/*************************************************************************************** * Genesis Plus * Sound Hardware * * Copyright (C) 1998-2003 Charles Mac Donald (original code) * Copyright (C) 2007-2020 Eke-Eke (Genesis Plus GX) * * Redistribution and use of this code or any derivative works are permitted * provided that the following conditions are met: * * - Redistributions may not be sold, nor may they be used in a commercial * product or activity. * * - Redistributions that are modified from the original source must include the * complete source code, including the source code for all components used by a * binary built from the modified sources. However, as a special exception, the * source code distributed need not include anything that is normally distributed * (in either source or binary form) with the major components (compiler, kernel, * and so on) of the operating system on which the executable runs, unless that * component itself accompanies the executable. * * - Redistributions must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************************/ #include "shared.h" #include "blip_buf.h" /* YM2612 internal clock = input clock / 6 = (master clock / 7) / 6 */ #define YM2612_CLOCK_RATIO (7*6) /* FM output buffer (large enough to hold a whole frame at original chips rate) */ #if defined(HAVE_YM3438_CORE) || defined(HAVE_OPLL_CORE) static int fm_buffer[1080 * 2 * 24]; #else static int fm_buffer[1080 * 2]; #endif static int fm_last[2]; static int *fm_ptr; /* Cycle-accurate FM samples */ static int fm_cycles_ratio; static int fm_cycles_start; static int fm_cycles_count; static int fm_cycles_busy; /* YM chip function pointers */ static void (*YM_Update)(int *buffer, int length); void (*fm_reset)(unsigned int cycles); void (*fm_write)(unsigned int cycles, unsigned int address, unsigned int data); unsigned int (*fm_read)(unsigned int cycles, unsigned int address); #ifdef HAVE_YM3438_CORE static ym3438_t ym3438; static short ym3438_accm[24][2]; static int ym3438_sample[2]; static int ym3438_cycles; #endif #ifdef HAVE_OPLL_CORE static opll_t opll; static int opll_accm[18][2]; static int opll_sample; static int opll_cycles; static int opll_status; #endif /* Run FM chip until required M-cycles */ INLINE void fm_update(int cycles) { if (cycles > fm_cycles_count) { /* number of samples to run */ int samples = (cycles - fm_cycles_count + fm_cycles_ratio - 1) / fm_cycles_ratio; /* run FM chip to sample buffer */ YM_Update(fm_ptr, samples); /* update FM buffer pointer */ fm_ptr += (samples * 2); /* update FM cycle counter */ fm_cycles_count += (samples * fm_cycles_ratio); } } static void YM2612_Reset(unsigned int cycles) { /* synchronize FM chip with CPU */ fm_update(cycles); /* reset FM chip */ YM2612ResetChip(); fm_cycles_busy = 0; } static void YM2612_Write(unsigned int cycles, unsigned int a, unsigned int v) { /* detect DATA port write */ if (a & 1) { /* synchronize FM chip with CPU */ fm_update(cycles); /* set FM BUSY end cycle (discrete or ASIC-integrated YM2612 chip only) */ if (config.ym2612 < YM2612_ENHANCED) { fm_cycles_busy = (((cycles + YM2612_CLOCK_RATIO - 1) / YM2612_CLOCK_RATIO) + 32) * YM2612_CLOCK_RATIO; } } /* write FM register */ YM2612Write(a, v); } static unsigned int YM2612_Read(unsigned int cycles, unsigned int a) { /* FM status can only be read from (A0,A1)=(0,0) on discrete YM2612 */ if ((a == 0) || (config.ym2612 > YM2612_DISCRETE)) { /* synchronize FM chip with CPU */ fm_update(cycles); /* read FM status */ if (cycles >= fm_cycles_busy) { /* BUSY flag cleared */ return YM2612Read(); } else { /* BUSY flag set */ return YM2612Read() | 0x80; } } /* invalid FM status address */ return 0x00; } static void YM2413_Reset(unsigned int cycles) { /* synchronize FM chip with CPU */ fm_update(cycles); /* reset FM chip */ YM2413ResetChip(); } static void YM2413_Write(unsigned int cycles, unsigned int a, unsigned int v) { /* detect DATA port write */ if (a & 1) { /* synchronize FM chip with CPU */ fm_update(cycles); } /* write FM register */ YM2413Write(a, v); } static unsigned int YM2413_Read(unsigned int cycles, unsigned int a) { return YM2413Read(); } #ifdef HAVE_YM3438_CORE static void YM3438_Update(int *buffer, int length) { int i, j; for (i = 0; i < length; i++) { OPN2_Clock(&ym3438, ym3438_accm[ym3438_cycles]); ym3438_cycles = (ym3438_cycles + 1) % 24; if (ym3438_cycles == 0) { ym3438_sample[0] = 0; ym3438_sample[1] = 0; for (j = 0; j < 24; j++) { ym3438_sample[0] += ym3438_accm[j][0]; ym3438_sample[1] += ym3438_accm[j][1]; } } *buffer++ = ym3438_sample[0] * 11; *buffer++ = ym3438_sample[1] * 11; } } static void YM3438_Reset(unsigned int cycles) { /* synchronize FM chip with CPU */ fm_update(cycles); /* reset FM chip */ OPN2_Reset(&ym3438); } static void YM3438_Write(unsigned int cycles, unsigned int a, unsigned int v) { /* synchronize FM chip with CPU */ fm_update(cycles); /* write FM register */ OPN2_Write(&ym3438, a, v); } static unsigned int YM3438_Read(unsigned int cycles, unsigned int a) { /* synchronize FM chip with CPU */ fm_update(cycles); /* read FM status */ return OPN2_Read(&ym3438, a); } #endif #ifdef HAVE_OPLL_CORE static void OPLL2413_Update(int* buffer, int length) { int i, j; for (i = 0; i < length; i++) { OPLL_Clock(&opll, opll_accm[opll_cycles]); opll_cycles = (opll_cycles + 1) % 18; if (opll_cycles == 0) { opll_sample = 0; for (j = 0; j < 18; j++) { opll_sample += opll_accm[j][0] + opll_accm[j][1]; } } *buffer++ = opll_sample * 16 * opll_status; *buffer++ = opll_sample * 16 * opll_status; } } static void OPLL2413_Reset(unsigned int cycles) { /* synchronize FM chip with CPU */ fm_update(cycles); /* reset FM chip */ OPLL_Reset(&opll, opll_type_ym2413); } static void OPLL2413_Write(unsigned int cycles, unsigned int a, unsigned int v) { if (!(a&2)) { /* synchronize FM chip with CPU */ fm_update(cycles); /* write FM register */ OPLL_Write(&opll, a, v); } else { opll_status = v&1; } } static unsigned int OPLL2413_Read(unsigned int cycles, unsigned int a) { return 0xf8 | opll_status; } #endif void sound_init( void ) { /* Initialize FM chip */ if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { /* YM2612 */ #ifdef HAVE_YM3438_CORE if (config.ym3438) { /* Nuked OPN2 */ memset(&ym3438, 0, sizeof(ym3438)); memset(&ym3438_sample, 0, sizeof(ym3438_sample)); memset(&ym3438_accm, 0, sizeof(ym3438_accm)); YM_Update = YM3438_Update; fm_reset = YM3438_Reset; fm_write = YM3438_Write; fm_read = YM3438_Read; /* chip is running at internal clock */ fm_cycles_ratio = YM2612_CLOCK_RATIO; } else #endif { /* MAME OPN2*/ YM2612Init(); YM2612Config(config.ym2612); YM_Update = YM2612Update; fm_reset = YM2612_Reset; fm_write = YM2612_Write; fm_read = YM2612_Read; /* chip is running at sample clock */ fm_cycles_ratio = YM2612_CLOCK_RATIO * 24; } } else { /* YM2413 */ #ifdef HAVE_OPLL_CORE if (config.opll) { /* Nuked OPLL */ memset(&opll, 0, sizeof(opll)); memset(&opll_accm, 0, sizeof(opll_accm)); opll_sample = 0; opll_status = 0; YM_Update = (config.ym2413 & 1) ? OPLL2413_Update : NULL; fm_reset = OPLL2413_Reset; fm_write = OPLL2413_Write; fm_read = OPLL2413_Read; /* chip is running at internal clock */ fm_cycles_ratio = 4 * 15; } else #endif { YM2413Init(); YM_Update = (config.ym2413 & 1) ? YM2413Update : NULL; fm_reset = YM2413_Reset; fm_write = YM2413_Write; fm_read = YM2413_Read; /* chip is running at ZCLK / 72 = MCLK / 15 / 72 */ fm_cycles_ratio = 72 * 15; } } /* Initialize PSG chip */ psg_init((system_hw == SYSTEM_SG) ? PSG_DISCRETE : PSG_INTEGRATED); } void sound_reset(void) { /* reset sound chips */ fm_reset(0); psg_reset(); psg_config(0, config.psg_preamp, 0xff); /* reset FM buffer ouput */ fm_last[0] = fm_last[1] = 0; /* reset FM buffer pointer */ fm_ptr = fm_buffer; /* reset FM cycle counters */ fm_cycles_start = fm_cycles_count = 0; } int sound_update(unsigned int cycles) { /* Run PSG chip until end of frame */ psg_end_frame(cycles); /* FM chip is enabled ? */ if (YM_Update) { int prev_l, prev_r, preamp, time, l, r, *ptr; /* Run FM chip until end of frame */ fm_update(cycles); /* FM output pre-amplification */ preamp = config.fm_preamp; /* FM frame initial timestamp */ time = fm_cycles_start; /* Restore last FM outputs from previous frame */ prev_l = fm_last[0]; prev_r = fm_last[1]; /* FM buffer start pointer */ ptr = fm_buffer; /* flush FM samples */ if (config.hq_fm) { /* high-quality Band-Limited synthesis */ do { /* left & right channels */ l = ((*ptr++ * preamp) / 100); r = ((*ptr++ * preamp) / 100); blip_add_delta(snd.blips[0], time, l-prev_l, r-prev_r); prev_l = l; prev_r = r; /* increment time counter */ time += fm_cycles_ratio; } while (time < cycles); } else { /* faster Linear Interpolation */ do { /* left & right channels */ l = ((*ptr++ * preamp) / 100); r = ((*ptr++ * preamp) / 100); blip_add_delta_fast(snd.blips[0], time, l-prev_l, r-prev_r); prev_l = l; prev_r = r; /* increment time counter */ time += fm_cycles_ratio; } while (time < cycles); } /* reset FM buffer pointer */ fm_ptr = fm_buffer; /* save last FM output for next frame */ fm_last[0] = prev_l; fm_last[1] = prev_r; /* adjust FM cycle counters for next frame */ fm_cycles_count = fm_cycles_start = time - cycles; if (fm_cycles_busy > cycles) { fm_cycles_busy -= cycles; } else { fm_cycles_busy = 0; } } /* end of blip buffer time frame */ blip_end_frame(snd.blips[0], cycles); /* return number of available samples */ return blip_samples_avail(snd.blips[0]); } int sound_context_save(uint8 *state) { int bufferptr = 0; if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { #ifdef HAVE_YM3438_CORE save_param(&config.ym3438, sizeof(config.ym3438)); if (config.ym3438) { save_param(&ym3438, sizeof(ym3438)); save_param(&ym3438_accm, sizeof(ym3438_accm)); save_param(&ym3438_sample, sizeof(ym3438_sample)); save_param(&ym3438_cycles, sizeof(ym3438_cycles)); } else { bufferptr += YM2612SaveContext(state + sizeof(config.ym3438)); } #else bufferptr = YM2612SaveContext(state); #endif } else { #ifdef HAVE_OPLL_CORE save_param(&config.opll, sizeof(config.opll)); if (config.opll) { save_param(&opll, sizeof(opll)); save_param(&opll_accm, sizeof(opll_accm)); save_param(&opll_sample, sizeof(opll_sample)); save_param(&opll_cycles, sizeof(opll_cycles)); save_param(&opll_status, sizeof(opll_status)); } else #endif { save_param(YM2413GetContextPtr(),YM2413GetContextSize()); } } bufferptr += psg_context_save(&state[bufferptr]); save_param(&fm_cycles_start,sizeof(fm_cycles_start)); return bufferptr; } int sound_context_load(uint8 *state) { int bufferptr = 0; if ((system_hw & SYSTEM_PBC) == SYSTEM_MD) { #ifdef HAVE_YM3438_CORE uint8 config_ym3438; load_param(&config_ym3438, sizeof(config_ym3438)); if (config_ym3438) { load_param(&ym3438, sizeof(ym3438)); load_param(&ym3438_accm, sizeof(ym3438_accm)); load_param(&ym3438_sample, sizeof(ym3438_sample)); load_param(&ym3438_cycles, sizeof(ym3438_cycles)); } else { bufferptr += YM2612LoadContext(state + sizeof(config_ym3438)); } #else bufferptr = YM2612LoadContext(state); #endif } else { #ifdef HAVE_OPLL_CORE uint8 config_opll; load_param(&config_opll, sizeof(config_opll)); if (config_opll) { load_param(&opll, sizeof(opll)); load_param(&opll_accm, sizeof(opll_accm)); load_param(&opll_sample, sizeof(opll_sample)); load_param(&opll_cycles, sizeof(opll_cycles)); load_param(&opll_status, sizeof(opll_status)); } else #endif { load_param(YM2413GetContextPtr(),YM2413GetContextSize()); } } bufferptr += psg_context_load(&state[bufferptr]); load_param(&fm_cycles_start,sizeof(fm_cycles_start)); fm_cycles_count = fm_cycles_start; return bufferptr; }