/*************************************************************************************** * Genesis Plus * Sound Hardware * * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code) * Copyright (C) 2007-2011 Eke-Eke (Genesis Plus GX) * * Redistribution and use of this code or any derivative works are permitted * provided that the following conditions are met: * * - Redistributions may not be sold, nor may they be used in a commercial * product or activity. * * - Redistributions that are modified from the original source must include the * complete source code, including the source code for all components used by a * binary built from the modified sources. However, as a special exception, the * source code distributed need not include anything that is normally distributed * (in either source or binary form) with the major components (compiler, kernel, * and so on) of the operating system on which the executable runs, unless that * component itself accompanies the executable. * * - Redistributions must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************************/ #include "shared.h" #include "Fir_Resampler.h" /* Cycle-accurate samples */ static unsigned int psg_cycles_ratio; static unsigned int psg_cycles_count; static unsigned int fm_cycles_ratio; static unsigned int fm_cycles_count; /* YM chip function pointers */ static void (*YM_Reset)(void); static void (*YM_Update)(int *buffer, int length); static void (*YM_Write)(unsigned int a, unsigned int v); /* Run FM chip for required M-cycles */ INLINE void fm_update(unsigned int cycles) { if (cycles > fm_cycles_count) { int32 *buffer; /* samples to run */ unsigned int samples = (cycles - fm_cycles_count + fm_cycles_ratio - 1) / fm_cycles_ratio; /* update cycle count */ fm_cycles_count += samples * fm_cycles_ratio; /* select input sample buffer */ buffer = Fir_Resampler_buffer(); if (buffer) { Fir_Resampler_write(samples << 1); } else { buffer = snd.fm.pos; snd.fm.pos += (samples << 1); } /* run FM chip & get samples */ YM_Update(buffer, samples); } } /* Run PSG chip for required M-cycles */ INLINE void psg_update(unsigned int cycles) { if (cycles > psg_cycles_count) { /* clocks to run */ unsigned int clocks = (cycles - psg_cycles_count + psg_cycles_ratio - 1) / psg_cycles_ratio; /* update cycle count */ psg_cycles_count += clocks * psg_cycles_ratio; /* run PSG chip & get samples */ snd.psg.pos += SN76489_Update(snd.psg.pos, clocks); } } /* Initialize sound chips emulation */ void sound_init(void) { /* Number of M-cycles executed per second. */ /* */ /* All emulated chips are kept in sync by using a common oscillator (MCLOCK) */ /* */ /* The original console would run exactly 53693175 M-cycles (53203424 for PAL), with */ /* 3420 M-cycles per line and 262 (313 for PAL) lines per frame, which gives an exact */ /* framerate of 59.92 (49.70 for PAL) fps. */ /* */ /* Since audio samples are generated at the end of the frame, to prevent audio skipping */ /* or lag between emulated frames, number of samples rendered per frame must be set to */ /* output samplerate (number of samples played per second) divided by output framerate */ /* (number of frames emulated per seconds). */ /* */ /* On some systems, we may want to achieve 100% smooth video rendering by synchronizing */ /* frame emulation with VSYNC, which frequency is generally not exactly those values. */ /* In that case, number of frames emulated per seconds is the same as the number of */ /* frames rendered per seconds by the host system video hardware. */ /* */ /* When no framerate is specified, base clock is original master clock value. */ /* Otherwise, it is based on the output framerate. */ /* */ double mclk = snd.frame_rate ? (MCYCLES_PER_LINE * lines_per_frame * snd.frame_rate) : system_clock; /* For maximal accuracy, sound chips run in synchronization with 68k and Z80 cpus */ /* These values give the exact number of M-cycles executed per internal sample clock: */ /* . PSG chip runs at original rate and audio is resampled internally after each update */ /* . FM chips run by default (if HQ mode disabled) at the output rate directly */ /* We use 21.11 fixed point precision (max. mcycle value is 3420*313 i.e 21 bits max) */ psg_cycles_ratio = 16 * 15 * (1 << 11); fm_cycles_ratio = (unsigned int)(mclk / (double) snd.sample_rate * 2048.0); psg_cycles_count = 0; fm_cycles_count = 0; /* Initialize PSG core (input clock should be based on emulated system clock) */ SN76489_Init(mclk/15.0,snd.sample_rate); /* Initialize FM cores (input clock and samplerate are only used when HQ mode is disabled) */ if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { /* YM2612 */ YM2612Init(mclk/7.0,snd.sample_rate); YM_Reset = YM2612ResetChip; YM_Update = YM2612Update; YM_Write = YM2612Write; /* In HQ mode, YM2612 is running at original rate (one sample each 144*7 M-cycles) */ /* Audio is resampled externally at the end of a frame. */ if (config.hq_fm) { fm_cycles_ratio = 144 * 7 * (1 << 11); Fir_Resampler_time_ratio(mclk / (double)snd.sample_rate / (144.0 * 7.0), config.rolloff); } } else { /* YM2413 */ YM2413Init(mclk/15.0,snd.sample_rate); YM_Reset = YM2413ResetChip; YM_Update = YM2413Update; YM_Write = YM2413Write; /* In HQ mode, YM2413 is running at original rate (one sample each 72*15 M-cycles) */ /* Audio is resampled externally at the end of a frame. */ if (config.hq_fm) { fm_cycles_ratio = 72 * 15 * (1 << 11); Fir_Resampler_time_ratio(mclk / (double)snd.sample_rate / (72.0 * 15.0), config.rolloff); } } #ifdef LOGSOUND error("%f mcycles per second\n", mclk); error("%d mcycles per PSG sample\n", psg_cycles_ratio); error("%d mcycles per FM sample\n", fm_cycles_ratio); #endif } /* Reset sound chips emulation */ void sound_reset(void) { YM_Reset(); SN76489_Reset(); fm_cycles_count = 0; psg_cycles_count = 0; } void sound_restore() { int size; uint8 *ptr, *temp; /* save YM context */ if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { size = YM2612GetContextSize(); ptr = YM2612GetContextPtr(); } else { size = YM2413GetContextSize(); ptr = YM2413GetContextPtr(); } temp = malloc(size); if (temp) { memcpy(temp, ptr, size); } /* reinitialize sound chips */ sound_init(); /* restore YM context */ if (temp) { if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { YM2612Restore(temp); } else { YM2413Restore(temp); } free(temp); } } int sound_context_save(uint8 *state) { int bufferptr = 0; if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { bufferptr = YM2612SaveContext(state); } else { save_param(YM2413GetContextPtr(),YM2413GetContextSize()); } save_param(SN76489_GetContextPtr(),SN76489_GetContextSize()); save_param(&fm_cycles_count,sizeof(fm_cycles_count)); save_param(&psg_cycles_count,sizeof(psg_cycles_count)); return bufferptr; } int sound_context_load(uint8 *state) { int bufferptr = 0; if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { bufferptr = YM2612LoadContext(state); } else { load_param(YM2413GetContextPtr(),YM2413GetContextSize()); } load_param(SN76489_GetContextPtr(),SN76489_GetContextSize()); load_param(&fm_cycles_count,sizeof(fm_cycles_count)); load_param(&psg_cycles_count,sizeof(psg_cycles_count)); fm_cycles_count = psg_cycles_count; return bufferptr; } /* End of frame update, return the number of samples run so far. */ int sound_update(unsigned int cycles) { int size, avail; /* run PSG & FM chips until end of frame */ cycles <<= 11; psg_update(cycles); fm_update(cycles); /* check number of available FM samples */ if (config.hq_fm) { size = Fir_Resampler_avail(); } else { size = (snd.fm.pos - snd.fm.buffer) >> 1; } #ifdef LOGSOUND error("%d FM samples available\n",size); #endif /* check number of available PSG samples */ avail = snd.psg.pos - snd.psg.buffer; #ifdef LOGSOUND error("%d PSG samples available\n", avail); #endif /* resynchronize FM & PSG chips */ if (size > avail) { /* FM chip is ahead */ fm_cycles_count += SN76489_Clocks(size - avail) * psg_cycles_ratio; /* return number of available samples */ size = avail; } else { /* PSG chip is ahead */ psg_cycles_count += SN76489_Clocks(avail - size) * psg_cycles_ratio; } #ifdef LOGSOUND error("%lu PSG cycles run\n",psg_cycles_count); error("%lu FM cycles run \n",fm_cycles_count); #endif /* adjust PSG & FM cycle counts for next frame */ psg_cycles_count -= cycles; fm_cycles_count -= cycles; #ifdef LOGSOUND error("%lu PSG cycles left\n",psg_cycles_count); error("%lu FM cycles left\n",fm_cycles_count); #endif return size; } /* Reset FM chip */ void fm_reset(unsigned int cycles) { fm_update(cycles << 11); YM_Reset(); } /* Write FM chip */ void fm_write(unsigned int cycles, unsigned int address, unsigned int data) { if (address & 1) fm_update(cycles << 11); YM_Write(address, data); } /* Read FM status (YM2612 only) */ unsigned int fm_read(unsigned int cycles, unsigned int address) { fm_update(cycles << 11); return YM2612Read(); } /* Write PSG chip */ void psg_write(unsigned int cycles, unsigned int data) { psg_update(cycles << 11); SN76489_Write(data); }