/* Copyright (C) 2010-2017 The RetroArch team * * --------------------------------------------------------------------------------------- * The following license statement only applies to this file (filters.h). * --------------------------------------------------------------------------------------- * * Permission is hereby granted, free of charge, * to any person obtaining a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef _LIBRETRO_SDK_FILTERS_H #define _LIBRETRO_SDK_FILTERS_H /* for MSVC; should be benign under any circumstances */ #define _USE_MATH_DEFINES #include #include #include #include static INLINE double sinc(double val) { if (fabs(val) < 0.00001) return 1.0; return sin(val) / val; } /* Paeth prediction filter. */ static INLINE int paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p - a); int pb = abs(p - b); int pc = abs(p - c); if (pa <= pb && pa <= pc) return a; else if (pb <= pc) return b; return c; } /* Modified Bessel function of first order. * Check Wiki for mathematical definition ... */ static INLINE double besseli0(double x) { unsigned i; double sum = 0.0; double factorial = 1.0; double factorial_mult = 0.0; double x_pow = 1.0; double two_div_pow = 1.0; double x_sqr = x * x; /* Approximate. This is an infinite sum. * Luckily, it converges rather fast. */ for (i = 0; i < 18; i++) { sum += x_pow * two_div_pow / (factorial * factorial); factorial_mult += 1.0; x_pow *= x_sqr; two_div_pow *= 0.25; factorial *= factorial_mult; } return sum; } static INLINE double kaiser_window_function(double index, double beta) { return besseli0(beta * sqrtf(1 - index * index)); } static INLINE double lanzcos_window_function(double index) { return sinc(M_PI * index); } #endif