmp, sizeof(save_jmp));
// Free resources
pngu_free_info (ctx);
// Success
return PNGU_OK;
}
int pngu_decode (IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, PNGU_u32 stripAlpha)
{
return pngu_decode_add_alpha(ctx, width, height, stripAlpha, 0);
}
void pngu_free_info (IMGCTX ctx)
{
if (ctx->infoRead)
{
if (ctx->source == PNGU_SOURCE_DEVICE)
fclose (ctx->fd);
png_destroy_read_struct (&(ctx->png_ptr), &(ctx->info_ptr), (png_infopp)NULL);
ctx->infoRead = 0;
}
}
// Custom data provider function used for reading from memory buffers.
void pngu_read_data_from_buffer (png_structp png_ptr, png_bytep data, png_size_t length)
{
IMGCTX ctx = (IMGCTX) png_get_io_ptr (png_ptr);
if (ctx->buf_size && (ctx->cursor + length > ctx->buf_size))
{
static char err_str[40];
snprintf(err_str, sizeof(err_str), "read error (%x/%x)",
ctx->cursor + length, ctx->buf_size);
png_error(png_ptr, err_str);
}
memcpy (data, ctx->buffer + ctx->cursor, length);
ctx->cursor += length;
}
// Custom data writer function used for writing to memory buffers.
void pngu_write_data_to_buffer (png_structp png_ptr, png_bytep data, png_size_t length)
{
IMGCTX ctx = (IMGCTX) png_get_io_ptr (png_ptr);
memcpy (ctx->buffer + ctx->cursor, data, length);
ctx->cursor += length;
}
// Custom data flusher function used for writing to memory buffers.
void pngu_flush_data_to_buffer (png_structp png_ptr)
{
// Nothing to do here
}
// Function used in YCbYCr to RGB decoding
int pngu_clamp (int value, int min, int max)
{
if (value < min)
value = min;
else if (value > max)
value = max;
return value;
}