/* md_ntsc 0.1.2. http://www.slack.net/~ant/ */ /* Common implementation of NTSC filters */ #include <assert.h> #include <math.h> /* Copyright (C) 2006-2007 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define DISABLE_CORRECTION 0 #undef PI #define PI 3.14159265358979323846f #ifndef LUMA_CUTOFF #define LUMA_CUTOFF 0.20 #endif #ifndef gamma_size #define gamma_size 1 #endif #ifndef rgb_bits #define rgb_bits 8 #endif #ifndef artifacts_max #define artifacts_max (artifacts_mid * 1.5f) #endif #ifndef fringing_max #define fringing_max (fringing_mid * 2) #endif #ifndef STD_HUE_CONDITION #define STD_HUE_CONDITION( setup ) 1 #endif #define ext_decoder_hue (std_decoder_hue + 15) #define rgb_unit (1 << rgb_bits) #define rgb_offset (rgb_unit * 2 + 0.5f) enum { burst_size = md_ntsc_entry_size / burst_count }; enum { kernel_half = 16 }; enum { kernel_size = kernel_half * 2 + 1 }; typedef struct init_t { float to_rgb [burst_count * 6]; float to_float [gamma_size]; float contrast; float brightness; float artifacts; float fringing; float kernel [rescale_out * kernel_size * 2]; } init_t; #define ROTATE_IQ( i, q, sin_b, cos_b ) {\ float t;\ t = i * cos_b - q * sin_b;\ q = i * sin_b + q * cos_b;\ i = t;\ } static void init_filters( init_t* impl, md_ntsc_setup_t const* setup ) { #if rescale_out > 1 float kernels [kernel_size * 2]; #else float* const kernels = impl->kernel; #endif /* generate luma (y) filter using sinc kernel */ { /* sinc with rolloff (dsf) */ float const rolloff = 1 + (float) setup->sharpness * (float) 0.032; float const maxh = 32; float const pow_a_n = (float) pow( rolloff, maxh ); float sum; int i; /* quadratic mapping to reduce negative (blurring) range */ float to_angle = (float) setup->resolution + 1; to_angle = PI / maxh * (float) LUMA_CUTOFF * (to_angle * to_angle + 1); kernels [kernel_size * 3 / 2] = maxh; /* default center value */ for ( i = 0; i < kernel_half * 2 + 1; i++ ) { int x = i - kernel_half; float angle = x * to_angle; /* instability occurs at center point with rolloff very close to 1.0 */ if ( x || pow_a_n > (float) 1.056 || pow_a_n < (float) 0.981 ) { float rolloff_cos_a = rolloff * (float) cos( angle ); float num = 1 - rolloff_cos_a - pow_a_n * (float) cos( maxh * angle ) + pow_a_n * rolloff * (float) cos( (maxh - 1) * angle ); float den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff; float dsf = num / den; kernels [kernel_size * 3 / 2 - kernel_half + i] = dsf - (float) 0.5; } } /* apply blackman window and find sum */ sum = 0; for ( i = 0; i < kernel_half * 2 + 1; i++ ) { float x = PI * 2 / (kernel_half * 2) * i; float blackman = 0.42f - 0.5f * (float) cos( x ) + 0.08f * (float) cos( x * 2 ); sum += (kernels [kernel_size * 3 / 2 - kernel_half + i] *= blackman); } /* normalize kernel */ sum = 1.0f / sum; for ( i = 0; i < kernel_half * 2 + 1; i++ ) { int x = kernel_size * 3 / 2 - kernel_half + i; kernels [x] *= sum; assert( kernels [x] == kernels [x] ); /* catch numerical instability */ } } /* generate chroma (iq) filter using gaussian kernel */ { float const cutoff_factor = -0.03125f; float cutoff = (float) setup->bleed; int i; if ( cutoff < 0 ) { /* keep extreme value accessible only near upper end of scale (1.0) */ cutoff *= cutoff; cutoff *= cutoff; cutoff *= cutoff; cutoff *= -30.0f / 0.65f; } cutoff = cutoff_factor - 0.65f * cutoff_factor * cutoff; for ( i = -kernel_half; i <= kernel_half; i++ ) kernels [kernel_size / 2 + i] = (float) exp( i * i * cutoff ); /* normalize even and odd phases separately */ for ( i = 0; i < 2; i++ ) { float sum = 0; int x; for ( x = i; x < kernel_size; x += 2 ) sum += kernels [x]; sum = 1.0f / sum; for ( x = i; x < kernel_size; x += 2 ) { kernels [x] *= sum; assert( kernels [x] == kernels [x] ); /* catch numerical instability */ } } } /* printf( "luma:\n" ); for ( i = kernel_size; i < kernel_size * 2; i++ ) printf( "%f\n", kernels [i] ); printf( "chroma:\n" ); for ( i = 0; i < kernel_size; i++ ) printf( "%f\n", kernels [i] ); */ /* generate linear rescale kernels */ #if rescale_out > 1 { float weight = 1.0f; float* out = impl->kernel; int n = rescale_out; do { float remain = 0; int i; weight -= 1.0f / rescale_in; for ( i = 0; i < kernel_size * 2; i++ ) { float cur = kernels [i]; float m = cur * weight; *out++ = m + remain; remain = cur - m; } } while ( --n ); } #endif } static float const default_decoder [6] = { 0.956f, 0.621f, -0.272f, -0.647f, -1.105f, 1.702f }; static void init( init_t* impl, md_ntsc_setup_t const* setup ) { impl->brightness = (float) setup->brightness * (0.5f * rgb_unit) + rgb_offset; impl->contrast = (float) setup->contrast * (0.5f * rgb_unit) + rgb_unit; #ifdef default_palette_contrast if ( !setup->palette ) impl->contrast *= default_palette_contrast; #endif impl->artifacts = (float) setup->artifacts; if ( impl->artifacts > 0 ) impl->artifacts *= artifacts_max - artifacts_mid; impl->artifacts = impl->artifacts * artifacts_mid + artifacts_mid; impl->fringing = (float) setup->fringing; if ( impl->fringing > 0 ) impl->fringing *= fringing_max - fringing_mid; impl->fringing = impl->fringing * fringing_mid + fringing_mid; init_filters( impl, setup ); /* generate gamma table */ if ( gamma_size > 1 ) { float const to_float = 1.0f / (gamma_size - (gamma_size > 1)); float const gamma = 1.1333f - (float) setup->gamma * 0.5f; /* match common PC's 2.2 gamma to TV's 2.65 gamma */ int i; for ( i = 0; i < gamma_size; i++ ) impl->to_float [i] = (float) pow( i * to_float, gamma ) * impl->contrast + impl->brightness; } /* setup decoder matricies */ { float hue = (float) setup->hue * PI + PI / 180 * ext_decoder_hue; float sat = (float) setup->saturation + 1; float const* decoder = setup->decoder_matrix; if ( !decoder ) { decoder = default_decoder; if ( STD_HUE_CONDITION( setup ) ) hue += PI / 180 * (std_decoder_hue - ext_decoder_hue); } { float s = (float) sin( hue ) * sat; float c = (float) cos( hue ) * sat; float* out = impl->to_rgb; int n; n = burst_count; do { float const* in = decoder; int n = 3; do { float i = *in++; float q = *in++; *out++ = i * c - q * s; *out++ = i * s + q * c; } while ( --n ); if ( burst_count <= 1 ) break; ROTATE_IQ( s, c, 0.866025f, -0.5f ); /* +120 degrees */ } while ( --n ); } } } /* kernel generation */ #define RGB_TO_YIQ( r, g, b, y, i ) (\ (y = (r) * 0.299f + (g) * 0.587f + (b) * 0.114f),\ (i = (r) * 0.596f - (g) * 0.275f - (b) * 0.321f),\ ((r) * 0.212f - (g) * 0.523f + (b) * 0.311f)\ ) #define YIQ_TO_RGB( y, i, q, to_rgb, type, r, g ) (\ r = (type) (y + to_rgb [0] * i + to_rgb [1] * q),\ g = (type) (y + to_rgb [2] * i + to_rgb [3] * q),\ (type) (y + to_rgb [4] * i + to_rgb [5] * q)\ ) #define PACK_RGB( r, g, b ) ((r) << 21 | (g) << 11 | (b) << 1) enum { rgb_kernel_size = burst_size / alignment_count }; enum { rgb_bias = rgb_unit * 2 * md_ntsc_rgb_builder }; typedef struct pixel_info_t { int offset; float negate; float kernel [4]; } pixel_info_t; #if rescale_in > 1 #define PIXEL_OFFSET_( ntsc, scaled ) \ (kernel_size / 2 + ntsc + (scaled != 0) + (rescale_out - scaled) % rescale_out + \ (kernel_size * 2 * scaled)) #define PIXEL_OFFSET( ntsc, scaled ) \ PIXEL_OFFSET_( ((ntsc) - (scaled) / rescale_out * rescale_in),\ (((scaled) + rescale_out * 10) % rescale_out) ),\ (1.0f - (((ntsc) + 100) & 2)) #else #define PIXEL_OFFSET( ntsc, scaled ) \ (kernel_size / 2 + (ntsc) - (scaled)),\ (1.0f - (((ntsc) + 100) & 2)) #endif extern pixel_info_t const md_ntsc_pixels [alignment_count]; /* Generate pixel at all burst phases and column alignments */ static void gen_kernel( init_t* impl, float y, float i, float q, md_ntsc_rgb_t* out ) { /* generate for each scanline burst phase */ float const* to_rgb = impl->to_rgb; int burst_remain = burst_count; y -= rgb_offset; do { /* Encode yiq into *two* composite signals (to allow control over artifacting). Convolve these with kernels which: filter respective components, apply sharpening, and rescale horizontally. Convert resulting yiq to rgb and pack into integer. Based on algorithm by NewRisingSun. */ pixel_info_t const* pixel = md_ntsc_pixels; int alignment_remain = alignment_count; do { /* negate is -1 when composite starts at odd multiple of 2 */ float const yy = y * impl->fringing * pixel->negate; float const ic0 = (i + yy) * pixel->kernel [0]; float const qc1 = (q + yy) * pixel->kernel [1]; float const ic2 = (i - yy) * pixel->kernel [2]; float const qc3 = (q - yy) * pixel->kernel [3]; float const factor = impl->artifacts * pixel->negate; float const ii = i * factor; float const yc0 = (y + ii) * pixel->kernel [0]; float const yc2 = (y - ii) * pixel->kernel [2]; float const qq = q * factor; float const yc1 = (y + qq) * pixel->kernel [1]; float const yc3 = (y - qq) * pixel->kernel [3]; float const* k = &impl->kernel [pixel->offset]; int n; ++pixel; for ( n = rgb_kernel_size; n; --n ) { float i = k[0]*ic0 + k[2]*ic2; float q = k[1]*qc1 + k[3]*qc3; float y = k[kernel_size+0]*yc0 + k[kernel_size+1]*yc1 + k[kernel_size+2]*yc2 + k[kernel_size+3]*yc3 + rgb_offset; if ( rescale_out <= 1 ) k--; else if ( k < &impl->kernel [kernel_size * 2 * (rescale_out - 1)] ) k += kernel_size * 2 - 1; else k -= kernel_size * 2 * (rescale_out - 1) + 2; { int r, g, b = YIQ_TO_RGB( y, i, q, to_rgb, int, r, g ); *out++ = PACK_RGB( r, g, b ) - rgb_bias; } } } while ( alignment_count > 1 && --alignment_remain ); if ( burst_count <= 1 ) break; to_rgb += 6; ROTATE_IQ( i, q, -0.866025f, -0.5f ); /* -120 degrees */ } while ( --burst_remain ); } static void correct_errors( md_ntsc_rgb_t color, md_ntsc_rgb_t* out ); #if DISABLE_CORRECTION #define CORRECT_ERROR( a ) { out [i] += rgb_bias; } #define DISTRIBUTE_ERROR( a, b, c ) { out [i] += rgb_bias; } #else #define CORRECT_ERROR( a ) { out [a] += error; } #define DISTRIBUTE_ERROR( a, b, c ) {\ md_ntsc_rgb_t fourth = (error + 2 * md_ntsc_rgb_builder) >> 2;\ fourth &= (rgb_bias >> 1) - md_ntsc_rgb_builder;\ fourth -= rgb_bias >> 2;\ out [a] += fourth;\ out [b] += fourth;\ out [c] += fourth;\ out [i] += error - (fourth * 3);\ } #endif #define RGB_PALETTE_OUT( rgb, out_ )\ {\ unsigned char* out = (out_);\ md_ntsc_rgb_t clamped = (rgb);\ MD_NTSC_CLAMP_( clamped, (8 - rgb_bits) );\ out [0] = (unsigned char) (clamped >> 21);\ out [1] = (unsigned char) (clamped >> 11);\ out [2] = (unsigned char) (clamped >> 1);\ } /* blitter related */ #ifndef restrict #if defined (__GNUC__) #define restrict __restrict__ #elif defined (_MSC_VER) && _MSC_VER > 1300 #define restrict #else /* no support for restricted pointers */ #define restrict #endif #endif #include <limits.h> #if MD_NTSC_OUT_DEPTH <= 16 #if USHRT_MAX == 0xFFFF typedef unsigned short md_ntsc_out_t; #else #error "Need 16-bit int type" #endif #else #if UINT_MAX == 0xFFFFFFFF typedef unsigned int md_ntsc_out_t; #elif ULONG_MAX == 0xFFFFFFFF typedef unsigned long md_ntsc_out_t; #else #error "Need 32-bit int type" #endif #endif