FunctionPatcherModule/source/PatchedFunctionData.cpp

366 lines
17 KiB
C++

#include "PatchedFunctionData.h"
#include "utils/KernelFindExport.h"
#include "utils/utils.h"
#include <coreinit/mcp.h>
#include <coreinit/title.h>
#include <vector>
std::optional<std::shared_ptr<PatchedFunctionData>> PatchedFunctionData::make_shared_v3(std::shared_ptr<FunctionAddressProvider> functionAddressProvider,
function_replacement_data_v3_t *replacementData,
MEMHeapHandle heapHandle) {
if (!replacementData) {
return {};
}
auto ptr = make_shared_nothrow<PatchedFunctionData>(std::move(functionAddressProvider));
if (!ptr) {
DEBUG_FUNCTION_LINE_ERR("Failed to alloc PatchedFunctionData");
return {};
}
ptr->isPatched = false;
ptr->heapHandle = heapHandle;
ptr->replacementFunctionAddress = replacementData->replaceAddr;
ptr->realCallFunctionAddressPtr = replacementData->replaceCall;
ptr->targetProcess = replacementData->targetProcess;
ptr->type = replacementData->type;
switch (replacementData->type) {
case FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_NAME:
case FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_ADDRESS: {
ptr->library = {};
for (uint32_t i = 0; i < replacementData->ReplaceInRPX.targetTitleIdsCount; i++) {
ptr->titleIds.insert(replacementData->ReplaceInRPX.targetTitleIds[i]);
}
ptr->titleVersionMin = replacementData->ReplaceInRPX.versionMin;
ptr->titleVersionMax = replacementData->ReplaceInRPX.versionMax;
ptr->executableName = replacementData->ReplaceInRPX.executableName;
if (replacementData->type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_ADDRESS) {
ptr->textOffset = replacementData->ReplaceInRPX.textOffset;
} else if (replacementData->type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_NAME) {
ptr->functionName = replacementData->ReplaceInRPX.functionName;
}
break;
}
case FUNCTION_PATCHER_REPLACE_BY_LIB_OR_ADDRESS: {
ptr->library = replacementData->ReplaceInRPL.library;
if (replacementData->ReplaceInRPL.library != LIBRARY_OTHER) {
ptr->functionName = replacementData->ReplaceInRPL.function_name;
} else {
ptr->realEffectiveFunctionAddress = replacementData->virtualAddr;
ptr->realPhysicalFunctionAddress = replacementData->physicalAddr;
}
break;
}
}
if (!ptr->allocateDataForJumps()) {
return {};
}
return ptr;
}
std::optional<std::shared_ptr<PatchedFunctionData>> PatchedFunctionData::make_shared_v2(std::shared_ptr<FunctionAddressProvider> functionAddressProvider,
function_replacement_data_v2_t *replacementData,
MEMHeapHandle heapHandle) {
if (!replacementData) {
return {};
}
auto ptr = make_shared_nothrow<PatchedFunctionData>(std::move(functionAddressProvider));
if (!ptr) {
return {};
}
ptr->type = FUNCTION_PATCHER_REPLACE_BY_LIB_OR_ADDRESS;
ptr->isPatched = false;
ptr->heapHandle = heapHandle;
ptr->library = replacementData->library;
ptr->targetProcess = replacementData->targetProcess;
ptr->replacementFunctionAddress = replacementData->replaceAddr;
ptr->realCallFunctionAddressPtr = replacementData->replaceCall;
if (replacementData->library != LIBRARY_OTHER) {
ptr->functionName = replacementData->function_name;
} else {
ptr->realEffectiveFunctionAddress = replacementData->virtualAddr;
ptr->realPhysicalFunctionAddress = replacementData->physicalAddr;
}
if (!ptr->allocateDataForJumps()) {
return {};
}
return ptr;
}
bool PatchedFunctionData::allocateDataForJumps() {
if (this->jumpData != nullptr && this->jumpToOriginal != nullptr) {
return true;
}
if (this->replacementFunctionAddress > 0x01FFFFFC || this->targetProcess != FP_TARGET_PROCESS_ALL) {
this->jumpDataSize = 15; // We could predict the actual size and save some memory, but at the moment we don't need it.
this->jumpData = (uint32_t *) MEMAllocFromExpHeapEx(this->heapHandle, this->jumpDataSize * sizeof(uint32_t), 4);
if (!this->jumpData) {
DEBUG_FUNCTION_LINE_ERR("Failed to alloc jump data");
return false;
}
}
this->jumpToOriginal = (uint32_t *) MEMAllocFromExpHeapEx(this->heapHandle, 0x5 * sizeof(uint32_t), 4);
if (!this->jumpToOriginal) {
DEBUG_FUNCTION_LINE_ERR("Failed to alloc jump data");
return false;
}
return true;
}
bool PatchedFunctionData::getAddressForExecutable(uint32_t *outAddress) const {
if (!outAddress) {
return false;
}
if (!executableName.has_value()) {
return false;
}
uint32_t result = 0;
if (type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_ADDRESS) {
int num_rpls = OSDynLoad_GetNumberOfRPLs();
if (num_rpls == 0) {
DEBUG_FUNCTION_LINE_ERR("OSDynLoad_GetNumberOfRPLs failed. Missing patches?");
OSFatal("OSDynLoad_GetNumberOfRPLs failed. This shouldn't happen. Missing patches?");
return false;
}
std::vector<OSDynLoad_NotifyData> rpls;
rpls.resize(num_rpls);
bool ret = OSDynLoad_GetRPLInfo(0, num_rpls, rpls.data());
if (!ret) {
DEBUG_FUNCTION_LINE_ERR("OSDynLoad_GetRPLInfo failed. Missing patches?");
OSFatal("OSDynLoad_GetNumberOfRPLs failed. This shouldn't happen. Missing patches?");
return false;
}
bool found = false;
for (auto &rpl : rpls) {
if (std::string_view(rpl.name).ends_with(executableName.value())) {
result = rpl.textAddr + textOffset;
found = true;
break;
}
}
if (!found) {
if (executableName->ends_with(".rpx")) {
DEBUG_FUNCTION_LINE_ERR("Can't patch function. \"%s\" is not loaded.", executableName->c_str());
} else {
DEBUG_FUNCTION_LINE_WARN("Can't patch function. \"%s\" is not loaded.", executableName->c_str());
}
return false;
}
} else if (type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_NAME) {
if (!this->functionName) {
DEBUG_FUNCTION_LINE_ERR("Function name was empty. This should never happen.");
OSFatal("Function name was empty. This should never happen. Check logs for more information.");
return false;
}
result = KernelFindExport(executableName.value(), functionName.value());
if (result == 0) {
DEBUG_FUNCTION_LINE_WARN("Failed to find function \"%s\" in \"%s\".", functionName->c_str(), executableName->c_str());
return false;
}
} else {
DEBUG_FUNCTION_LINE_ERR("Unexpected function patching type. %d", type);
OSFatal("Unexpected function patching type.");
return false;
}
*outAddress = result;
return true;
}
bool PatchedFunctionData::updateFunctionAddresses() {
uint32_t real_address;
if (type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_NAME || type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_ADDRESS) {
if (!getAddressForExecutable(&real_address)) {
return false;
}
} else {
if (!this->library) {
DEBUG_FUNCTION_LINE_ERR("library name was empty. This should never happen.");
OSFatal("library was empty. This should never happen. Check logs for more information.");
return false;
}
if (this->library == LIBRARY_OTHER) {
// Use the provided physical/effective address!
return true;
}
if (!this->functionName) {
DEBUG_FUNCTION_LINE_ERR("Function name was empty. This should never happen.");
OSFatal("Function name was empty. This should never happen. Check logs for more information.");
return false;
}
real_address = functionAddressProvider->getEffectiveAddressOfFunction(library.value(), this->functionName->c_str());
if (!real_address) {
DEBUG_FUNCTION_LINE("OSDynLoad_FindExport failed for %s, updating address not possible.", this->functionName->c_str());
return false;
}
}
this->realEffectiveFunctionAddress = real_address;
auto physicalFunctionAddress = (uint32_t) OSEffectiveToPhysical(real_address);
if (!physicalFunctionAddress) {
DEBUG_FUNCTION_LINE_ERR("Error. Something is wrong with the physical address");
OSFatal("Error. Something is wrong with the physical address");
return false;
}
this->realPhysicalFunctionAddress = physicalFunctionAddress;
return true;
}
void PatchedFunctionData::generateJumpToOriginal() {
if (!this->jumpToOriginal) {
DEBUG_FUNCTION_LINE_ERR("this->jumpToOriginal is not allocated");
OSFatal("FunctionPatcherModule: this->jumpToOriginal is not allocated");
}
uint32_t jumpToAddress = this->realEffectiveFunctionAddress + 4;
if (((uint32_t) jumpToAddress & 0x01FFFFFC) != (uint32_t) jumpToAddress) {
// We need to do a long jump
this->jumpToOriginal[0] = 0x3d600000 | ((jumpToAddress >> 16) & 0x0000FFFF); // lis r11 ,0x1234
this->jumpToOriginal[1] = 0x616b0000 | (jumpToAddress & 0x0000ffff); // ori r11 ,r11 ,0x5678
this->jumpToOriginal[2] = 0x7d6903a6; // mtspr CTR ,r11
this->jumpToOriginal[3] = this->replacedInstruction;
this->jumpToOriginal[4] = 0x4e800420; // bctr
} else {
this->jumpToOriginal[0] = this->replacedInstruction;
this->jumpToOriginal[1] = 0x48000002 | (jumpToAddress & 0x01FFFFFC);
}
DCFlushRange((void *) this->jumpToOriginal, sizeof(uint32_t) * 5);
ICInvalidateRange((void *) this->jumpToOriginal, sizeof(uint32_t) * 5);
*(this->realCallFunctionAddressPtr) = (uint32_t) this->jumpToOriginal;
OSMemoryBarrier();
}
void PatchedFunctionData::generateReplacementJump() {
//setting jump back
this->replaceWithInstruction = 0x48000002 | (this->replacementFunctionAddress & 0x01FFFFFC);
// If the jump is too big, or we want only patch for certain processes we need a trampoline
if (this->replacementFunctionAddress > 0x01FFFFFC || this->targetProcess != FP_TARGET_PROCESS_ALL) {
if (!this->jumpData) {
DEBUG_FUNCTION_LINE_ERR("jumpData was not allocated");
OSFatal("FunctionPatcherModule: jumpData was not allocated");
}
uint32_t offset = 0;
if (this->targetProcess != FP_TARGET_PROCESS_ALL) {
auto originalFunctionAddrWithOffset = this->realEffectiveFunctionAddress + 4;
bool shortBranchToOriginalPossible = ((uint32_t) originalFunctionAddrWithOffset & 0x01FFFFFC) == (uint32_t) originalFunctionAddrWithOffset;
// Only use patched function if OSGetUPID matches function_data->targetProcess
this->jumpData[offset++] = 0x3d600000 | (((uint32_t *) OSGetUPID)[0] & 0x0000FFFF); // lis r11 ,0x0
this->jumpData[offset++] = 0x816b0000 | (((uint32_t *) OSGetUPID)[1] & 0x0000FFFF); // lwz r11 ,0x0(r11)
if (this->targetProcess == FP_TARGET_PROCESS_GAME_AND_MENU) {
this->jumpData[offset++] = 0x2c0b0000 | FP_TARGET_PROCESS_WII_U_MENU; // cmpwi r11 ,FP_TARGET_PROCESS_WII_U_MENU
this->jumpData[offset++] = 0x41820000 | (shortBranchToOriginalPossible ? 0x00000014 : 0x00000020); // beq myfunc
this->jumpData[offset++] = 0x2c0b0000 | FP_TARGET_PROCESS_GAME; // cmpwi r11 ,FP_TARGET_PROCESS_GAME
this->jumpData[offset++] = 0x41820000 | (shortBranchToOriginalPossible ? 0x0000000C : 0x00000018); // beq myfunc
} else {
this->jumpData[offset++] = 0x2c0b0000 | this->targetProcess; // cmpwi r11 ,function_data->targetProcess
this->jumpData[offset++] = 0x41820000 | (shortBranchToOriginalPossible ? 0x0000000C : 0x00000018); // beq myfunc
}
this->jumpData[offset++] = this->replacedInstruction;
if (((uint32_t) originalFunctionAddrWithOffset & 0x01FFFFFC) != (uint32_t) originalFunctionAddrWithOffset) {
this->jumpData[offset++] = 0x3d600000 | (((this->realEffectiveFunctionAddress + 4) >> 16) & 0x0000FFFF); // lis r11 ,(real_addr + 4)@hi
this->jumpData[offset++] = 0x616b0000 | ((this->realEffectiveFunctionAddress + 4) & 0x0000ffff); // ori r11 ,(real_addr + 4)@lo
this->jumpData[offset++] = 0x7d6903a6; // mtspr CTR ,r11
this->jumpData[offset++] = 0x4e800420; // bctr
} else {
this->jumpData[offset++] = 0x48000002 | (originalFunctionAddrWithOffset & 0x01FFFFFC);
}
}
// myfunc:
if (((uint32_t) this->replacementFunctionAddress & 0x01FFFFFC) != (uint32_t) this->replacementFunctionAddress) {
this->jumpData[offset++] = 0x3d600000 | (((this->replacementFunctionAddress) >> 16) & 0x0000FFFF); // lis r11 ,repl_addr@hi
this->jumpData[offset++] = 0x616b0000 | ((this->replacementFunctionAddress) & 0x0000ffff); // ori r11 ,r11 ,repl_addr@lo
this->jumpData[offset++] = 0x7d6903a6; // mtspr CTR ,r11
this->jumpData[offset] = 0x4e800420; // bctr
} else {
this->jumpData[offset] = 0x48000002 | (replacementFunctionAddress & 0x01FFFFFC);
}
if (offset >= this->jumpDataSize) {
DEBUG_FUNCTION_LINE_ERR("Tried to overflow buffer. offset: %08X vs array size: %08X", offset, this->jumpDataSize);
OSFatal("FunctionPatcherModule: Wrote too much data");
}
// Make sure the trampoline itself is usable.
if (((uint32_t) this->jumpData & 0x01FFFFFC) != (uint32_t) this->jumpData) {
DEBUG_FUNCTION_LINE_ERR("Jump is impossible");
OSFatal("FunctionPatcherModule: Jump is impossible");
}
this->replaceWithInstruction = 0x48000002 | ((uint32_t) this->jumpData & 0x01FFFFFC);
DCFlushRange((void *) this->jumpData, sizeof(uint32_t) * 15);
ICInvalidateRange((void *) this->jumpData, sizeof(uint32_t) * 15);
}
DCFlushRange((void *) &replaceWithInstruction, 4);
ICInvalidateRange((void *) &replaceWithInstruction, 4);
OSMemoryBarrier();
}
PatchedFunctionData::~PatchedFunctionData() {
if (this->jumpToOriginal) {
MEMFreeToExpHeap(this->heapHandle, this->jumpToOriginal);
this->jumpToOriginal = nullptr;
}
if (this->jumpData) {
MEMFreeToExpHeap(this->heapHandle, this->jumpData);
this->jumpData = nullptr;
}
}
bool PatchedFunctionData::shouldBePatched() const {
if (type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_NAME || type == FUNCTION_PATCHER_REPLACE_FOR_EXECUTABLE_BY_ADDRESS) {
uint64_t curTitleId = OSGetTitleID();
if (!this->titleIds.contains(curTitleId)) {
DEBUG_FUNCTION_LINE_VERBOSE("Skip function patch. Patch is not for title %016llX", curTitleId);
return false;
}
auto mcpHandle = MCP_Open();
MCPTitleListType titleInfo;
int32_t res = -1;
if ((curTitleId & 0x0000000F00000000) == 0) {
res = MCP_GetTitleInfo(mcpHandle, curTitleId | 0x0000000E00000000, &titleInfo);
}
if (res != 0) {
res = MCP_GetTitleInfo(mcpHandle, curTitleId, &titleInfo);
}
MCP_Close(mcpHandle);
if (res != 0) {
DEBUG_FUNCTION_LINE_WARN("Failed to get title version of %016llX.", curTitleId);
OSFatal("Failed to get title version. This should not happen.\n"
"Please report this with a crash log.");
return false;
}
MCP_Close(mcpHandle);
if (titleInfo.titleVersion < titleVersionMin || titleInfo.titleVersion > titleVersionMax) {
DEBUG_FUNCTION_LINE("Skipping function patch. Title version does not match: Expected >= %d && <= %d. Real version: %d", titleVersionMin, titleVersionMax, titleInfo.titleVersion);
return false;
}
}
return true;
}