/*************************************************************************************** * Genesis Plus * * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code) * Eke-Eke (2007,2008,2009), additional code & fixes for the GCN/Wii port * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Sound Hardware ****************************************************************************************/ #include "shared.h" #include "Fir_Resampler.h" /* Cycle-accurate samples */ static unsigned int psg_cycles_ratio; static unsigned int psg_cycles_count; static unsigned int fm_cycles_ratio; static unsigned int fm_cycles_count; /* Run FM chip for required M-cycles */ static inline void fm_update(unsigned int cycles) { if (cycles > fm_cycles_count) { /* period to run */ cycles -= fm_cycles_count; /* update cycle count */ fm_cycles_count += cycles; /* number of samples during period */ unsigned int cnt = cycles / fm_cycles_ratio; /* remaining cycles */ unsigned int remain = cycles % fm_cycles_ratio; if (remain) { /* one sample ahead */ fm_cycles_count += fm_cycles_ratio - remain; cnt++; } /* select input sample buffer */ int32 *buffer = Fir_Resampler_buffer(); if (buffer) { Fir_Resampler_write(cnt << 1); } else { buffer = snd.fm.pos; snd.fm.pos += (cnt << 1); } /* run FM chip & get samples */ YM2612Update(buffer, cnt); } } /* Run PSG chip for required M-cycles */ static inline void psg_update(unsigned int cycles) { if (cycles > psg_cycles_count) { /* period to run */ cycles -= psg_cycles_count; /* update cycle count */ psg_cycles_count += cycles; /* number of samples during period */ unsigned int cnt = cycles / psg_cycles_ratio; /* remaining cycles */ unsigned int remain = cycles % psg_cycles_ratio; if (remain) { /* one sample ahead */ psg_cycles_count += psg_cycles_ratio - remain; cnt++; } /* run PSG chip & get samples */ SN76489_Update(snd.psg.pos, cnt); snd.psg.pos += cnt; } } /* Initialize sound chips emulation */ void sound_init(void) { /* Number of M-cycles executed per second. */ /* */ /* The original Genesis would run exactly 53693175 M-cycles (53203424 for PAL), with */ /* 3420 M-cycles per line and 262 (313 for PAL) lines per frame, which gives an exact */ /* framerate of 59.92 (49.70 for PAL) fps. */ /* */ /* On some systems, the output framerate is not exactly 60 or 50 fps because we need */ /* 100% smooth video and therefore frame emulation is synchronized with VSYNC, which */ /* period is never exactly 1/60 or 1/50 seconds. */ /* */ /* For optimal sound rendering, input samplerate (number of samples rendered per frame) */ /* is the exact output samplerate (number of samples played per second) divided by the */ /* exact output framerate (number of frames emulated per seconds). */ /* */ /* This ensure there is no audio skipping or lag between emulated frames, while keeping */ /* accurate timings for sound chips execution & synchronization. */ /* */ double mclk = MCYCLES_PER_LINE * lines_per_frame * snd.frame_rate; /* For better accuracy, sound chips run in synchronization with 68k and Z80 cpus */ /* These values give the exact number of M-cycles between 2 rendered samples. */ /* we use 21.11 fixed point precision (max. mcycle value is 3420*313 i.e 21 bits max) */ psg_cycles_ratio = (unsigned int)(mclk / (double) snd.sample_rate * 2048.0); fm_cycles_ratio = psg_cycles_ratio; fm_cycles_count = 0; psg_cycles_count = 0; /* Initialize core emulation (input clock based on input frequency for 100% accuracy) */ /* By default, both chips are running at the output frequency. */ SN76489_Init(mclk/15.0,snd.sample_rate); YM2612Init(mclk/7.0,snd.sample_rate); /* In HQ mode, YM2612 is running at its original rate (one sample each 144*7 M-cycles) */ /* FM stream is resampled to the output frequency at the end of a frame. */ if (config.hq_fm) { fm_cycles_ratio = 144 * 7 * (1 << 11); Fir_Resampler_time_ratio(mclk / (double)snd.sample_rate / (144.0 * 7.0), config.rolloff); } #ifdef LOGSOUND error("%d mcycles per PSG samples\n", psg_cycles_ratio); error("%d mcycles per FM samples\n", fm_cycles_ratio); #endif } /* Reset sound chips emulation */ void sound_reset(void) { YM2612ResetChip(); SN76489_Reset(); fm_cycles_count = 0; psg_cycles_count = 0; } int sound_context_save(uint8 *state) { int bufferptr = YM2612SaveContext(state); save_param(SN76489_GetContextPtr(),SN76489_GetContextSize()); save_param(&fm_cycles_count,sizeof(fm_cycles_count)); save_param(&psg_cycles_count,sizeof(psg_cycles_count)); return bufferptr; } int sound_context_load(uint8 *state, char *version) { int bufferptr = YM2612LoadContext(state, version); load_param(SN76489_GetContextPtr(),SN76489_GetContextSize()); /* extended state (from 1.4.1 and above) */ if ((version[11] > 0x31) || (version[13] > 0x34) || (version[15] > 0x30)) { load_param(&fm_cycles_count,sizeof(fm_cycles_count)); load_param(&psg_cycles_count,sizeof(psg_cycles_count)); fm_cycles_count = psg_cycles_count; } return bufferptr; } /* End of frame update, return the number of samples run so far. */ int sound_update(unsigned int cycles) { /* run PSG & FM chips until end of frame */ cycles <<= 11; psg_update(cycles); fm_update(cycles); int size = snd.psg.pos - snd.psg.buffer; #ifdef LOGSOUND error("%d PSG samples available\n",size); #endif /* FM resampling */ if (config.hq_fm) { /* get available FM samples */ int avail = Fir_Resampler_avail(); /* resynchronize FM & PSG chips */ if (avail < size) { /* FM chip is late for one (or two) samples */ do { YM2612Update(Fir_Resampler_buffer(), 1); Fir_Resampler_write(2); avail = Fir_Resampler_avail(); } while (avail < size); } else { /* FM chip is ahead */ fm_cycles_count += (avail - size) * psg_cycles_ratio; } } #ifdef LOGSOUND if (config.hq_fm) error("%d FM samples (%d) available\n",Fir_Resampler_avail(), Fir_Resampler_written() >> 1); else error("%d FM samples available\n",(snd.fm.pos - snd.fm.buffer)>>1); #endif #ifdef LOGSOUND error("%lu PSG cycles run\n",psg_cycles_count); error("%lu FM cycles run \n",fm_cycles_count); #endif /* adjust PSG & FM cycle counts for next frame */ psg_cycles_count -= cycles; fm_cycles_count -= cycles; #ifdef LOGSOUND error("%lu PSG cycles left\n",psg_cycles_count); error("%lu FM cycles left\n",fm_cycles_count); #endif return size; } /* Reset FM chip */ void fm_reset(unsigned int cycles) { fm_update(cycles << 11); YM2612ResetChip(); } /* Write FM chip */ void fm_write(unsigned int cycles, unsigned int address, unsigned int data) { if (address & 1) fm_update(cycles << 11); YM2612Write(address, data); } /* Read FM status */ unsigned int fm_read(unsigned int cycles, unsigned int address) { fm_update(cycles << 11); return YM2612Read(); } /* Write PSG chip */ void psg_write(unsigned int cycles, unsigned int data) { psg_update(cycles << 11); SN76489_Write(data); }