Fix and improve module loading

This commit is contained in:
Maschell 2022-05-13 17:01:19 +02:00
parent 790394a72d
commit fe17abe0c9
9 changed files with 277 additions and 145 deletions

View File

@ -8,16 +8,16 @@
#include "ElfUtils.h" #include "ElfUtils.h"
#include "elfio/elfio.hpp" #include "elfio/elfio.hpp"
bool ElfUtils::doRelocation(std::vector<std::shared_ptr<RelocationData>> &relocData, relocation_trampoline_entry_t *tramp_data, uint32_t tramp_length) { bool ElfUtils::doRelocation(const std::vector<std::unique_ptr<RelocationData>> &relocData, relocation_trampoline_entry_t *tramp_data, uint32_t tramp_length) {
for (auto const &curReloc : relocData) { for (auto const &curReloc : relocData) {
std::string functionName = curReloc->getName(); std::string functionName = curReloc->getName();
std::string rplName = curReloc->getImportRPLInformation()->getName(); std::string rplName = curReloc->getImportRPLInformation()->getRPLName();
int32_t isData = curReloc->getImportRPLInformation()->isData(); int32_t isData = curReloc->getImportRPLInformation()->isData();
OSDynLoad_Module rplHandle = nullptr; OSDynLoad_Module rplHandle = nullptr;
auto err = OSDynLoad_IsModuleLoaded(rplName.c_str(), &rplHandle); auto err = OSDynLoad_IsModuleLoaded(rplName.c_str(), &rplHandle);
if (err != OS_DYNLOAD_OK || rplHandle == 0) { if (err != OS_DYNLOAD_OK || rplHandle == nullptr) {
// only acquire if not already loaded. // only acquire if not already loaded.
OSDynLoad_Acquire(rplName.c_str(), &rplHandle); OSDynLoad_Acquire(rplName.c_str(), &rplHandle);
} }
@ -41,15 +41,15 @@ bool ElfUtils::doRelocation(std::vector<std::shared_ptr<RelocationData>> &relocD
} }
// See https://github.com/decaf-emu/decaf-emu/blob/43366a34e7b55ab9d19b2444aeb0ccd46ac77dea/src/libdecaf/src/cafe/loader/cafe_loader_reloc.cpp#L144 // See https://github.com/decaf-emu/decaf-emu/blob/43366a34e7b55ab9d19b2444aeb0ccd46ac77dea/src/libdecaf/src/cafe/loader/cafe_loader_reloc.cpp#L144
bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t destination, uint32_t symbol_addr, relocation_trampoline_entry_t *trampolin_data, uint32_t trampolin_data_length, bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t destination, uint32_t symbol_addr, relocation_trampoline_entry_t *trampoline_data, uint32_t trampoline_data_length,
RelocationType reloc_type) { RelocationType reloc_type) {
if (type == R_PPC_NONE) { if (type == R_PPC_NONE) {
return true; return true;
} }
auto target = destination + offset; auto target = destination + offset;
auto value = symbol_addr + addend; auto value = symbol_addr + addend;
auto relValue = value - static_cast<uint32_t>(target); auto relValue = value - static_cast<uint32_t>(target);
switch (type) { switch (type) {
@ -68,7 +68,7 @@ bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t des
*((uint16_t *) (target)) = static_cast<uint16_t>((value + 0x8000) >> 16); *((uint16_t *) (target)) = static_cast<uint16_t>((value + 0x8000) >> 16);
break; break;
case R_PPC_DTPMOD32: case R_PPC_DTPMOD32:
DEBUG_FUNCTION_LINE_ERR("################IMPLEMENT ME\n"); DEBUG_FUNCTION_LINE_ERR("################IMPLEMENT ME");
//*((int32_t *)(target)) = tlsModuleIndex; //*((int32_t *)(target)) = tlsModuleIndex;
break; break;
case R_PPC_DTPREL32: case R_PPC_DTPREL32:
@ -111,33 +111,40 @@ bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t des
// } // }
auto distance = static_cast<int32_t>(value) - static_cast<int32_t>(target); auto distance = static_cast<int32_t>(value) - static_cast<int32_t>(target);
if (distance > 0x1FFFFFC || distance < -0x1FFFFFC) { if (distance > 0x1FFFFFC || distance < -0x1FFFFFC) {
if (trampolin_data == nullptr) { if (trampoline_data == nullptr) {
DEBUG_FUNCTION_LINE_ERR("***24-bit relative branch cannot hit target. Trampoline isn't provided\n"); DEBUG_FUNCTION_LINE_ERR("***24-bit relative branch cannot hit target. Trampoline isn't provided");
DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X\n", value, target, distance); DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X", value, target, distance);
return false; return false;
} else { } else {
relocation_trampoline_entry_t *freeSlot = nullptr; relocation_trampoline_entry_t *freeSlot = nullptr;
for (uint32_t i = 0; i < trampolin_data_length; i++) { for (uint32_t i = 0; i < trampoline_data_length; i++) {
// We want to override "old" relocations of imports // We want to override "old" relocations of imports
// Pending relocations have the status RELOC_TRAMP_IMPORT_IN_PROGRESS. // Pending relocations have the status RELOC_TRAMP_IMPORT_IN_PROGRESS.
// When all relocations are done successfully, they will be turned into RELOC_TRAMP_IMPORT_DONE // When all relocations are done successfully, they will be turned into RELOC_TRAMP_IMPORT_DONE
// so they can be overridden/updated/reused on the next application launch. // so they can be overridden/updated/reused on the next application launch.
// //
// Relocations that won't change will have the status RELOC_TRAMP_FIXED and are set to free when the module is unloaded. // Relocations that won't change will have the status RELOC_TRAMP_FIXED and are set to free when the module is unloaded.
if (trampolin_data[i].status == RELOC_TRAMP_FREE || if (trampoline_data[i].status == RELOC_TRAMP_FREE ||
trampolin_data[i].status == RELOC_TRAMP_IMPORT_DONE) { trampoline_data[i].status == RELOC_TRAMP_IMPORT_DONE) {
freeSlot = &(trampolin_data[i]); freeSlot = &(trampoline_data[i]);
break; break;
} }
} }
if (freeSlot == nullptr) { if (freeSlot == nullptr) {
DEBUG_FUNCTION_LINE_ERR("***24-bit relative branch cannot hit target. Trampoline data list is full\n"); DEBUG_FUNCTION_LINE_ERR("***24-bit relative branch cannot hit target. Trampoline data list is full");
DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X\n", value, target, (target - (uint32_t) & (freeSlot->trampoline[0]))); DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X", value, target, target - (uint32_t) & (freeSlot->trampoline[0]));
return false; return false;
} }
if (target - (uint32_t) & (freeSlot->trampoline[0]) > 0x1FFFFFC) { auto symbolValue = (uint32_t) & (freeSlot->trampoline[0]);
auto newValue = symbolValue + addend;
auto newDistance = static_cast<int32_t>(newValue) - static_cast<int32_t>(target);
if (newDistance > 0x1FFFFFC || newDistance < -0x1FFFFFC) {
DEBUG_FUNCTION_LINE_ERR("**Cannot link 24-bit jump (too far to tramp buffer)."); DEBUG_FUNCTION_LINE_ERR("**Cannot link 24-bit jump (too far to tramp buffer).");
DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X\n", value, target, (target - (uint32_t) & (freeSlot->trampoline[0]))); if (newDistance < 0) {
DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance -%08X", newValue, target, abs(newDistance));
} else {
DEBUG_FUNCTION_LINE_ERR("***value %08X - target %08X = distance %08X", newValue, target, newDistance);
}
return false; return false;
} }
@ -154,9 +161,7 @@ bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t des
// Relocations for the imports may be overridden // Relocations for the imports may be overridden
freeSlot->status = RELOC_TRAMP_IMPORT_DONE; freeSlot->status = RELOC_TRAMP_IMPORT_DONE;
} }
auto symbolValue = (uint32_t) & (freeSlot->trampoline[0]); distance = newDistance;
value = symbolValue + addend;
distance = static_cast<int32_t>(value) - static_cast<int32_t>(target);
} }
} }
@ -182,5 +187,7 @@ bool ElfUtils::elfLinkOne(char type, size_t offset, int32_t addend, uint32_t des
DEBUG_FUNCTION_LINE_ERR("***ERROR: Unsupported Relocation_Add Type (%08X):", type); DEBUG_FUNCTION_LINE_ERR("***ERROR: Unsupported Relocation_Add Type (%08X):", type);
return false; return false;
} }
ICInvalidateRange(reinterpret_cast<void *>(target), 4);
DCFlushRange(reinterpret_cast<void *>(target), 4);
return true; return true;
} }

View File

@ -50,5 +50,5 @@ public:
RelocationType reloc_type); RelocationType reloc_type);
static bool doRelocation(std::vector<std::shared_ptr<RelocationData>> &relocData, relocation_trampoline_entry_t *tramp_data, uint32_t tramp_length); static bool doRelocation(const std::vector<std::unique_ptr<RelocationData>> &relocData, relocation_trampoline_entry_t *tramp_data, uint32_t tramp_length);
}; };

View File

@ -184,13 +184,13 @@ int main(int argc, char **argv) {
DYN_LINK_TRAMPOLIN_LIST_LENGTH); DYN_LINK_TRAMPOLIN_LIST_LENGTH);
if (!moduleData) { if (!moduleData) {
DEBUG_FUNCTION_LINE_ERR("Failed to load %s", setupModules.GetFilepath(i)); DEBUG_FUNCTION_LINE_ERR("Failed to load %s", setupModules.GetFilepath(i));
OSFatal("EnvironmentLoader: Failed to load module");
continue; continue;
} }
DEBUG_FUNCTION_LINE("Loaded module data"); DEBUG_FUNCTION_LINE("Loaded module data");
auto relocData = moduleData.value()->getRelocationDataList(); if (!ElfUtils::doRelocation(moduleData.value()->getRelocationDataList(), gModuleData->trampolines, DYN_LINK_TRAMPOLIN_LIST_LENGTH)) {
if (!ElfUtils::doRelocation(relocData, gModuleData->trampolines, DYN_LINK_TRAMPOLIN_LIST_LENGTH)) {
DEBUG_FUNCTION_LINE_ERR("Relocations failed"); DEBUG_FUNCTION_LINE_ERR("Relocations failed");
OSFatal("Relocations failed"); OSFatal("EnvironmentLoader: Relocations failed");
} else { } else {
DEBUG_FUNCTION_LINE("Relocation done"); DEBUG_FUNCTION_LINE("Relocation done");
} }

View File

@ -18,6 +18,7 @@
#pragma once #pragma once
#include "utils/logger.h" #include "utils/logger.h"
#include <coreinit/debug.h>
#include <memory> #include <memory>
#include <optional> #include <optional>
#include <string> #include <string>
@ -26,44 +27,27 @@
class ImportRPLInformation { class ImportRPLInformation {
public: public:
explicit ImportRPLInformation(std::string name, bool isData = false) { explicit ImportRPLInformation(std::string rawSectionName) {
this->name = std::move(name); this->name = std::move(rawSectionName);
this->_isData = isData;
} }
~ImportRPLInformation() = default; ~ImportRPLInformation() = default;
static std::optional<std::shared_ptr<ImportRPLInformation>> createImportRPLInformation(std::string rawSectionName) { [[nodiscard]] const std::string &getName() const {
std::string fimport = ".fimport_";
std::string dimport = ".dimport_";
bool data = false;
std::string rplName;
if (rawSectionName.size() < fimport.size()) {
return std::nullopt;
} else if (std::equal(fimport.begin(), fimport.end(), rawSectionName.begin())) {
rplName = rawSectionName.substr(fimport.size());
} else if (std::equal(dimport.begin(), dimport.end(), rawSectionName.begin())) {
rplName = rawSectionName.substr(dimport.size());
data = true;
} else {
DEBUG_FUNCTION_LINE("invalid section name\n");
return std::nullopt;
}
return std::make_shared<ImportRPLInformation>(rplName, data);
}
[[nodiscard]] std::string getName() const {
return name; return name;
} }
[[nodiscard]] const char *getRPLName() const {
if (name.max_size() < strlen("._import_") + 1) {
OSFatal("Invalid RPLName, is too short to be valid");
}
return name.c_str() + strlen("._import_");
}
[[nodiscard]] bool isData() const { [[nodiscard]] bool isData() const {
return _isData; return name.starts_with(".dimport_");
} }
private: private:
std::string name; std::string name;
bool _isData = false;
}; };

View File

@ -29,15 +29,15 @@ public:
~ModuleData() = default; ~ModuleData() = default;
void setEntrypoint(uint32_t addr) { void setEntrypoint(uint32_t address) {
this->entrypoint = addr; this->entrypoint = address;
} }
void addRelocationData(const std::shared_ptr<RelocationData> &relocation_data) { void addRelocationData(std::unique_ptr<RelocationData> relocation_data) {
relocation_data_list.push_back(relocation_data); relocation_data_list.push_back(std::move(relocation_data));
} }
[[nodiscard]] const std::vector<std::shared_ptr<RelocationData>> &getRelocationDataList() const { [[nodiscard]] const std::vector<std::unique_ptr<RelocationData>> &getRelocationDataList() const {
return relocation_data_list; return relocation_data_list;
} }
@ -45,12 +45,12 @@ public:
return entrypoint; return entrypoint;
} }
void setStartAddress(uint32_t addr) { void setStartAddress(uint32_t address) {
this->startAddress = addr; this->startAddress = address;
} }
void setEndAddress(uint32_t _endAddress) { void setEndAddress(uint32_t address) {
this->endAddress = _endAddress; this->endAddress = address;
} }
[[nodiscard]] uint32_t getStartAddress() const { [[nodiscard]] uint32_t getStartAddress() const {
@ -62,7 +62,7 @@ public:
} }
private: private:
std::vector<std::shared_ptr<RelocationData>> relocation_data_list; std::vector<std::unique_ptr<RelocationData>> relocation_data_list;
uint32_t entrypoint = 0; uint32_t entrypoint = 0;
uint32_t startAddress = 0; uint32_t startAddress = 0;
uint32_t endAddress = 0; uint32_t endAddress = 0;

View File

@ -18,17 +18,21 @@
#include "ModuleDataFactory.h" #include "ModuleDataFactory.h"
#include "../utils/FileUtils.h" #include "../utils/FileUtils.h"
#include "ElfUtils.h" #include "ElfUtils.h"
#include "utils/OnLeavingScope.h"
#include "utils/utils.h"
#include <coreinit/cache.h> #include <coreinit/cache.h>
#include <map> #include <map>
#include <string> #include <string>
#include <vector> #include <vector>
using namespace ELFIO; std::optional<std::unique_ptr<ModuleData>>
std::optional<std::shared_ptr<ModuleData>>
ModuleDataFactory::load(const std::string &path, uint32_t destination_address_end, uint32_t maximum_size, relocation_trampoline_entry_t *trampoline_data, uint32_t trampoline_data_length) { ModuleDataFactory::load(const std::string &path, uint32_t destination_address_end, uint32_t maximum_size, relocation_trampoline_entry_t *trampoline_data, uint32_t trampoline_data_length) {
elfio reader; ELFIO::elfio reader;
std::shared_ptr<ModuleData> moduleData = std::make_shared<ModuleData>(); auto moduleData = make_unique_nothrow<ModuleData>();
if (!moduleData) {
DEBUG_FUNCTION_LINE_ERR("Failed to allocate ModuleData");
return {};
}
uint8_t *buffer = nullptr; uint8_t *buffer = nullptr;
uint32_t fsize = 0; uint32_t fsize = 0;
@ -44,12 +48,19 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
return {}; return {};
} }
auto cleanupBuffer = onLeavingScope([buffer]() { free(buffer); });
uint32_t sec_num = reader.sections.size(); uint32_t sec_num = reader.sections.size();
auto **destinations = (uint8_t **) malloc(sizeof(uint8_t *) * sec_num);
auto destinations = make_unique_nothrow<uint8_t *[]>(sec_num);
if (!destinations) {
DEBUG_FUNCTION_LINE_ERR("Failed alloc memory for destinations array");
return {};
}
uint32_t sizeOfModule = 0; uint32_t sizeOfModule = 0;
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; ELFIO::section *psec = reader.sections[i];
if (psec->get_type() == 0x80000002) { if (psec->get_type() == 0x80000002) {
continue; continue;
} }
@ -61,8 +72,6 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
if (sizeOfModule > maximum_size) { if (sizeOfModule > maximum_size) {
DEBUG_FUNCTION_LINE_ERR("Module is too big."); DEBUG_FUNCTION_LINE_ERR("Module is too big.");
free(destinations);
free(buffer);
return {}; return {};
} }
@ -78,8 +87,8 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
uint32_t endAddress = 0; uint32_t endAddress = 0;
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; ELFIO::section *psec = reader.sections[i];
if (psec->get_type() == 0x80000002) { if (psec->get_type() == 0x80000002 || psec->get_name() == ".wut_load_bounds") {
continue; continue;
} }
@ -89,8 +98,6 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
totalSize += sectionSize; totalSize += sectionSize;
if (totalSize > maximum_size) { if (totalSize > maximum_size) {
DEBUG_FUNCTION_LINE_ERR("Couldn't load setup module because it's too big."); DEBUG_FUNCTION_LINE_ERR("Couldn't load setup module because it's too big.");
free(destinations);
free(buffer);
return {}; return {};
} }
@ -108,17 +115,20 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
destination -= 0x10000000; destination -= 0x10000000;
destinations[psec->get_index()] -= 0x10000000; destinations[psec->get_index()] -= 0x10000000;
} else if (address >= 0xC0000000) { } else if (address >= 0xC0000000) {
destination -= 0xC0000000; DEBUG_FUNCTION_LINE_ERR("Loading section from 0xC0000000 is NOT supported");
destinations[psec->get_index()] -= 0xC0000000; return std::nullopt;
} else { } else {
DEBUG_FUNCTION_LINE_ERR("Unhandled case"); DEBUG_FUNCTION_LINE_ERR("Unhandled case");
free(destinations);
free(buffer);
return std::nullopt; return std::nullopt;
} }
const char *p = reader.sections[i]->get_data(); const char *p = reader.sections[i]->get_data();
if (destination + sectionSize > (uint32_t) destination_address_end) {
DEBUG_FUNCTION_LINE_ERR("Tried to overflow buffer. %08X > %08X", destination + sectionSize, destination_address_end);
OSFatal("EnvironmentLoader: Tried to overflow buffer");
}
if (psec->get_type() == SHT_NOBITS) { if (psec->get_type() == SHT_NOBITS) {
DEBUG_FUNCTION_LINE("memset section %s %08X to 0 (%d bytes)", psec->get_name().c_str(), destination, sectionSize); DEBUG_FUNCTION_LINE("memset section %s %08X to 0 (%d bytes)", psec->get_name().c_str(), destination, sectionSize);
memset((void *) destination, 0, sectionSize); memset((void *) destination, 0, sectionSize);
@ -143,29 +153,20 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
} }
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; ELFIO::section *psec = reader.sections[i];
if ((psec->get_type() == SHT_PROGBITS || psec->get_type() == SHT_NOBITS) && (psec->get_flags() & SHF_ALLOC)) { if ((psec->get_type() == SHT_PROGBITS || psec->get_type() == SHT_NOBITS) && (psec->get_flags() & SHF_ALLOC)) {
DEBUG_FUNCTION_LINE("Linking (%d)... %s", i, psec->get_name().c_str()); DEBUG_FUNCTION_LINE("Linking (%d)... %s", i, psec->get_name().c_str());
if (!linkSection(reader, psec->get_index(), (uint32_t) destinations[psec->get_index()], offset_text, offset_data, trampoline_data, trampoline_data_length)) { if (!linkSection(reader, psec->get_index(), (uint32_t) destinations[psec->get_index()], offset_text, offset_data, trampoline_data, trampoline_data_length)) {
DEBUG_FUNCTION_LINE_ERR("elfLink failed"); DEBUG_FUNCTION_LINE_ERR("elfLink failed");
free(destinations);
free(buffer);
return std::nullopt; return std::nullopt;
} }
} }
} }
auto relocationData = getImportRelocationData(reader, destinations); getImportRelocationData(moduleData, reader, destinations.get());
for (auto const &reloc : relocationData) {
moduleData->addRelocationData(reloc);
}
DCFlushRange((void *) baseOffset, totalSize); DCFlushRange((void *) baseOffset, totalSize);
ICInvalidateRange((void *) baseOffset, totalSize); ICInvalidateRange((void *) baseOffset, totalSize);
free(destinations);
free(buffer);
moduleData->setStartAddress(startAddress); moduleData->setStartAddress(startAddress);
moduleData->setEndAddress(endAddress); moduleData->setEndAddress(endAddress);
moduleData->setEntrypoint(entrypoint); moduleData->setEntrypoint(entrypoint);
@ -174,79 +175,91 @@ ModuleDataFactory::load(const std::string &path, uint32_t destination_address_en
return moduleData; return moduleData;
} }
std::vector<std::shared_ptr<RelocationData>> ModuleDataFactory::getImportRelocationData(elfio &reader, uint8_t **destinations) { bool ModuleDataFactory::getImportRelocationData(std::unique_ptr<ModuleData> &moduleData, ELFIO::elfio &reader, uint8_t **destinations) {
std::vector<std::shared_ptr<RelocationData>> result; std::map<uint32_t, std::shared_ptr<ImportRPLInformation>> infoMap;
std::map<uint32_t, std::string> infoMap;
uint32_t sec_num = reader.sections.size(); uint32_t sec_num = reader.sections.size();
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; auto *psec = reader.sections[i];
if (psec->get_type() == 0x80000002) { if (psec->get_type() == 0x80000002) {
infoMap[i] = psec->get_name(); auto info = make_shared_nothrow<ImportRPLInformation>(psec->get_name());
if (!info) {
DEBUG_FUNCTION_LINE_ERR("Failed too allocate ImportRPLInformation");
return false;
}
infoMap[i] = std::move(info);
} }
} }
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; ELFIO::section *psec = reader.sections[i];
if (psec->get_type() == SHT_RELA || psec->get_type() == SHT_REL) { if (psec->get_type() == SHT_RELA || psec->get_type() == SHT_REL) {
DEBUG_FUNCTION_LINE_VERBOSE("Found relocation section %s", psec->get_name().c_str()); ELFIO::relocation_section_accessor rel(reader, psec);
relocation_section_accessor rel(reader, psec);
for (uint32_t j = 0; j < (uint32_t) rel.get_entries_num(); ++j) { for (uint32_t j = 0; j < (uint32_t) rel.get_entries_num(); ++j) {
Elf64_Addr offset; ELFIO::Elf64_Addr offset;
Elf_Word type; ELFIO::Elf_Word type;
Elf_Sxword addend; ELFIO::Elf_Sxword addend;
std::string sym_name; std::string sym_name;
Elf64_Addr sym_value; ELFIO::Elf64_Addr sym_value;
Elf_Half sym_section_index; ELFIO::Elf_Half sym_section_index;
if (!rel.get_entry(j, offset, sym_value, sym_name, type, addend, sym_section_index)) { if (!rel.get_entry(j, offset, sym_value, sym_name, type, addend, sym_section_index)) {
DEBUG_FUNCTION_LINE_ERR("Failed to get relocation"); DEBUG_FUNCTION_LINE_ERR("Failed to get relocation");
OSFatal("Failed to get relocation");
break; break;
} }
// uint32_t adjusted_sym_value = (uint32_t) sym_value; auto adjusted_sym_value = (uint32_t) sym_value;
if (infoMap.count(sym_section_index) == 0) { if (adjusted_sym_value < 0xC0000000) {
continue; continue;
} }
auto rplInfo = ImportRPLInformation::createImportRPLInformation(infoMap[sym_section_index]);
if (!rplInfo) {
DEBUG_FUNCTION_LINE_ERR("Failed to create import information");
break;
}
uint32_t section_index = psec->get_info(); uint32_t section_index = psec->get_info();
if (!infoMap.contains(sym_section_index)) {
// When these relocations are performed, we don't need the 0xC0000000 offset anymore. DEBUG_FUNCTION_LINE_ERR("Relocation is referencing a unknown section. %d destination: %08X sym_name %s", section_index, destinations[section_index], sym_name.c_str());
auto relocationData = std::make_shared<RelocationData>(type, offset - 0x02000000, addend, (void *) (destinations[section_index] + 0x02000000), sym_name, rplInfo.value()); OSFatal("Relocation is referencing a unknown section.");
//relocationData->printInformation();
result.push_back(relocationData);
}
}
}
return result;
} }
bool ModuleDataFactory::linkSection(elfio &reader, uint32_t section_index, uint32_t destination, uint32_t base_text, uint32_t base_data, relocation_trampoline_entry_t *trampoline_data, auto relocationData = make_unique_nothrow<RelocationData>(type,
offset - 0x02000000,
addend,
(void *) (destinations[section_index] + 0x02000000),
sym_name,
infoMap[sym_section_index]);
if (!relocationData) {
DEBUG_FUNCTION_LINE_ERR("Failed to alloc relocation data");
return false;
}
moduleData->addRelocationData(std::move(relocationData));
}
}
}
return true;
}
bool ModuleDataFactory::linkSection(ELFIO::elfio &reader, uint32_t section_index, uint32_t destination, uint32_t base_text, uint32_t base_data, relocation_trampoline_entry_t *trampoline_data,
uint32_t trampoline_data_length) { uint32_t trampoline_data_length) {
uint32_t sec_num = reader.sections.size(); uint32_t sec_num = reader.sections.size();
for (uint32_t i = 0; i < sec_num; ++i) { for (uint32_t i = 0; i < sec_num; ++i) {
section *psec = reader.sections[i]; ELFIO::section *psec = reader.sections[i];
if (psec->get_info() == section_index) { if (psec->get_info() == section_index) {
DEBUG_FUNCTION_LINE_VERBOSE("Found relocation section %s", psec->get_name().c_str()); DEBUG_FUNCTION_LINE_VERBOSE("Found relocation section %s", psec->get_name().c_str());
relocation_section_accessor rel(reader, psec); ELFIO::relocation_section_accessor rel(reader, psec);
for (uint32_t j = 0; j < (uint32_t) rel.get_entries_num(); ++j) { for (uint32_t j = 0; j < (uint32_t) rel.get_entries_num(); ++j) {
Elf64_Addr offset; ELFIO::Elf64_Addr offset;
Elf_Word type; ELFIO::Elf_Word type;
Elf_Sxword addend; ELFIO::Elf_Sxword addend;
std::string sym_name; std::string sym_name;
Elf64_Addr sym_value; ELFIO::Elf64_Addr sym_value;
Elf_Half sym_section_index; ELFIO::Elf_Half sym_section_index;
if (!rel.get_entry(j, offset, sym_value, sym_name, type, addend, sym_section_index)) { if (!rel.get_entry(j, offset, sym_value, sym_name, type, addend, sym_section_index)) {
DEBUG_FUNCTION_LINE_ERR("Failed to get relocation"); DEBUG_FUNCTION_LINE_ERR("Failed to get relocation");
break; return false;
} }
auto adjusted_sym_value = (uint32_t) sym_value; auto adjusted_sym_value = (uint32_t) sym_value;
@ -272,13 +285,11 @@ bool ModuleDataFactory::linkSection(elfio &reader, uint32_t section_index, uint3
DEBUG_FUNCTION_LINE_ERR("NOT IMPLEMENTED: %04X", sym_section_index); DEBUG_FUNCTION_LINE_ERR("NOT IMPLEMENTED: %04X", sym_section_index);
return false; return false;
} }
if (!ElfUtils::elfLinkOne(type, offset, addend, destination, adjusted_sym_value, trampoline_data, trampoline_data_length, RELOC_TYPE_FIXED)) { if (!ElfUtils::elfLinkOne(type, offset, addend, destination, adjusted_sym_value, trampoline_data, trampoline_data_length, RELOC_TYPE_FIXED)) {
DEBUG_FUNCTION_LINE_ERR("Link failed"); DEBUG_FUNCTION_LINE_ERR("Link failed");
return false; return false;
} }
} }
DEBUG_FUNCTION_LINE_VERBOSE("done");
} }
} }
return true; return true;

View File

@ -26,11 +26,11 @@
class ModuleDataFactory { class ModuleDataFactory {
public: public:
static std::optional<std::shared_ptr<ModuleData>> static std::optional<std::unique_ptr<ModuleData>>
load(const std::string &path, uint32_t destination_address_end, uint32_t maximum_size, relocation_trampoline_entry_t *trampoline_data, uint32_t trampoline_data_length); load(const std::string &path, uint32_t destination_address_end, uint32_t maximum_size, relocation_trampoline_entry_t *trampoline_data, uint32_t trampoline_data_length);
static bool linkSection(ELFIO::elfio &reader, uint32_t section_index, uint32_t destination, uint32_t base_text, uint32_t base_data, relocation_trampoline_entry_t *trampoline_data, static bool linkSection(ELFIO::elfio &reader, uint32_t section_index, uint32_t destination, uint32_t base_text, uint32_t base_data, relocation_trampoline_entry_t *trampoline_data,
uint32_t trampoline_data_length); uint32_t trampoline_data_length);
static std::vector<std::shared_ptr<RelocationData>> getImportRelocationData(ELFIO::elfio &reader, uint8_t **destinations); static bool getImportRelocationData(std::unique_ptr<ModuleData> &moduleData, ELFIO::elfio &reader, uint8_t **destinations);
}; };

View File

@ -0,0 +1,113 @@
/**
* The contents of this file are based on the article posted at the
* following location:
*
* http://crascit.com/2015/06/03/on-leaving-scope-part-2/
*
* The material in that article has some commonality with the code made
* available as part of Facebook's folly library at:
*
* https://github.com/facebook/folly/blob/master/folly/ScopeGuard.h
*
* Furthermore, similar material is currently part of a draft proposal
* to the C++ standards committee, referencing the same work by Andrei
* Alexandresu that led to the folly implementation. The draft proposal
* can be found at:
*
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4189.pdf
*
* With the above in mind, the content below is made available under
* the same license terms as folly to minimize any legal concerns.
* Should there be ambiguity over copyright ownership between Facebook
* and myself for any material included in this file, it should be
* interpreted that Facebook is the copyright owner for the ambiguous
* section of code concerned.
*
* Craig Scott
* 3rd June 2015
*
* ----------------------------------------------------------------------
*
* Copyright 2015 Craig Scott
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CRASCIT_ONLEAVINGSCOPE_H
#define CRASCIT_ONLEAVINGSCOPE_H
#include <type_traits>
#include <utility>
/**
* This class is intended to be used only to create a local object on the
* stack. It accepts a function object in its constructor and will invoke
* that function object in its destructor. The class provides a move
* constructor so it can be used with the onLeavingScope factory function,
* but it cannot be copied.
*
* Do no use this function directly, use the onLeavingScope() factory
* function instead.
*/
template<typename Func>
class OnLeavingScope {
public:
// Prevent copying
OnLeavingScope(const OnLeavingScope &) = delete;
OnLeavingScope &operator=(const OnLeavingScope &) = delete;
// Allow moving
OnLeavingScope(OnLeavingScope &&other) : m_func(std::move(other.m_func)),
m_owner(other.m_owner) {
other.m_owner = false;
}
OnLeavingScope(const Func &f) : m_func(f),
m_owner(true) {
}
OnLeavingScope(Func &&f) : m_func(std::move(f)),
m_owner(true) {
}
~OnLeavingScope() {
if (m_owner)
m_func();
}
private:
Func m_func;
bool m_owner;
};
/**
* Factory function for creating an OnLeavingScope object. It is intended
* to be used like so:
*
* auto cleanup = onLeavingScope(...);
*
* where the ... could be a lambda function, function object or pointer to
* a free function to be invoked when the cleanup object goes out of scope.
* The function object must take no function arguments, but can return any
* type (the return value is ignored).
*
* The \a Func template parameter would rarely, if ever, be manually
* specified. Normally, it would be deduced automatically by the compiler
* from the object passed as the function argument.
*/
template<typename Func>
OnLeavingScope<typename std::decay<Func>::type> onLeavingScope(Func &&f) {
return OnLeavingScope<typename std::decay<Func>::type>(std::forward<Func>(f));
}
#endif // CRASCIT_ONLEAVINGSCOPE_H

17
source/utils/utils.h Normal file
View File

@ -0,0 +1,17 @@
#pragma once
#include <memory>
template<class T, class... Args>
std::unique_ptr<T> make_unique_nothrow(Args &&...args) noexcept(noexcept(T(std::forward<Args>(args)...))) {
return std::unique_ptr<T>(new (std::nothrow) T(std::forward<Args>(args)...));
}
template<typename T>
inline typename std::_MakeUniq<T>::__array make_unique_nothrow(size_t num) noexcept {
return std::unique_ptr<T>(new (std::nothrow) std::remove_extent_t<T>[num]());
}
template<class T, class... Args>
std::shared_ptr<T> make_shared_nothrow(Args &&...args) noexcept(noexcept(T(std::forward<Args>(args)...))) {
return std::shared_ptr<T>(new (std::nothrow) T(std::forward<Args>(args)...));
}