/*************************************************************************************** * Genesis Plus 1.2a * Video Display Processor (memory handlers) * * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code) * modified by Eke-Eke (compatibility fixes & additional code), GC/Wii port * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ****************************************************************************************/ #include "shared.h" #include "hvc.h" /* Pack and unpack CRAM data */ #define PACK_CRAM(d) ((((d)&0xE00)>>9)|(((d)&0x0E0)>>2)|(((d)&0x00E)<<5)) #define UNPACK_CRAM(d) ((((d)&0x1C0)>>5)|((d)&0x038)<<2|(((d)&0x007)<<9)) /* Mark a pattern as dirty */ #define MARK_BG_DIRTY(addr) \ { \ name = (addr >> 5) & 0x7FF; \ if(bg_name_dirty[name] == 0) bg_name_list[bg_list_index++] = name; \ bg_name_dirty[name] |= (1 << ((addr >> 2) & 0x07)); \ } /* VDP context */ uint8 sat[0x400]; /* Internal copy of sprite attribute table */ uint8 vram[0x10000]; /* Video RAM (64Kx8) */ uint8 cram[0x80]; /* On-chip color RAM (64x9) */ uint8 vsram[0x80]; /* On-chip vertical scroll RAM (40x11) */ uint8 reg[0x20]; /* Internal VDP registers (23x8) */ uint16 addr; /* Address register */ uint16 addr_latch; /* Latched A15, A14 of address */ uint8 code; /* Code register */ uint8 pending; /* Pending write flag */ uint16 status; /* VDP status flags */ uint8 dmafill; /* next VDP Write is DMA Fill */ uint8 hint_pending; /* 0= Line interrupt is pending */ uint8 vint_pending; /* 1= Frame interrupt is pending */ uint16 irq_status; /* Interrupt lines updated */ /* Global variables */ uint16 ntab; /* Name table A base address */ uint16 ntbb; /* Name table B base address */ uint16 ntwb; /* Name table W base address */ uint16 satb; /* Sprite attribute table base address */ uint16 hscb; /* Horizontal scroll table base address */ uint8 border; /* Border color index */ uint8 bg_name_dirty[0x800]; /* 1= This pattern is dirty */ uint16 bg_name_list[0x800]; /* List of modified pattern indices */ uint16 bg_list_index; /* # of modified patterns in list */ uint8 bg_pattern_cache[0x80000]; /* Cached and flipped patterns */ uint8 playfield_shift; /* Width of planes A, B (in bits) */ uint8 playfield_col_mask; /* Vertical scroll mask */ uint16 playfield_row_mask; /* Horizontal scroll mask */ uint32 y_mask; /* Name table Y-index bits mask */ uint16 hc_latch; /* latched HCounter (INT2) */ uint16 v_counter; /* VDP scanline counter */ uint8 im2_flag; /* 1= Interlace mode 2 is being used */ uint32 dma_length; /* Current DMA remaining bytes */ int32 fifo_write_cnt; /* VDP writes fifo count */ uint32 fifo_lastwrite; /* last VDP write cycle */ uint8 fifo_latency; /* VDP write cycles latency */ uint8 vdp_pal = 0; /* 1: PAL , 0: NTSC (default) */ /* Tables that define the playfield layout */ static const uint8 shift_table[] = { 6, 7, 0, 8 }; static const uint8 col_mask_table[] = { 0x0F, 0x1F, 0x0F, 0x3F }; static const uint16 row_mask_table[] = { 0x0FF, 0x1FF, 0x2FF, 0x3FF }; static const uint32 y_mask_table[] = { 0x1FC0, 0x1F80, 0x1FC0, 0x1F00 }; static uint16 sat_base_mask; /* Base bits of SAT */ static uint16 sat_addr_mask; /* Index bits of SAT */ static uint32 dma_endCycles; /* 68k cycles to DMA end */ static uint8 dma_type; /* Type of DMA */ static double vdp_timings[4][4]; /* DMA timings */ static inline void vdp_reg_w(unsigned int r, unsigned int d); /* DMA Timings According to the manual, here's a table that describes the transfer rates of each of the three DMA types: DMA Mode Width Display Transfer Count ----------------------------------------------------- 68K > VDP 32-cell Active 16 Blanking 167 40-cell Active 18 Blanking 205 VRAM Fill 32-cell Active 15 Blanking 166 40-cell Active 17 Blanking 204 VRAM Copy 32-cell Active 8 Blanking 83 40-cell Active 9 Blanking 102 'Active' is the active display period, 'Blanking' is either the vertical blanking period or when the display is forcibly blanked via register #1. The above transfer counts are all in bytes, unless the destination is CRAM or VSRAM for a 68K > VDP transfer, in which case it is in words. */ static const uint8 dma_rates[16] = { 8, 9, 83 , 102, /* 68K to VRAM */ 16, 18, 167, 205, /* 68K to CRAM or VSRAM */ 15, 17, 166, 204, /* DMA fill */ 8, 9, 83 , 102, /* DMA Copy */ }; /* Function prototypes */ static inline void data_write(unsigned int data); /*--------------------------------------------------------------------------*/ /* Init, reset, shutdown functions */ /*--------------------------------------------------------------------------*/ void vdp_init(void) { int i; /* reinitialize DMA timings table */ for (i=0; i<4; i++) { vdp_timings[0][i] = ((double)m68cycles_per_line) / ((double) dma_rates[i]); vdp_timings[1][i] = ((double)m68cycles_per_line) / ((double) dma_rates[i + 4]); vdp_timings[2][i] = ((double)m68cycles_per_line) / ((double) dma_rates[i + 8]); vdp_timings[3][i] = ((double)m68cycles_per_line) / ((double) dma_rates[i + 12]); } } void vdp_reset(void) { memset ((char *) sat, 0, sizeof (sat)); memset ((char *) vram, 0, sizeof (vram)); memset ((char *) cram, 0, sizeof (cram)); memset ((char *) vsram, 0, sizeof (vsram)); memset ((char *) reg, 0, sizeof (reg)); addr = 0; addr_latch = 0; code = 0; pending = 0; status = 0x200; /* fifo empty */ status |= vdp_pal; ntab = 0; ntbb = 0; ntwb = 0; satb = 0; hscb = 0; sat_base_mask = 0xFE00; sat_addr_mask = 0x01FF; border = 0x00; memset ((char *) bg_name_dirty, 0, sizeof (bg_name_dirty)); memset ((char *) bg_name_list, 0, sizeof (bg_name_list)); bg_list_index = 0; memset ((char *) bg_pattern_cache, 0, sizeof (bg_pattern_cache)); playfield_shift = 6; playfield_col_mask = 0x0F; playfield_row_mask = 0x0FF; y_mask = 0x1FC0; hint_pending = 0; vint_pending = 0; irq_status = 0; hc_latch = 0; v_counter = 0; dmafill = 0; dma_length = 0; dma_endCycles = 0; im2_flag = 0; interlaced = 0; fifo_write_cnt = 0; /* reset HVC tables */ vctab = (vdp_pal) ? vc_pal_224 : vc_ntsc_224; hctab = cycle2hc32; /* reset display area */ bitmap.viewport.w = 256; bitmap.viewport.h = 224; bitmap.viewport.oh = 256; bitmap.viewport.ow = 224; /* reset border area */ bitmap.viewport.x = config.overscan ? 12 : 0; bitmap.viewport.y = config.overscan ? (vdp_pal ? 32 : 8) : 0; bitmap.viewport.changed = 1; /* initialize some registers (normally set by BIOS) */ if (config.bios_enabled != 3) { vdp_reg_w(1 , 0x04); /* Mode 5 enabled */ vdp_reg_w(10, 0xff); /* HINT disabled */ vdp_reg_w(12, 0x81); /* H40 mode */ vdp_reg_w(15, 0x02); /* auto increment */ window_clip(1,0); } /* default latency */ fifo_latency = 27; } void vdp_shutdown(void) {} void vdp_restore(uint8 *vdp_regs) { int i; for (i=0;i<0x20;i++) { vdp_reg_w(i, vdp_regs[i]); } /* reinitialize HVC tables */ vctab = (vdp_pal) ? ((reg[1] & 8) ? vc_pal_240 : vc_pal_224) : vc_ntsc_224; hctab = (reg[12] & 1) ? cycle2hc40 : cycle2hc32; /* reinitialize overscan area */ bitmap.viewport.x = config.overscan ? ((reg[12] & 1) ? 16 : 12) : 0; bitmap.viewport.y = config.overscan ? (((reg[1] & 8) ? 0 : 8) + (vdp_pal ? 24 : 0)) : 0; bitmap.viewport.changed = 1; /* restore VDP timings */ fifo_latency = (reg[12] & 1) ? 27 : 30; if ((code & 0x0F) == 0x01) fifo_latency = fifo_latency * 2; /* remake cache */ for (i=0;i<0x800;i++) { bg_name_list[i]=i; bg_name_dirty[i]=0xFF; } bg_list_index=0x800; /* reinitialize palette */ for(i = 0; i < 0x40; i += 1) color_update(i, *(uint16 *)&cram[i << 1]); color_update(0x00, *(uint16 *)&cram[border << 1]); } /*--------------------------------------------------------------------------*/ /* DMA Operations */ /*--------------------------------------------------------------------------*/ /* Update DMA timings (this is call on start of DMA and then at the start of each scanline) */ void dma_update() { int32 left_cycles; uint32 dma_cycles, dma_bytes; uint8 index = 0; /* get the appropriate tranfer rate (bytes/line) for this DMA operation */ if ((status&8) || !(reg[1] & 0x40)) index = 2; /* VBLANK or Display OFF */ index += (reg[12] & 1); /* 32 or 40 Horizontal Cells */ /* calculate transfer quantity for the remaining 68k cycles */ left_cycles = aim_m68k - count_m68k; if (left_cycles < 0) left_cycles = 0; dma_bytes = (uint32)(((double)left_cycles / vdp_timings[dma_type][index]) + 0.5); /* determinate DMA length in CPU cycles */ if (dma_length < dma_bytes) { /* DMA will be finished during this line */ dma_cycles = (uint32)(((double)dma_length * vdp_timings[dma_type][index]) + 0.5); dma_length = 0; } else { /* DMA can not be finished until next scanline */ dma_cycles = left_cycles; dma_length -= dma_bytes; } if (dma_type < 2) { /* 68K COPY to V-RAM */ /* 68K is frozen during DMA operation */ count_m68k += dma_cycles; } else { /* VRAM Fill or VRAM Copy */ /* set DMA end cyles count */ dma_endCycles = count_m68k + dma_cycles; /* set DMA Busy flag */ status |= 0x0002; } } /* DMA Copy Read byte from VRAM (source), write to VRAM (addr), bump source and add r15 to addr. - see how source addr is affected (can it make high source byte inc?) */ static inline void dma_copy(void) { int name; int length = (reg[20] << 8 | reg[19]) & 0xFFFF; int source = (reg[22] << 8 | reg[21]) & 0xFFFF; if (!length) length = 0x10000; dma_type = 3; dma_length = length; dma_update(); /* proceed DMA */ do { vram[addr] = vram[source]; MARK_BG_DIRTY(addr); source = (source + 1) & 0xFFFF; addr += reg[15]; } while (--length); /* update length & source address registers */ reg[19] = length & 0xFF; reg[20] = (length >> 8) & 0xFF; reg[21] = source & 0xFF; /* not sure */ reg[22] = (source >> 8) & 0xFF; } /* 68K Copy to VRAM, VSRAM or CRAM */ static inline void dma_vbus (void) { uint32 base, source = ((reg[23] & 0x7F) << 17 | reg[22] << 9 | reg[21] << 1) & 0xFFFFFE; uint32 length = (reg[20] << 8 | reg[19]) & 0xFFFF; uint32 temp; if (!length) length = 0x10000; base = source; /* DMA timings */ dma_type = (code & 0x06) ? 1 : 0; dma_length = length; dma_update(); /* DMA source */ if ((source >> 17) == 0x50) { /* Z80 & I/O area */ do { /* Return $FFFF only when the Z80 isn't hogging the Z-bus. (e.g. Z80 isn't reset and 68000 has the bus) */ if (source <= 0xa0ffff) temp = (zbusack ? *(uint16 *)(work_ram + (source & 0xffff)) : 0xffff); /* The I/O chip and work RAM try to drive the data bus which results in both values being combined in random ways when read. We return the I/O chip values which seem to have precedence, */ else if (source <= 0xa1001f) { temp = io_read((source >> 1) & 0x0f); temp = (temp << 8 | temp); } /* All remaining locations access work RAM */ else temp = *(uint16 *)(work_ram + (source & 0xffff)); source += 2; source = ((base & 0xFE0000) | (source & 0x1FFFF)); data_write (temp); } while (--length); } else { /* SVP latency */ if (svp && (source < 0x400000)) { source = (source - 2); } /* ROM & RAM */ do { temp = *(uint16 *)(m68k_memory_map[source>>16].base + (source & 0xffff)); source += 2; source = ((base & 0xFE0000) | (source & 0x1FFFF)); data_write (temp); } while (--length); } /* update length & source address registers */ reg[19] = length & 0xFF; reg[20] = (length >> 8) & 0xFF; reg[21] = (source >> 1) & 0xFF; reg[22] = (source >> 9) & 0xFF; reg[23] = (reg[23] & 0x80) | ((source >> 17) & 0x7F); } /* VRAM FILL */ static inline void dma_fill(unsigned int data) { int name; int length = (reg[20] << 8 | reg[19]) & 0xFFFF; if (!length) length = 0x10000; /* DMA timings */ dma_type = 2; dma_length = length; dma_update(); /* proceed DMA */ data_write(data); /* write MSB */ data = (data >> 8) & 0xff; /* detect internal SAT modification */ if ((addr & sat_base_mask) == satb) { do { /* update internal SAT (fix Battletech) */ WRITE_BYTE(sat, (addr & sat_addr_mask)^1, data); WRITE_BYTE(vram, addr^1, data); MARK_BG_DIRTY (addr); addr += reg[15]; } while (--length); } else { do { WRITE_BYTE(vram, addr^1, data); MARK_BG_DIRTY (addr); addr += reg[15]; } while (--length); } /* update length register */ reg[19] = length & 0xFF; reg[20] = (length >> 8) & 0xFF; dmafill = 0; } /*--------------------------------------------------------------------------*/ /* FIFO emulation */ /*--------------------------------------------------------------------------*/ static inline void fifo_update() { if (fifo_write_cnt > 0) { /* update FIFO reads */ uint32 fifo_read = ((count_m68k - fifo_lastwrite) / fifo_latency); if (fifo_read > 0) { fifo_write_cnt -= fifo_read; if (fifo_write_cnt < 0) fifo_write_cnt = 0; /* update cycle count */ fifo_lastwrite += fifo_read*fifo_latency; } } } /*--------------------------------------------------------------------------*/ /* Memory access functions */ /*--------------------------------------------------------------------------*/ static inline void data_write (unsigned int data) { switch (code & 0x0F) { case 0x01: /* VRAM */ /* Byte-swap data if A0 is set */ if (addr & 1) data = (data >> 8) | (data << 8); /* Copy SAT data to the internal SAT */ if ((addr & sat_base_mask) == satb) { *(uint16 *) &sat[addr & sat_addr_mask & 0xFFFE] = data; } /* Only write unique data to VRAM */ if (data != *(uint16 *) &vram[addr & 0xFFFE]) { /* Write data to VRAM */ *(uint16 *) &vram[addr & 0xFFFE] = data; /* Update the pattern cache */ int name; MARK_BG_DIRTY (addr); } break; case 0x03: /* CRAM */ { uint16 *p = (uint16 *) &cram[(addr & 0x7E)]; data = PACK_CRAM (data & 0x0EEE); if (data != *p) { int index = (addr >> 1) & 0x3F; *p = data; color_update (index, *p); color_update (0x00, *(uint16 *)&cram[border << 1]); } break; } case 0x05: /* VSRAM */ *(uint16 *) &vsram[(addr & 0x7E)] = data; break; } /* Increment address register */ addr += reg[15]; } void vdp_ctrl_w(unsigned int data) { if (pending == 0) { if ((data & 0xC000) == 0x8000) { /* VDP register write */ uint8 r = (data >> 8) & 0x1F; uint8 d = data & 0xFF; vdp_reg_w (r, d); } else pending = 1; addr = ((addr_latch & 0xC000) | (data & 0x3FFF)) & 0xFFFF; code = ((code & 0x3C) | ((data >> 14) & 0x03)) & 0x3F; } else { /* Clear pending flag */ pending = 0; /* Update address and code registers */ addr = ((addr & 0x3FFF) | ((data & 3) << 14)) & 0xFFFF; code = ((code & 0x03) | ((data >> 2) & 0x3C)) & 0x3F; /* Save address bits A15 and A14 */ addr_latch = (addr & 0xC000); /* DMA operation */ if ((code & 0x20) && (reg[1] & 0x10)) { switch (reg[23] & 0xC0) { case 0x00: /* V bus to VDP DMA */ case 0x40: /* V bus to VDP DMA */ dma_vbus(); break; case 0x80: /* VRAM fill */ dmafill = 1; break; case 0xC0: /* VRAM copy */ dma_copy(); break; } } } /* FIFO emulation: --------------- HDISP is 256*10/7 = approx. 366 cycles (same for both modes) this gives: H32: 16 accesses --> 366/16 = 23 cycles per access H40: 20 accesses --> 366/20 = 18 cycles per access VRAM access are byte wide --> VRAM writes takes 2x CPU cycles */ fifo_latency = (reg[12] & 1) ? 27 : 30; if ((code & 0x0F) == 0x01) fifo_latency = fifo_latency * 2; } /* The reg[] array is updated at the *end* of this function, so the new register data can be compared with the previous data. */ static inline void vdp_reg_w(unsigned int r, unsigned int d) { /* Check if Mode 4 (SMS mode) has been activated According to official doc, VDP registers #11 to #23 can not be written unless bit2 in register #1 is set Fix Captain Planet & Avengers (Alt version), Bass Master Classic Pro Edition (they incidentally activate Mode 4) */ if (!(reg[1] & 4) && (r > 10)) return; switch(r) { case 0x00: /* CTRL #1 */ if (hint_pending && ((d&0x10) != (reg[0]&0x10))) { /* update IRQ status */ irq_status &= 0x20; irq_status |= 0x10; if (vint_pending && (reg[1] & 0x20)) irq_status |= 6; else if (d & 0x10) irq_status |= 4; } break; case 0x01: /* CTRL #2 */ if (vint_pending && ((d&0x20) != (reg[1]&0x20))) { /* update IRQ status */ irq_status &= 0x20; irq_status |= 0x110; if (d & 0x20) irq_status |= 6; else if (hint_pending && (reg[0] & 0x10)) irq_status |= 4; } /* Check if the viewport height has actually been changed */ if((reg[1] & 8) != (d & 8)) { /* Update the height of the viewport */ bitmap.viewport.h = (d & 8) ? 240 : 224; if (config.overscan) bitmap.viewport.y = ((vdp_pal ? 288 : 240) - bitmap.viewport.h) / 2; bitmap.viewport.changed = 1; /* update VC table */ if (vdp_pal) vctab = (d & 8) ? vc_pal_240 : vc_pal_224; } /* DISPLAY switched ON/OFF during HBLANK */ if ((v_counter < bitmap.viewport.h) && ((d&0x40) != (reg[1]&0x40))) { if (count_m68k <= (hint_m68k + 120)) { /* Redraw the current line : - Legend of Galahad, Lemmings 2, Nigel Mansell's World Championship Racing (set display OFF) - Deadly Moves aka Power Athlete (set display ON) */ reg[1] = d; render_line(v_counter, 0); } } break; case 0x02: /* NTAB */ ntab = (d << 10) & 0xE000; break; case 0x03: /* NTWB */ ntwb = (d << 10) & 0xF800; if(reg[12] & 1) ntwb &= 0xF000; break; case 0x04: /* NTBB */ ntbb = (d << 13) & 0xE000; break; case 0x05: /* SATB */ sat_base_mask = (reg[12] & 1) ? 0xFC00 : 0xFE00; sat_addr_mask = (reg[12] & 1) ? 0x03FF : 0x01FF; satb = (d << 9) & sat_base_mask; break; case 0x07: /* Border Color index */ /* Check if the border color has actually changed */ d &= 0x3F; if(border != d) { /* Mark the border color as modified */ border = d; color_update(0x00, *(uint16 *)&cram[(border << 1)]); /* background color modified during HBLANK */ if ((v_counter < bitmap.viewport.h) && (count_m68k <= (line_m68k + 84))) { /* remap current line (see Road Rash I,II,III) */ reg[7] = d; remap_buffer(v_counter,bitmap.viewport.w + 2*bitmap.viewport.x); } } break; case 0x0C: /* Check if the viewport width has actually been changed */ if((reg[0x0C] & 1) != (d & 1)) { /* Update the width of the viewport */ bitmap.viewport.w = (d & 1) ? 320 : 256; if (config.overscan) bitmap.viewport.x = (d & 1) ? 16 : 12; bitmap.viewport.changed = 1; /* update HC table */ hctab = (d & 1) ? cycle2hc40 : cycle2hc32; /* update clipping */ window_clip(d,reg[17]); } /* See if the S/TE mode bit has changed */ if((reg[0x0C] & 8) != (d & 8)) { int i; /* The following color update check this value */ reg[0x0C] = d; /* Update colors */ for (i = 0; i < 0x40; i += 1) color_update (i, *(uint16 *) & cram[i << 1]); color_update (0x00, *(uint16 *) & cram[border << 1]); } /* The following register updates check this value */ reg[0x0C] = d; /* Update display-dependant registers */ vdp_reg_w(0x03, reg[0x03]); vdp_reg_w(0x05, reg[0x05]); break; case 0x0D: /* HSCB */ hscb = (d << 10) & 0xFC00; break; case 0x10: /* Playfield size */ playfield_shift = shift_table[(d & 3)]; playfield_col_mask = col_mask_table[(d & 3)]; playfield_row_mask = row_mask_table[(d >> 4) & 3]; y_mask = y_mask_table[(d & 3)]; break; case 0x11: /* update clipping */ window_clip(reg[12],d); break; } /* Write new register value */ reg[r] = d; } /* * Return VDP status * * Bits are * 0 0:1 ntsc:pal * 1 DMA Busy * 2 During HBlank * 3 During VBlank * 4 Frame Interlace 0:even 1:odd * 5 Sprite collision * 6 Too many sprites per line * 7 v interrupt occurred * 8 Write FIFO full * 9 Write FIFO empty * 10 - 15 Next word on bus */ unsigned int vdp_ctrl_r(void) { /* update FIFO flags */ fifo_update(); if (fifo_write_cnt < 4) { status &= 0xFEFF; if (fifo_write_cnt == 0) status |= 0x200; } else status ^= 0x200; /* update DMA Busy flag */ if ((status & 2) && !dma_length && (count_m68k >= dma_endCycles)) { status &= 0xFFFD; } unsigned int temp = status; /* display OFF: VBLANK flag is set */ if (!(reg[1] & 0x40)) temp |= 0x8; /* HBLANK flag (Sonic 3 and Sonic 2 "VS Modes", Lemmings 2) */ if ((count_m68k <= (line_m68k + 84)) || (count_m68k > (line_m68k + m68cycles_per_line))) temp |= 0x4; /* clear pending flag */ pending = 0; /* clear SPR/SCOL flags */ status &= 0xFF9F; return (temp); } void vdp_data_w(unsigned int data) { /* Clear pending flag */ pending = 0; if (dmafill) { dma_fill(data); return; } /* update VDP FIFO (during HDISPLAY only) */ if (!(status&8) && (reg[1]&0x40)) { fifo_update(); if (fifo_write_cnt == 0) { /* reset cycle counter */ fifo_lastwrite = count_m68k; /* FIFO is not empty anymore */ status &= 0xFDFF; } /* increase write counter */ fifo_write_cnt ++; /* is FIFO full ? */ if (fifo_write_cnt >= 4) { status |= 0x100; /* VDP latency (Chaos Engine, Soldiers of Fortune, Double Clutch) */ if (fifo_write_cnt > 4) count_m68k = fifo_lastwrite + fifo_latency; } } /* write data */ data_write(data); } unsigned int vdp_data_r(void) { uint16 temp = 0; /* Clear pending flag */ pending = 0; switch (code & 0x0F) { case 0x00: /* VRAM */ temp = *(uint16 *) & vram[(addr & 0xFFFE)]; break; case 0x08: /* CRAM */ temp = *(uint16 *) & cram[(addr & 0x7E)]; temp = UNPACK_CRAM (temp); break; case 0x04: /* VSRAM */ temp = *(uint16 *) & vsram[(addr & 0x7E)]; break; } /* Increment address register */ addr += reg[15]; /* return data */ return (temp); } unsigned int vdp_hvc_r(void) { uint8 hc = (hc_latch & 0x100) ? (hc_latch & 0xFF) : hctab[count_m68k % m68cycles_per_line]; uint8 vc = vctab[v_counter]; /* interlace mode 2 */ if (im2_flag) vc = (vc << 1) | ((vc >> 7) & 1); return ((vc << 8) | hc); } void vdp_test_w(unsigned int value) { #ifdef LOGERROR error("Unused VDP Write 0x%x (%08x)", value, m68k_get_reg (NULL, M68K_REG_PC)); #endif } int vdp_int_ack_callback(int int_level) { /* VINT triggered ? */ if (irq_status&0x20) { vint_pending = 0; status &= ~0x80; /* clear VINT flag */ } else { hint_pending = 0; } /* update IRQ status */ irq_status = 0x10; if (vint_pending && (reg[1] & 0x20)) irq_status |= 6; else if (hint_pending && (reg[0] & 0x10)) irq_status |= 4; return M68K_INT_ACK_AUTOVECTOR; }