CfgUSBLoader/plugins/mighty/source/sonido.c
2015-01-17 10:11:08 +00:00

672 lines
20 KiB
C

// Banner sounds by oggzee
// Fixes by Clipper
#include <stdio.h>
#include <string.h>
#include <gctypes.h>
#include <malloc.h>
#include <asndlib.h>
#include "sonido.h"
/*
void hex_dump2(void *p, int size)
{
int i = 0, j, x = 12;
char *c = p;
//printf("\n");
while (i<size) {
//printf("%02x ", i);
//for (j=0; j<x && i+j<size; j++) printf("%02x", (int)c[i+j]);
//printf(" |");
for (j=0; j<x && i+j<size; j++) {
unsigned cc = (unsigned char)c[i+j];
if (cc < 32 || cc > 128) cc = '.';
//printf("%c", cc);
}
//printf("|\n");
i += x;
}
}
void dbg_hex_dump(void *p, int size)
{
hex_dump2(p, size);
}*/
typedef struct {
//u8 zeroes[128]; // padding
u8 zeroes[0x40]; // padding
u8 imet[4]; // "IMET"
u8 unk[8]; // 0x0000060000000003 fixed, unknown purpose
u32 sizes[3]; // icon.bin, banner.bin, sound.bin
u32 flag1; // unknown
u8 names[7][84]; // JP, EN, DE, FR, ES, IT, NL
u8 zeroes_2[0x348]; // padding
u8 crypto[16]; // MD5 of 0x40 to 0x640 in header.
} IMET;
struct U8_archive_header
{
u8 tag[4]; // 0x55AA382D "U.8-"
u32 rootnode_offset; // offset to root_node, always 0x20.
u32 header_size; // size of header from root_node to end of string table.
u32 data_offset; // offset to data -- this is rootnode_offset + header_size, aligned to 0x40.
u8 zeroes[16];
};
struct U8_node
{
u8 type;
u8 name_offset[3]; //really a "u24"
u32 data_offset;
u32 size;
};
typedef struct {
u32 imd5; // 'IMD5'
u32 filesize; //size of rest of file
u8 zeroes[8]; //padding
u8 crypto[16]; //MD5 of rest of file
} IMD5;
// Header
typedef struct {
char bns[4]; // 'BNS '
u32 version; // 0xFEFF0100 endianness and format version check
u32 filesize; // size of entire BNS
u16 headersize; // size of BNS header (including chunkinfo)
u16 chunkcount; // number of chunks
struct {
u32 offset; // offset from start of BNS of chunk header
u32 size; // size of chunk including header
} chunkinfo[0]; //[chunkcount]; // info for each chunk
} BNS;
// Chunk header
typedef struct {
char type[4]; // 'INFO' or 'DATA'
u32 size; // size including header
} BNS_chunk;
// INFO chunk
typedef struct {
u8 unk; // 0, possibly format control
u8 loop; // loop flag, 0 = no loop, 1 = loop
u8 channels; // channel count
u8 unk2; // 0, padding?
u16 samplerate; // sample rate (Hz)
u16 pad; // 0
u32 loopstart; // loop start sample
u32 samples; // total sample count
u32 offset; // offset (in INFO) to channel info offset list
u32 unk4; // 0, padding?
} INFO_chunk;
// channel info offset list
typedef struct {
// u32 offset[channels]; // offset (in INFO) to channel info for each channel
u32 offset[0]; // offset (in INFO) to channel info for each channel
} channel_info_offset_list;
// channel info (for DSP ADPCM)
typedef struct {
u32 data_offset; // offset (in DATA) of audio data for channel
u32 info_offset; // offset (in INFO) of DSP info (0x30 byte block)
u32 unk; // 0
} channel_info;
void adpcm_decode(void *dsp_buf, void *adpcm_info, void *adpcm_data,
int samples, int channels, int cur_chan)
{
// read:
short *CoEfficients = adpcm_info; //[16];
u8 *cdata = adpcm_data;
// write:
//int dsp_size = size / 8 * 14;
int rsize = samples * 8 / 14;
short *dsp = dsp_buf;
// state
int rpos = 0, wpos = cur_chan;
short adpcmhistory1 = 0;
short adpcmhistory2 = 0;
while (rpos < rsize) {
int sample;
short nibbles[14];
int index1;
int i,j;
u8 header;
short delta;
u8 thisbyte;
short hist = adpcmhistory1;
short hist2 = adpcmhistory2;
// If we have loop data then we write to our looping file.
//if (mscdata.Position == looppos)
// bwpdata = new BinaryWriter(msploop);
//header = brcdata.ReadByte();
header = cdata[rpos++];
i = header & 0xFF;
delta = (short) (1 << (i & 0xff & 0xf));
index1 = (i & 0xff) >> 4;
for(i = 0; i < 14; i += 2) {
//thisbyte = brcdata.ReadByte();
thisbyte = cdata[rpos++];
j = (thisbyte & 0xff) >> 4;
nibbles[i] = (short) j;
j = thisbyte & 0xff & 0xf;
nibbles[i+1] = (short) j;
}
for(i = 0; i < 14; i++) {
if(nibbles[i] >= 8)
nibbles[i] = (short)(nibbles[i] - 16);
}
for(i = 0; i<14 ; i++) {
sample = (delta * nibbles[i])<<11;
sample += CoEfficients[index1 * 2] * hist;
sample += CoEfficients[index1 * 2 + 1] * hist2;
sample = sample + 1024;
sample = sample >> 11;
if(sample > 32767)
sample = 32767;
if(sample < -32768)
sample = -32768;
//bwpdata.Write((short)sample);
dsp[wpos] = (short)sample;
wpos += channels;
if (wpos >= samples * channels) {
rpos = rsize;
break;
}
hist2 = hist;
hist = (short)sample;
}
adpcmhistory1 = hist;
adpcmhistory2 = hist2;
}
}
u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size)
{
u8 *data_end;
u8 *decompressed_data;
size_t unpacked_size;
u8 *in_ptr;
u8 *out_ptr;
u8 *out_end;
in_ptr = data;
data_end = data + data_size;
// Assume this for now and grow when needed
unpacked_size = data_size;
decompressed_data = malloc(unpacked_size);
out_end = decompressed_data + unpacked_size;
out_ptr = decompressed_data;
while (in_ptr < data_end) {
int bit;
u8 bitmask = *in_ptr;
in_ptr++;
for (bit = 0x80; bit != 0; bit >>= 1) {
if (bitmask & bit) {
// Next section is compressed
u8 rep_length;
u16 rep_offset;
rep_length = (*in_ptr >> 4) + 3;
rep_offset = *in_ptr & 0x0f;
in_ptr++;
rep_offset = *in_ptr | (rep_offset << 8);
in_ptr++;
if (out_ptr-decompressed_data < rep_offset) {
//printf("Inconsistency in LZ77 encoding %x\n", in_ptr-data);
}
for ( ; rep_length > 0; rep_length--) {
*out_ptr = out_ptr[-rep_offset-1];
out_ptr++;
if (out_ptr >= out_end) {
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
}
} else {
// Just copy byte
*out_ptr = *in_ptr;
out_ptr++;
if (out_ptr >= out_end) {
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
in_ptr++;
}
}
}
*decompressed_size = (out_ptr - decompressed_data);
return decompressed_data;
}
void parse_bns(void *data_bns, SoundInfo *snd)
{
BNS *bns = data_bns;
BNS_chunk *b_chunk = NULL;
INFO_chunk *i_chunk = NULL;
void *d_chunk = NULL;
channel_info_offset_list *ci_off;
channel_info *ci;
void *dsp_data = NULL;
int dsp_size = 0;
int i;
//printf("BNS: %.4s 0x%x %x %d\n", bns->bns,
// bns->version, bns->filesize, bns->chunkcount);
if (memcmp(bns, "BNS ", 4) != 0) return;
for (i=0; i<bns->chunkcount; i++) {
b_chunk = (void*)bns + bns->chunkinfo[i].offset;
//printf("%d %4x %4x %.4s %x\n", i,
// bns->chunkinfo[i].offset,
// bns->chunkinfo[i].size,
// b_chunk->type,
// b_chunk->size);
if (memcmp(b_chunk->type, "INFO", 4)==0) {
if (!i_chunk) i_chunk = (void*)(b_chunk+1);
//printf(" l:%d c:%d s:%d %x %x %x\n",
// i_chunk->loop,
// i_chunk->channels,
// i_chunk->samplerate,
// i_chunk->loopstart,
// i_chunk->samples,
// i_chunk->offset);
}
if (memcmp(&b_chunk->type, "DATA", 4)==0) {
if (!d_chunk) d_chunk = (void*)(b_chunk+1);
}
}
if (!i_chunk || !d_chunk) return;
if (i_chunk->channels < 1 || i_chunk->channels > 2) return;
dsp_size = i_chunk->samples * i_chunk->channels * sizeof(short);
dsp_data = memalign(32, dsp_size + 14*2);
ci_off = (void*)i_chunk + i_chunk->offset;
for (i=0; i<i_chunk->channels; i++) {
int off = ci_off->offset[i];
ci = (void*)i_chunk + off;
//printf(" [%d] %x data: %x info: %x\n", i, off,
// ci->data_offset, ci->info_offset);
void *adpcm_data = (void*)d_chunk + ci->data_offset;
void *adpcm_info = (void*)i_chunk + ci->info_offset;
adpcm_decode(dsp_data, adpcm_info, adpcm_data,
i_chunk->samples, i_chunk->channels, i);
}
snd->dsp_data = dsp_data;
snd->size = dsp_size;
snd->channels = i_chunk->channels;
snd->rate = i_chunk->samplerate;
snd->loop = i_chunk->loop;
//printf("LOOPSTART: %d ",i_chunk->loopstart);
}
/*
The canonical WAVE format starts with the RIFF header:
Offset Size Name Description
0 4 ChunkID Contains the letters "RIFF" in ASCII form
(0x52494646 big-endian form).
4 4 ChunkSize 36 + SubChunk2Size, or more precisely:
4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)
This is the size of the rest of the chunk
following this number. This is the size of the
entire file in bytes minus 8 bytes for the
two fields not included in this count:
ChunkID and ChunkSize.
8 4 Format Contains the letters "WAVE"
(0x57415645 big-endian form).
The "WAVE" format consists of two subchunks: "fmt " and "data":
The "fmt " subchunk describes the sound data's format:
12 4 Subchunk1ID Contains the letters "fmt "
(0x666d7420 big-endian form).
16 4 Subchunk1Size 16 for PCM. This is the size of the
rest of the Subchunk which follows this number.
20 2 AudioFormat PCM = 1 (i.e. Linear quantization)
Values other than 1 indicate some
form of compression.
22 2 NumChannels Mono = 1, Stereo = 2, etc.
24 4 SampleRate 8000, 44100, etc.
28 4 ByteRate == SampleRate * NumChannels * BitsPerSample/8
32 2 BlockAlign == NumChannels * BitsPerSample/8
The number of bytes for one sample including
all channels. I wonder what happens when
this number isn't an integer?
34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.
2 ExtraParamSize if PCM, then doesn't exist
X ExtraParams space for extra parameters
The "data" subchunk contains the size of the data and the actual sound:
36 4 Subchunk2ID Contains the letters "data"
(0x64617461 big-endian form).
40 4 Subchunk2Size == NumSamples * NumChannels * BitsPerSample/8
This is the number of bytes in the data.
You can also think of this as the size
of the read of the subchunk following this
number.
44 * Data The actual sound data.
*/
typedef struct RIFF
{
char ChunkID[4]; // Contains the letters "RIFF" in ASCII form
int ChunkSize; // 4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)
char Format[4]; // Contains the letters "WAVE"
//The "WAVE" format consists of two subchunks: "fmt " and "data":
//The "fmt " subchunk describes the sound data's format:
char Subchunk1ID[4];// Contains the letters "fmt "
int Subchunk1Size; // 16 for PCM. This is the size of the rest of the Subchunk
short AudioFormat; // PCM = 1 (i.e. Linear quantization)
short NumChannels; // Mono = 1, Stereo = 2, etc.
int SampleRate; // 8000, 44100, etc.
int ByteRate; // == SampleRate * NumChannels * BitsPerSample/8
short BlockAlign; // == NumChannels * BitsPerSample/8
short BitsPerSample;// 8 bits = 8, 16 bits = 16, etc.
// 2 ExtraParamSize // if PCM, then doesn't exist
// X ExtraParams // space for extra parameters
} RIFF;
typedef struct RIFF_chnk
{
char id[4];
int size;
} RIFF_chnk;
void parse_riff(void *data, SoundInfo *snd)
{
RIFF *riff = data;
int riff_size = _le32(&riff->ChunkSize);
int sub1_size = _le32(&riff->Subchunk1Size);
//dbg_hex_dump(data, 128);
//printf("'%.4s %x %.4s %.4s %x\n",
// riff->ChunkID, _le32(&riff->ChunkSize), riff->Format,
// riff->Subchunk1ID, sub1_size);
if (memcmp(riff->ChunkID, "RIFF", 4)) return;
if (memcmp(riff->Format, "WAVE", 4)) return;
if (memcmp(riff->Subchunk1ID, "fmt ", 4)) return;
short AudioFormat = _le16(&riff->AudioFormat);
short NumChannels = _le16(&riff->NumChannels);
short BitsPerSample = _le16(&riff->BitsPerSample);
int SampleRate = _le32(&riff->SampleRate);
if (AudioFormat != 1 || BitsPerSample != 16) return;
if (NumChannels < 1 || NumChannels > 2) return;
//printf("f:%d c:%d r:%d b:%d\n", AudioFormat, NumChannels,
// SampleRate, BitsPerSample);
RIFF_chnk *chnk = ((void*)riff) + 12 + 8 + sub1_size;
RIFF_chnk *riff_data = NULL;
while (((void*)chnk > data) && ((void*)chnk < data + riff_size)) {
int size = _le32(&chnk->size);
//printf("[%.4s] %x\n", chnk->id, size);
//dbg_pause();
if (memcmp(chnk->id, "data", 4)==0) {
riff_data = chnk;
break;
}
if (size <= 0) break;
chnk = ((void*)chnk) + sizeof(RIFF_chnk) + size;
}
if (riff_data == NULL) return;
int Size = _le32(&riff_data->size);
short *ss = (void*)(riff_data + 1);
short *dsp_data;
int i;
dsp_data = memalign(32, Size);
if (!dsp_data) return;
// byte order
for (i=0; i<Size/2; i++) {
dsp_data[i] = _le16(ss);
ss++;
}
snd->dsp_data = dsp_data;
snd->channels = NumChannels;
snd->rate = SampleRate;
snd->size = Size;
snd->loop = 0;
}
/*
Byte order: Big-endian
Offset Length Contents
0 4 bytes "FORM"
4 4 bytes <File size - 8>
8 4 bytes "AIFF"
[ // Chunks
4 bytes <Chunk magic>
4 bytes <Chunk data size(x)>
(x)bytes <Chunk data>
]*
COMM chunk: Must be defined
0 4 bytes "COMM"
4 4 bytes <COMM chunk size> // (=18)
8 2 bytes <Number of channels(c)>
10 4 bytes <Number of frames(f)>
14 2 bytes <bits/samples(b)> // 1..32
16 10 bytes <Sample rate (Extended 80-bit floating-point format)>
SSND chunk: Must be defined
0 4 bytes "SSND"
4 4 bytes <Chunk size(x)>
8 4 bytes <Offset(n)>
12 4 bytes <block size> // (=0)
16 (n)bytes Comment
16+(n) (s)bytes <Sample data> // (s) := (x) - (n) - 8
*/
typedef struct CHNK
{
char id[4];
int size;
} CHNK;
typedef struct AIFF
{
char id[4]; // FORM
int size;
char aiff[4]; // AIFF
} AIFF;
/*
typedef struct COMM
{
char id[4]; // 4 bytes "COMM"
int size; // 4 bytes <COMM chunk size> // (=18)
u16 channels; // 2 bytes <Number of channels(c)>
int frames; // 4 bytes <Number of frames(f)>
u16 bits; // 2 bytes <bits/samples(b)> // 1..32
char rate[10]; //10 bytes <Sample rate (Extended 80-bit floating-point format)>
} COMM;
*/
typedef struct COMM
{
char id[4]; // 4 bytes "COMM"
int size; // 4 bytes <COMM chunk size> // (=18)
u16 channels; // 2 bytes <Number of channels(c)>
u8 frames[4]; // 4 bytes <Number of frames(f)>
u16 bits; // 2 bytes <bits/samples(b)> // 1..32
u8 rate[10];
//u16 pad1;
//u16 rate;
//u8 pad[6]; //10 bytes <Sample rate (Extended 80-bit floating-point format)>
} COMM;
typedef struct SSND
{
char id[4]; // 4 bytes "SSND"
int size; // 4 bytes <Chunk size(x)>
int offset; // 4 bytes <Offset(n)>
int bsize; // 4 bytes <block size> // (=0)
//(n)bytes Comment
//(s)bytes <Sample data> // (s) := (x) - (n) - 8
} SSND;
double ext_to_double(unsigned char a_extended[10])
{
int exponent,i;
char found;
union {
double dval;
unsigned char cval[8];
} value;
unsigned char extended[10];
memcpy(extended, a_extended, 10);
//for (i=0;i<10;i++) printf("%02x ", extended[i]); puts("");
/* I'll assume little endian for now. Easy to fix to big endian anyway */
/* also assuming positive for simplicity */
found=0;
for (i = 2; i < 10; i++) found |= extended[i];
if (!found) return 0;
exponent = (((extended[0]&0x7F) << 8) | extended[1]) - 15359;
found=0;
while(!found) {
found = (extended[2] & 0x80);
for (i = 2; i < 9; i++) extended[i] = (extended[i] << 1) | (extended[i+1] >> 7);
extended[9] = extended[9] << 1;
exponent--;
}
/* Little Endian here:
value.cval[7] = extended[0]&0x80 | (exponent >> 4);
value.cval[6] = (exponent << 4) | (extended[2] >> 4);
for (i=0;i<6; i++) {
value.cval[5-i] = (extended[i+2] << 4) | (extended[i+3] >> 4);
}
*/
value.cval[0] = (extended[0]&0x80) | (exponent >> 4);
value.cval[1] = (exponent << 4) | (extended[2] >> 4);
for (i=0;i<6; i++) {
value.cval[i+2] = (extended[i+2] << 4) | (extended[i+3] >> 4);
}
return value.dval;
}
void parse_aiff(void *data, SoundInfo *snd)
{
AIFF *aiff = data;
CHNK *chnk = (CHNK*)(aiff+1);
COMM *comm = NULL;
SSND *ssnd = NULL;
int rate = 0;
//printf("%.4s %x %.4s\n", aiff->id, aiff->size, aiff->aiff);
while ((void*)chnk < data + aiff->size) {
//printf("[%.4s] %d %x\n", chnk->id, chnk->size, chnk->size);
if (memcmp(chnk->id, "COMM", 4)==0 && !comm) {
comm = (COMM*)chnk;
rate = (int)ext_to_double(comm->rate);
//printf("c:%d f:%x b:%d r:%d\n", comm->channels,
// _be32(comm->frames), comm->bits, rate);
}
if (memcmp(chnk->id, "SSND", 4)==0 && !ssnd) {
ssnd = (SSND*)chnk;
//printf("%d %d\n", ssnd->offset, ssnd->bsize);
}
// next chunk:
chnk = (void*)(chnk+1) + chnk->size;
}
if (!comm || !ssnd) return;
int dsp_size = ssnd->size - ssnd->offset - 8;
void *dsp_data = memalign(32, dsp_size);
if (!dsp_data) return;
memcpy(dsp_data, (void*)(ssnd+1) + ssnd->offset, dsp_size);
snd->dsp_data = dsp_data;
snd->channels = comm->channels;
snd->rate = rate;
snd->size = dsp_size;
snd->loop = 0;
}
void parse_banner_snd(void *banner, SoundInfo *snd){
//void *data_hdr = banner + sizeof(IMET);
void *data_hdr = banner + 0x640;
struct U8_archive_header *u8_hdr;
struct U8_node *node;
int i, num, off;
char *name_start, *name;
u8 u8_tag[4] = {0x55, 0xAA, 0x38, 0x2D}; // "U.8-"
//dbg_hex_dump(banner, 128);
u8_hdr = data_hdr;
//printf("imet: %.4s\n", ((IMET*)banner)->imet);
//printf("U8: %.4s 0x%x\n", u8_hdr->tag, u8_hdr->rootnode_offset);
//dbg_pause();
if (memcmp(u8_hdr->tag, u8_tag, 4)) return;
node = data_hdr + u8_hdr->rootnode_offset;
num = node->size;
name_start = (char*)&node[num];
if (num>5) num = 5;
for (i=1; i<num; i++) {
off = *(int*)(&node[i]) & 0x00FFFFFF;
name = name_start + off;
//printf("%d %.20s [0x%x] @ %x\n", i, name, node[i].size, node[i].data_offset);
//dbg_pause();
if (strcmp(name, "sound.bin") == 0) {
IMD5 *imd5 = data_hdr + node[i].data_offset;
void *sound_data = (void*)imd5 + sizeof(IMD5);
unsigned size = imd5->filesize;
void *lz_data = NULL;
retry:
//printf("[%.4s]\n", (char*)sound_data);
//dbg_pause();
if (memcmp(sound_data, "BNS ", 4)==0) {
parse_bns(sound_data, snd);
} else if (memcmp(sound_data, "RIFF", 4)==0) {
parse_riff(sound_data, snd);
} else if (memcmp(sound_data, "FORM", 4)==0) {
parse_aiff(sound_data, snd);
} else if (memcmp(sound_data, "LZ77", 4)==0 && lz_data == NULL) {
//unsigned lz_hdr = ((unsigned*)sound_data)[1];
lz_data = decompress_lz77(sound_data+8, size-8, &size);
//printf("de-LZ: %p %x %x %x %x %.4s\n", lz_data,
// node[i].size, size, lz_hdr, lz_hdr>>8, (char*)lz_data);
sound_data = lz_data;
goto retry;
}
//SAFE_FREE(lz_data);
if(lz_data){
free(lz_data);
lz_data=NULL;}
}
}
//printf("snd: %p %x\n", snd->dsp_data, snd->size);
}