/*********************************************************** * * * YM2612.C : YM2612 emulator * * * * Almost constantes are taken from the MAME core * * * * This source is a part of Gens project * * Written by Stéphane Dallongeville (gens@consolemul.com) * * Copyright (c) 2002 by Stéphane Dallongeville * * * ***********************************************************/ #include #include #include "shared.h" /******************************************** * Partie définition * ********************************************/ #define YM_DEBUG_LEVEL 0 #ifndef PI #define PI 3.14159265358979323846 #endif #define ATTACK 0 #define DECAY 1 #define SUBSTAIN 2 #define RELEASE 3 // SIN_LBITS <= 16 // LFO_HBITS <= 16 // (SIN_LBITS + SIN_HBITS) <= 26 // (ENV_LBITS + ENV_HBITS) <= 28 // (LFO_LBITS + LFO_HBITS) <= 28 #define SIN_HBITS 12 // Sinus phase counter int part #define SIN_LBITS (26 - SIN_HBITS) // Sinus phase counter float part (best setting) #if (SIN_LBITS > 16) #define SIN_LBITS 16 // Can't be greater than 16 bits #endif #define ENV_HBITS 12 // Env phase counter int part #define ENV_LBITS (28 - ENV_HBITS) // Env phase counter float part (best setting) #define LFO_HBITS 10 // LFO phase counter int part #define LFO_LBITS (28 - LFO_HBITS) // LFO phase counter float part (best setting) #define SIN_LENGHT (1 << SIN_HBITS) #define ENV_LENGHT (1 << ENV_HBITS) #define LFO_LENGHT (1 << LFO_HBITS) #define TL_LENGHT (ENV_LENGHT * 3) // Env + TL scaling + LFO #define SIN_MASK (SIN_LENGHT - 1) #define ENV_MASK (ENV_LENGHT - 1) #define LFO_MASK (LFO_LENGHT - 1) #define ENV_STEP (96.0 / ENV_LENGHT) // ENV_MAX = 96 dB #define ENV_ATTACK ((ENV_LENGHT * 0) << ENV_LBITS) #define ENV_DECAY ((ENV_LENGHT * 1) << ENV_LBITS) #define ENV_END ((ENV_LENGHT * 2) << ENV_LBITS) #define MAX_OUT_BITS (SIN_HBITS + SIN_LBITS + 2) // Modulation = -4 <--> +4 #define MAX_OUT ((1 << MAX_OUT_BITS) - 1) //Just for tests stuff... // //#define COEF_MOD 0.5 //#define MAX_OUT ((int) (((1 << MAX_OUT_BITS) - 1) * COEF_MOD)) #define OUT_BITS (OUTPUT_BITS - 2) #define OUT_SHIFT (MAX_OUT_BITS - OUT_BITS) #define LIMIT_CH_OUT ((int) (((1 << OUT_BITS) * 1.5) - 1)) #define PG_CUT_OFF ((int) (78.0 / ENV_STEP)) #define ENV_CUT_OFF ((int) (68.0 / ENV_STEP)) #define AR_RATE 399128 #define DR_RATE 5514396 //#define AR_RATE 426136 //#define DR_RATE (AR_RATE * 12) #define LFO_FMS_LBITS 9 // FIXED (LFO_FMS_BASE gives somethink as 1) #define LFO_FMS_BASE ((int) (0.05946309436 * 0.0338 * (double) (1 << LFO_FMS_LBITS))) #define S0 0 // Stupid typo of the YM2612 #define S1 2 #define S2 1 #define S3 3 void YM2612_Timers_Update(int length); void YM2612_Special_Update (); // used for foward... void Update_Chan_Algo0(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo1(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo2(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo3(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo4(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo5(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo6(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo7(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo0_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo1_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo2_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo3_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo4_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo5_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo6_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo7_LFO(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo0_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo1_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo2_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo3_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo4_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo5_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo6_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo7_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo0_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo1_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo2_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo3_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo4_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo5_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo6_LFO_Int(channel_ *CH, int **buf, int lenght); void Update_Chan_Algo7_LFO_Int(channel_ *CH, int **buf, int lenght); // used for foward... void Env_Attack_Next(slot_ *SL); void Env_Decay_Next(slot_ *SL); void Env_Substain_Next(slot_ *SL); void Env_Release_Next(slot_ *SL); void Env_NULL_Next(slot_ *SL); /******************************************** * Partie variables * ********************************************/ struct ym2612__ YM2612; int *SIN_TAB[SIN_LENGHT]; // SINUS TABLE (pointer on TL TABLE) int TL_TAB[TL_LENGHT * 2]; // TOTAL LEVEL TABLE (positif and minus) unsigned int ENV_TAB[2 * ENV_LENGHT + 8]; // ENV CURVE TABLE (attack & decay) //unsigned int ATTACK_TO_DECAY[ENV_LENGHT]; // Conversion from attack to decay phase unsigned int DECAY_TO_ATTACK[ENV_LENGHT]; // Conversion from decay to attack phase unsigned int FINC_TAB[2048]; // Frequency step table unsigned int AR_TAB[128]; // Attack rate table unsigned int DR_TAB[96]; // Decay rate table unsigned int DT_TAB[8][32]; // Detune table unsigned int SL_TAB[16]; // Substain level table unsigned int NULL_RATE[32]; // Table for NULL rate int LFO_ENV_TAB[LFO_LENGHT]; // LFO AMS TABLE (adjusted for 11.8 dB) int LFO_FREQ_TAB[LFO_LENGHT]; // LFO FMS TABLE int LFO_ENV_UP[MAX_UPDATE_LENGHT]; // Temporary calculated LFO AMS (adjusted for 11.8 dB) int LFO_FREQ_UP[MAX_UPDATE_LENGHT]; // Temporary calculated LFO FMS int INTER_TAB[MAX_UPDATE_LENGHT]; // Interpolation table int LFO_INC_TAB[8]; // LFO step table int in0, in1, in2, in3; // current phase calculation int en0, en1, en2, en3; // current enveloppe calculation static void (*UPDATE_CHAN[8 * 8])(channel_ *CH, int **buf, int lenght) = // Update Channel functions pointer table { (void *)Update_Chan_Algo0, (void *)Update_Chan_Algo1, (void *)Update_Chan_Algo2, (void *)Update_Chan_Algo3, (void *)Update_Chan_Algo4, (void *)Update_Chan_Algo5, (void *)Update_Chan_Algo6, (void *)Update_Chan_Algo7, (void *)Update_Chan_Algo0_LFO, (void *)Update_Chan_Algo1_LFO, (void *)Update_Chan_Algo2_LFO, (void *)Update_Chan_Algo3_LFO, (void *)Update_Chan_Algo4_LFO, (void *)Update_Chan_Algo5_LFO, (void *)Update_Chan_Algo6_LFO, (void *)Update_Chan_Algo7_LFO, (void *)Update_Chan_Algo0_Int, (void *)Update_Chan_Algo1_Int, (void *)Update_Chan_Algo2_Int, (void *)Update_Chan_Algo3_Int, (void *)Update_Chan_Algo4_Int, (void *)Update_Chan_Algo5_Int, (void *)Update_Chan_Algo6_Int, (void *)Update_Chan_Algo7_Int, (void *)Update_Chan_Algo0_LFO_Int, (void *)Update_Chan_Algo1_LFO_Int, (void *)Update_Chan_Algo2_LFO_Int, (void *)Update_Chan_Algo3_LFO_Int, (void *)Update_Chan_Algo4_LFO_Int, (void *)Update_Chan_Algo5_LFO_Int, (void *)Update_Chan_Algo6_LFO_Int, (void *)Update_Chan_Algo7_LFO_Int }; static void (*ENV_NEXT_EVENT[8])(slot_ *SL) = // Next Enveloppe phase functions pointer table { (void *)Env_Attack_Next, (void *)Env_Decay_Next, (void *)Env_Substain_Next, (void *)Env_Release_Next, (void *)Env_NULL_Next, (void *)Env_NULL_Next, (void *)Env_NULL_Next, (void *)Env_NULL_Next }; const unsigned int DT_DEF_TAB[4 * 32] = { // FD = 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // FD = 1 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, // FD = 2 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 16, 16, 16, 16, // FD = 3 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8 , 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 22, 22, 22 }; const unsigned int FKEY_TAB[16] = { 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3 }; const unsigned int LFO_AMS_TAB[4] = { 31, 4, 1, 0 }; const unsigned int LFO_FMS_TAB[8] = { LFO_FMS_BASE * 0, LFO_FMS_BASE * 1, LFO_FMS_BASE * 2, LFO_FMS_BASE * 3, LFO_FMS_BASE * 4, LFO_FMS_BASE * 6, LFO_FMS_BASE * 12, LFO_FMS_BASE * 24 }; int int_cnt; // Interpolation calculation #if YM_DEBUG_LEVEL > 0 // Debug FILE *debug_file = NULL; #endif /*********************************************** * fonctions calcul param * ***********************************************/ INLINE void CALC_FINC_SL(slot_ *SL, int finc, int kc) { int ksr; SL->Finc = (finc + SL->DT[kc]) * SL->MUL; /* YM2612 Detune Bug (discovered by Nemesis) */ if (SL->Finc < 0) { /* Phase overflow (best result with BLOCK = 5) */ finc = (int)((double)FINC_TAB[0x7FF] / YM2612.Frequence) >> 2; SL->Finc = (finc + SL->DT[kc]) * SL->MUL; } ksr = kc >> SL->KSR_S; // keycode atténuation #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "FINC = %d SL->Finc = %d\n", finc, SL->Finc); #endif if (SL->KSR != ksr) // si le KSR a changé alors { // les différents taux pour l'enveloppe sont mis à jour SL->KSR = ksr; SL->EincA = SL->AR[ksr]; SL->EincD = SL->DR[ksr]; SL->EincS = SL->SR[ksr]; SL->EincR = SL->RR[ksr]; if (SL->Ecurp == ATTACK) SL->Einc = SL->EincA; else if (SL->Ecurp == DECAY) SL->Einc = SL->EincD; else if (SL->Ecnt < ENV_END) { if (SL->Ecurp == SUBSTAIN) SL->Einc = SL->EincS; else if (SL->Ecurp == RELEASE) SL->Einc = SL->EincR; } #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "KSR = %.4X EincA = %.8X EincD = %.8X EincS = %.8X EincR = %.8X\n", ksr, SL->EincA, SL->EincD, SL->EincS, SL->EincR); #endif } } INLINE void CALC_FINC_CH(channel_ *CH) { int finc, kc; finc = FINC_TAB[CH->FNUM[0]] >> (7 - CH->FOCT[0]); kc = CH->KC[0]; CALC_FINC_SL(&CH->SLOT[0], finc, kc); CALC_FINC_SL(&CH->SLOT[1], finc, kc); CALC_FINC_SL(&CH->SLOT[2], finc, kc); CALC_FINC_SL(&CH->SLOT[3], finc, kc); } /*********************************************** * fonctions setting * ***********************************************/ INLINE void KEY_ON(channel_ *CH, int nsl) { slot_ *SL = &(CH->SLOT[nsl]); // on recupère le bon pointeur de slot if (SL->Ecurp == RELEASE) // la touche est-elle relâchée ? { SL->Fcnt = 0; // Fix Ecco 2 splash sound SL->Ecnt = (DECAY_TO_ATTACK[ENV_TAB[SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK) & SL->ChgEnM; SL->ChgEnM = 0xFFFFFFFF; // SL->Ecnt = DECAY_TO_ATTACK[ENV_TAB[SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK; // SL->Ecnt = 0; SL->Einc = SL->EincA; SL->Ecmp = ENV_DECAY; SL->Ecurp = ATTACK; } } INLINE void KEY_OFF(channel_ *CH, int nsl) { slot_ *SL = &(CH->SLOT[nsl]); // on recupère le bon pointeur de slot if (SL->Ecurp != RELEASE) // la touche est-elle appuyée ? { if (SL->Ecnt < ENV_DECAY) // attack phase ? { SL->Ecnt = (ENV_TAB[SL->Ecnt >> ENV_LBITS] << ENV_LBITS) + ENV_DECAY; } SL->Einc = SL->EincR; SL->Ecmp = ENV_END; SL->Ecurp = RELEASE; } } INLINE void CSM_Key_Control() { KEY_ON(&YM2612.CHANNEL[2], 0); KEY_ON(&YM2612.CHANNEL[2], 1); KEY_ON(&YM2612.CHANNEL[2], 2); KEY_ON(&YM2612.CHANNEL[2], 3); /* found by Nemesis */ KEY_OFF(&YM2612.CHANNEL[2], 0); KEY_OFF(&YM2612.CHANNEL[2], 1); KEY_OFF(&YM2612.CHANNEL[2], 2); KEY_OFF(&YM2612.CHANNEL[2], 3); } int SLOT_SET(int Adr, unsigned char data) { channel_ *CH; slot_ *SL; int nch, nsl; if ((nch = Adr & 3) == 3) return 1; nsl = (Adr >> 2) & 3; if (Adr & 0x100) nch += 3; CH = &(YM2612.CHANNEL[nch]); SL = &(CH->SLOT[nsl]); switch(Adr & 0xF0) { case 0x30: if ((SL->MUL = (data & 0x0F))) SL->MUL <<= 1; else SL->MUL = 1; SL->DT = (int *)DT_TAB[(data >> 4) & 7]; CH->SLOT[0].Finc = -1; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] DTMUL = %.2X\n", nch, nsl, data & 0x7F); #endif break; case 0x40: SL->TL = data & 0x7F; // SOR2 do a lot of TL adjustement and this fix R.Shinobi jump sound... YM2612_Special_Update(); #if ((ENV_HBITS - 7) < 0) SL->TLL = SL->TL >> (7 - ENV_HBITS); #else SL->TLL = SL->TL << (ENV_HBITS - 7); #endif #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] TL = %.2X\n", nch, nsl, SL->TL); #endif break; case 0x50: SL->KSR_S = 3 - (data >> 6); CH->SLOT[0].Finc = -1; if (data &= 0x1F) SL->AR = (int *)&AR_TAB[data << 1]; else SL->AR = (int *)&NULL_RATE[0]; SL->EincA = SL->AR[SL->KSR]; if (SL->Ecurp == ATTACK) SL->Einc = SL->EincA; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] AR = %.2X EincA = %.6X\n", nch, nsl, data, SL->EincA); #endif break; case 0x60: if ((SL->AMSon = (data & 0x80))) SL->AMS = CH->AMS; else SL->AMS = 31; if (data &= 0x1F) SL->DR = (int *)&DR_TAB[data << 1]; else SL->DR = (int *)&NULL_RATE[0]; SL->EincD = SL->DR[SL->KSR]; if (SL->Ecurp == DECAY) SL->Einc = SL->EincD; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] AMS = %d DR = %.2X EincD = %.6X\n", nch, nsl, SL->AMSon, data, SL->EincD); #endif break; case 0x70: if (data &= 0x1F) SL->SR = (int *)&DR_TAB[data << 1]; else SL->SR = (int *)&NULL_RATE[0]; SL->EincS = SL->SR[SL->KSR]; if ((SL->Ecurp == SUBSTAIN) && (SL->Ecnt < ENV_END)) SL->Einc = SL->EincS; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] SR = %.2X EincS = %.6X\n", nch, nsl, data, SL->EincS); #endif break; case 0x80: SL->SLL = SL_TAB[data >> 4]; SL->RR = (int *)&DR_TAB[((data & 0xF) << 2) + 2]; SL->EincR = SL->RR[SL->KSR]; if ((SL->Ecurp == RELEASE) && (SL->Ecnt < ENV_END)) SL->Einc = SL->EincR; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] SL = %.8X\n", nch, nsl, SL->SLL); fprintf(debug_file, "CHANNEL[%d], SLOT[%d] RR = %.2X EincR = %.2X\n", nch, nsl, ((data & 0xF) << 1) | 2, SL->EincR); #endif break; case 0x90: /* // SSG-EG envelope shapes : // // E At Al H // // 1 0 0 0 \\\\ // // 1 0 0 1 \___ // // 1 0 1 0 \/\/ // ___ // 1 0 1 1 \ // // 1 1 0 0 //// // ___ // 1 1 0 1 / // // 1 1 1 0 /\/\ // // 1 1 1 1 /___ // // E = SSG-EG enable // At = Start negate // Al = Altern // H = Hold */ if (data & 0x08) SL->SEG = data & 0x0F; else SL->SEG = 0; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d], SLOT[%d] SSG-EG = %.2X\n", nch, nsl, data); #endif break; } return 0; } int CHANNEL_SET(int Adr, unsigned char data) { channel_ *CH; int num; if ((num = Adr & 3) == 3) return 1; switch(Adr & 0xFC) { case 0xA0: if (Adr & 0x100) num += 3; CH = &(YM2612.CHANNEL[num]); YM2612_Special_Update(); CH->FNUM[0] = (CH->FNUM[0] & 0x700) + data; CH->KC[0] = (CH->FOCT[0] << 2) | FKEY_TAB[CH->FNUM[0] >> 7]; CH->SLOT[0].Finc = -1; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d] part1 FNUM = %d KC = %d\n", num, CH->FNUM[0], CH->KC[0]); #endif break; case 0xA4: if (Adr & 0x100) num += 3; CH = &(YM2612.CHANNEL[num]); YM2612_Special_Update(); CH->FNUM[0] = (CH->FNUM[0] & 0x0FF) + ((int) (data & 0x07) << 8); CH->FOCT[0] = (data & 0x38) >> 3; CH->KC[0] = (CH->FOCT[0] << 2) | FKEY_TAB[CH->FNUM[0] >> 7]; CH->SLOT[0].Finc = -1; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d] part2 FNUM = %d FOCT = %d KC = %d\n", num, CH->FNUM[0], CH->FOCT[0], CH->KC[0]); #endif break; case 0xA8: if (Adr < 0x100) { num++; YM2612_Special_Update(); YM2612.CHANNEL[2].FNUM[num] = (YM2612.CHANNEL[2].FNUM[num] & 0x700) + data; YM2612.CHANNEL[2].KC[num] = (YM2612.CHANNEL[2].FOCT[num] << 2) | FKEY_TAB[YM2612.CHANNEL[2].FNUM[num] >> 7]; YM2612.CHANNEL[2].SLOT[0].Finc = -1; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[2] part1 FNUM[%d] = %d KC[%d] = %d\n", num, YM2612.CHANNEL[2].FNUM[num], num, YM2612.CHANNEL[2].KC[num]); #endif } break; case 0xAC: if (Adr < 0x100) { num++; YM2612_Special_Update(); YM2612.CHANNEL[2].FNUM[num] = (YM2612.CHANNEL[2].FNUM[num] & 0x0FF) + ((int) (data & 0x07) << 8); YM2612.CHANNEL[2].FOCT[num] = (data & 0x38) >> 3; YM2612.CHANNEL[2].KC[num] = (YM2612.CHANNEL[2].FOCT[num] << 2) | FKEY_TAB[YM2612.CHANNEL[2].FNUM[num] >> 7]; YM2612.CHANNEL[2].SLOT[0].Finc = -1; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[2] part2 FNUM[%d] = %d FOCT[%d] = %d KC[%d] = %d\n", num, YM2612.CHANNEL[2].FNUM[num], num, YM2612.CHANNEL[2].FOCT[num], num, YM2612.CHANNEL[2].KC[num]); #endif } break; case 0xB0: if (Adr & 0x100) num += 3; CH = &(YM2612.CHANNEL[num]); if (CH->ALGO != (data & 7)) { // Fix VectorMan 2 heli sound (level 1) YM2612_Special_Update(); CH->ALGO = data & 7; CH->SLOT[0].ChgEnM = 0; CH->SLOT[1].ChgEnM = 0; CH->SLOT[2].ChgEnM = 0; CH->SLOT[3].ChgEnM = 0; } CH->FB = 9 - ((data >> 3) & 7); // Real thing ? // if (CH->FB = ((data >> 3) & 7)) CH->FB = 9 - CH->FB; // Thunder force 4 (music stage 8), Gynoug, Aladdin bug sound... // else CH->FB = 31; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "CHANNEL[%d] ALGO = %d FB = %d\n", num, CH->ALGO, CH->FB); #endif break; case 0xB4: if (Adr & 0x100) num += 3; CH = &(YM2612.CHANNEL[num]); YM2612_Special_Update(); if (data & 0x80) CH->LEFT = 0xFFFFFFFF; else CH->LEFT = 0; if (data & 0x40) CH->RIGHT = 0xFFFFFFFF; else CH->RIGHT = 0; CH->AMS = LFO_AMS_TAB[(data >> 4) & 3]; CH->FMS = LFO_FMS_TAB[data & 7]; if (CH->SLOT[0].AMSon) CH->SLOT[0].AMS = CH->AMS; else CH->SLOT[0].AMS = 31; if (CH->SLOT[1].AMSon) CH->SLOT[1].AMS = CH->AMS; else CH->SLOT[1].AMS = 31; if (CH->SLOT[2].AMSon) CH->SLOT[2].AMS = CH->AMS; else CH->SLOT[2].AMS = 31; if (CH->SLOT[3].AMSon) CH->SLOT[3].AMS = CH->AMS; else CH->SLOT[3].AMS = 31; #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "CHANNEL[%d] AMS = %d FMS = %d\n", num, CH->AMS, CH->FMS); #endif break; } return 0; } int YM_SET(int Adr, unsigned char data) { channel_ *CH; int nch; switch(Adr) { case 0x22: if (data & 8) { // Cool Spot music 1, LFO modified severals time which // distord the sound, have to check that on a real genesis... YM2612.LFOinc = LFO_INC_TAB[data & 7]; #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "\nLFO Enable, LFOinc = %.8X %d\n", YM2612.LFOinc, data & 7); #endif } else { YM2612.LFOinc = YM2612.LFOcnt = 0; #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "\nLFO Disable\n"); #endif } break; case 0x24: YM2612.TimerA = (YM2612.TimerA & 0x003) | (((int) data) << 2); YM2612.TimerAL = (1024 - YM2612.TimerA) << 12; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "Timer A Set = %.8X\n", YM2612.TimerAL); #endif break; case 0x25: YM2612.TimerA = (YM2612.TimerA & 0x3fc) | (data & 3); YM2612.TimerAL = (1024 - YM2612.TimerA) << 12; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "Timer A Set = %.8X\n", YM2612.TimerAL); #endif break; case 0x26: YM2612.TimerB = data; YM2612.TimerBL = (256 - YM2612.TimerB) << (4 + 12); #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "Timer B Set = %.8X\n", YM2612.TimerBL); #endif break; case 0x27: // Paramètre divers // b7 = CSM MODE // b6 = 3 slot mode // b5 = reset b // b4 = reset a // b3 = timer enable b // b2 = timer enable a // b1 = load b // b0 = load a if ((data ^ YM2612.Mode) & 0xC0) { // We changed the channel 2 mode, so recalculate phase step // This fix the punch sound in Street of Rage 2 YM2612_Special_Update(); YM2612.CHANNEL[2].SLOT[0].Finc = -1; // recalculate phase step } if ((data & 2) && !(YM2612.Mode & 2)) YM2612.TimerBcnt = YM2612.TimerBL; if ((data & 1) && !(YM2612.Mode & 1)) YM2612.TimerAcnt = YM2612.TimerAL; YM2612.Status &= (~data >> 4)/* & (data >> 2)*/; // Reset Status YM2612.Mode = data; #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "Mode reg = %.2X\n", data); #endif break; case 0x28: if ((nch = data & 3) == 3) return 1; if (data & 4) nch += 3; CH = &(YM2612.CHANNEL[nch]); YM2612_Special_Update(); if (data & 0x10) KEY_ON(CH, S0); // On appuie sur la touche pour le slot 1 else KEY_OFF(CH, S0); // On relâche la touche pour le slot 1 if (data & 0x20) KEY_ON(CH, S1); // On appuie sur la touche pour le slot 3 else KEY_OFF(CH, S1); // On relâche la touche pour le slot 3 if (data & 0x40) KEY_ON(CH, S2); // On appuie sur la touche pour le slot 2 else KEY_OFF(CH, S2); // On relâche la touche pour le slot 2 if (data & 0x80) KEY_ON(CH, S3); // On appuie sur la touche pour le slot 4 else KEY_OFF(CH, S3); // On relâche la touche pour le slot 4 #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "CHANNEL[%d] KEY %.1X\n", nch, ((data & 0xf0) >> 4)); #endif break; case 0x2A: YM2612.DACdata = ((int) data - 0x80) << 7; // donnée du DAC break; case 0x2B: if (YM2612.DAC ^ (data & 0x80)) YM2612_Special_Update(); YM2612.DAC = data & 0x80; // activation/désactivation du DAC break; } return 0; } /*********************************************** * fonctions de génération * ***********************************************/ void Env_NULL_Next(slot_ *SL) { } void Env_Attack_Next(slot_ *SL) { // Verified with Gynoug even in HQ (explode SFX) SL->Ecnt = ENV_DECAY; SL->Einc = SL->EincD; SL->Ecmp = SL->SLL; SL->Ecurp = DECAY; } void Env_Decay_Next(slot_ *SL) { // Verified with Gynoug even in HQ (explode SFX) SL->Ecnt = SL->SLL; SL->Einc = SL->EincS; SL->Ecmp = ENV_END; SL->Ecurp = SUBSTAIN; } void Env_Substain_Next(slot_ *SL) { if (SL->SEG & 8) // SSG envelope type { if (SL->SEG & 1) { SL->Ecnt = ENV_END; SL->Einc = 0; SL->Ecmp = ENV_END + 1; } else { // re KEY ON // SL->Fcnt = 0; // SL->ChgEnM = 0xFFFFFFFF; SL->Ecnt = 0; SL->Einc = SL->EincA; SL->Ecmp = ENV_DECAY; SL->Ecurp = ATTACK; } SL->SEG ^= (SL->SEG & 2) << 1; } else { SL->Ecnt = ENV_END; SL->Einc = 0; SL->Ecmp = ENV_END + 1; } } void Env_Release_Next(slot_ *SL) { SL->Ecnt = ENV_END; SL->Einc = 0; SL->Ecmp = ENV_END + 1; } #define GET_CURRENT_PHASE \ in0 = CH->SLOT[S0].Fcnt; \ in1 = CH->SLOT[S1].Fcnt; \ in2 = CH->SLOT[S2].Fcnt; \ in3 = CH->SLOT[S3].Fcnt; #define UPDATE_PHASE \ CH->SLOT[S0].Fcnt += CH->SLOT[S0].Finc; \ CH->SLOT[S1].Fcnt += CH->SLOT[S1].Finc; \ CH->SLOT[S2].Fcnt += CH->SLOT[S2].Finc; \ CH->SLOT[S3].Fcnt += CH->SLOT[S3].Finc; #define UPDATE_PHASE_LFO \ if ((freq_LFO = (CH->FMS * LFO_FREQ_UP[i]) >> (LFO_HBITS - 1))) \ { \ CH->SLOT[S0].Fcnt += CH->SLOT[S0].Finc + ((CH->SLOT[S0].Finc * freq_LFO) >> LFO_FMS_LBITS); \ CH->SLOT[S1].Fcnt += CH->SLOT[S1].Finc + ((CH->SLOT[S1].Finc * freq_LFO) >> LFO_FMS_LBITS); \ CH->SLOT[S2].Fcnt += CH->SLOT[S2].Finc + ((CH->SLOT[S2].Finc * freq_LFO) >> LFO_FMS_LBITS); \ CH->SLOT[S3].Fcnt += CH->SLOT[S3].Finc + ((CH->SLOT[S3].Finc * freq_LFO) >> LFO_FMS_LBITS); \ } \ else \ { \ CH->SLOT[S0].Fcnt += CH->SLOT[S0].Finc; \ CH->SLOT[S1].Fcnt += CH->SLOT[S1].Finc; \ CH->SLOT[S2].Fcnt += CH->SLOT[S2].Finc; \ CH->SLOT[S3].Fcnt += CH->SLOT[S3].Finc; \ } #define GET_CURRENT_ENV \ if (CH->SLOT[S0].SEG & 4) \ { \ if ((en0 = ENV_TAB[(CH->SLOT[S0].Ecnt >> ENV_LBITS)] + CH->SLOT[S0].TLL) > ENV_MASK) en0 = 0; \ else en0 ^= ENV_MASK; \ } \ else en0 = ENV_TAB[(CH->SLOT[S0].Ecnt >> ENV_LBITS)] + CH->SLOT[S0].TLL; \ if (CH->SLOT[S1].SEG & 4) \ { \ if ((en1 = ENV_TAB[(CH->SLOT[S1].Ecnt >> ENV_LBITS)] + CH->SLOT[S1].TLL) > ENV_MASK) en1 = 0; \ else en1 ^= ENV_MASK; \ } \ else en1 = ENV_TAB[(CH->SLOT[S1].Ecnt >> ENV_LBITS)] + CH->SLOT[S1].TLL; \ if (CH->SLOT[S2].SEG & 4) \ { \ if ((en2 = ENV_TAB[(CH->SLOT[S2].Ecnt >> ENV_LBITS)] + CH->SLOT[S2].TLL) > ENV_MASK) en2 = 0; \ else en2 ^= ENV_MASK; \ } \ else en2 = ENV_TAB[(CH->SLOT[S2].Ecnt >> ENV_LBITS)] + CH->SLOT[S2].TLL; \ if (CH->SLOT[S3].SEG & 4) \ { \ if ((en3 = ENV_TAB[(CH->SLOT[S3].Ecnt >> ENV_LBITS)] + CH->SLOT[S3].TLL) > ENV_MASK) en3 = 0; \ else en3 ^= ENV_MASK; \ } \ else en3 = ENV_TAB[(CH->SLOT[S3].Ecnt >> ENV_LBITS)] + CH->SLOT[S3].TLL; #define GET_CURRENT_ENV_LFO \ env_LFO = LFO_ENV_UP[i]; \ \ if (CH->SLOT[S0].SEG & 4) \ { \ if ((en0 = ENV_TAB[(CH->SLOT[S0].Ecnt >> ENV_LBITS)] + CH->SLOT[S0].TLL) > ENV_MASK) en0 = 0; \ else en0 = (en0 ^ ENV_MASK) + (env_LFO >> CH->SLOT[S0].AMS); \ } \ else en0 = ENV_TAB[(CH->SLOT[S0].Ecnt >> ENV_LBITS)] + CH->SLOT[S0].TLL + (env_LFO >> CH->SLOT[S0].AMS); \ if (CH->SLOT[S1].SEG & 4) \ { \ if ((en1 = ENV_TAB[(CH->SLOT[S1].Ecnt >> ENV_LBITS)] + CH->SLOT[S1].TLL) > ENV_MASK) en1 = 0; \ else en1 = (en1 ^ ENV_MASK) + (env_LFO >> CH->SLOT[S1].AMS); \ } \ else en1 = ENV_TAB[(CH->SLOT[S1].Ecnt >> ENV_LBITS)] + CH->SLOT[S1].TLL + (env_LFO >> CH->SLOT[S1].AMS); \ if (CH->SLOT[S2].SEG & 4) \ { \ if ((en2 = ENV_TAB[(CH->SLOT[S2].Ecnt >> ENV_LBITS)] + CH->SLOT[S2].TLL) > ENV_MASK) en2 = 0; \ else en2 = (en2 ^ ENV_MASK) + (env_LFO >> CH->SLOT[S2].AMS); \ } \ else en2 = ENV_TAB[(CH->SLOT[S2].Ecnt >> ENV_LBITS)] + CH->SLOT[S2].TLL + (env_LFO >> CH->SLOT[S2].AMS); \ if (CH->SLOT[S3].SEG & 4) \ { \ if ((en3 = ENV_TAB[(CH->SLOT[S3].Ecnt >> ENV_LBITS)] + CH->SLOT[S3].TLL) > ENV_MASK) en3 = 0; \ else en3 = (en3 ^ ENV_MASK) + (env_LFO >> CH->SLOT[S3].AMS); \ } \ else en3 = ENV_TAB[(CH->SLOT[S3].Ecnt >> ENV_LBITS)] + CH->SLOT[S3].TLL + (env_LFO >> CH->SLOT[S3].AMS); #define UPDATE_ENV \ if ((CH->SLOT[S0].Ecnt += CH->SLOT[S0].Einc) >= CH->SLOT[S0].Ecmp) \ ENV_NEXT_EVENT[CH->SLOT[S0].Ecurp](&(CH->SLOT[S0])); \ if ((CH->SLOT[S1].Ecnt += CH->SLOT[S1].Einc) >= CH->SLOT[S1].Ecmp) \ ENV_NEXT_EVENT[CH->SLOT[S1].Ecurp](&(CH->SLOT[S1])); \ if ((CH->SLOT[S2].Ecnt += CH->SLOT[S2].Einc) >= CH->SLOT[S2].Ecmp) \ ENV_NEXT_EVENT[CH->SLOT[S2].Ecurp](&(CH->SLOT[S2])); \ if ((CH->SLOT[S3].Ecnt += CH->SLOT[S3].Einc) >= CH->SLOT[S3].Ecmp) \ ENV_NEXT_EVENT[CH->SLOT[S3].Ecurp](&(CH->SLOT[S3])); #define DO_LIMIT \ if (CH->OUTd > LIMIT_CH_OUT) CH->OUTd = LIMIT_CH_OUT; \ else if (CH->OUTd < -LIMIT_CH_OUT) CH->OUTd = -LIMIT_CH_OUT; #define DO_FEEDBACK0 \ in0 += CH->S0_OUT[0] >> CH->FB; \ CH->S0_OUT[0] = SIN_TAB[(in0 >> SIN_LBITS) & SIN_MASK][en0]; #define DO_FEEDBACK \ in0 += (CH->S0_OUT[0] + CH->S0_OUT[1]) >> CH->FB; \ CH->S0_OUT[1] = CH->S0_OUT[0]; \ CH->S0_OUT[0] = SIN_TAB[(in0 >> SIN_LBITS) & SIN_MASK][en0]; #define DO_FEEDBACK2 \ in0 += (CH->S0_OUT[0] + (CH->S0_OUT[0] >> 2) + CH->S0_OUT[1]) >> CH->FB; \ CH->S0_OUT[1] = CH->S0_OUT[0] >> 2; \ CH->S0_OUT[0] = SIN_TAB[(in0 >> SIN_LBITS) & SIN_MASK][en0]; #define DO_FEEDBACK3 \ in0 += (CH->S0_OUT[0] + CH->S0_OUT[1] + CH->S0_OUT[2] + CH->S0_OUT[3]) >> CH->FB; \ CH->S0_OUT[3] = CH->S0_OUT[2] >> 1; \ CH->S0_OUT[2] = CH->S0_OUT[1] >> 1; \ CH->S0_OUT[1] = CH->S0_OUT[0] >> 1; \ CH->S0_OUT[0] = SIN_TAB[(in0 >> SIN_LBITS) & SIN_MASK][en0]; #define DO_ALGO_0 \ DO_FEEDBACK \ in1 += CH->S0_OUT[1]; \ in2 += SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1]; \ in3 += SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]; \ CH->OUTd = (SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3]) >> OUT_SHIFT; #define DO_ALGO_1 \ DO_FEEDBACK \ in2 += CH->S0_OUT[1] + SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1]; \ in3 += SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]; \ CH->OUTd = (SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3]) >> OUT_SHIFT; #define DO_ALGO_2 \ DO_FEEDBACK \ in2 += SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1]; \ in3 += CH->S0_OUT[1] + SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]; \ CH->OUTd = (SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3]) >> OUT_SHIFT; #define DO_ALGO_3 \ DO_FEEDBACK \ in1 += CH->S0_OUT[1]; \ in3 += SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1] + SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]; \ CH->OUTd = (SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3]) >> OUT_SHIFT; #define DO_ALGO_4 \ DO_FEEDBACK \ in1 += CH->S0_OUT[1]; \ in3 += SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]; \ CH->OUTd = ((int) SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3] + (int) SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1]) >> OUT_SHIFT; \ DO_LIMIT #define DO_ALGO_5 \ DO_FEEDBACK \ in1 += CH->S0_OUT[1]; \ in2 += CH->S0_OUT[1]; \ in3 += CH->S0_OUT[1]; \ CH->OUTd = ((int) SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3] + (int) SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1] + (int) SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]) >> OUT_SHIFT; \ DO_LIMIT #define DO_ALGO_6 \ DO_FEEDBACK \ in1 += CH->S0_OUT[1]; \ CH->OUTd = ((int) SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3] + (int) SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1] + (int) SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2]) >> OUT_SHIFT; \ DO_LIMIT #define DO_ALGO_7 \ DO_FEEDBACK \ CH->OUTd = ((int) SIN_TAB[(in3 >> SIN_LBITS) & SIN_MASK][en3] + (int) SIN_TAB[(in1 >> SIN_LBITS) & SIN_MASK][en1] + (int) SIN_TAB[(in2 >> SIN_LBITS) & SIN_MASK][en2] + CH->S0_OUT[1]) >> OUT_SHIFT; \ DO_LIMIT #define DO_OUTPUT \ buf[0][i] += CH->OUTd & CH->LEFT; \ buf[1][i] += CH->OUTd & CH->RIGHT; #define DO_OUTPUT_INT0 \ if ((int_cnt += YM2612.Inter_Step) & 0x04000) \ { \ int_cnt &= 0x3FFF; \ buf[0][i] += CH->OUTd & CH->LEFT; \ buf[1][i] += CH->OUTd & CH->RIGHT; \ } \ else i--; #define DO_OUTPUT_INT1 \ CH->Old_OUTd = (CH->OUTd + CH->Old_OUTd) >> 1; \ if ((int_cnt += YM2612.Inter_Step) & 0x04000) \ { \ int_cnt &= 0x3FFF; \ buf[0][i] += CH->Old_OUTd & CH->LEFT; \ buf[1][i] += CH->Old_OUTd & CH->RIGHT; \ } \ else i--; #define DO_OUTPUT_INT2 \ if ((int_cnt += YM2612.Inter_Step) & 0x04000) \ { \ int_cnt &= 0x3FFF; \ CH->Old_OUTd = (CH->OUTd + CH->Old_OUTd) >> 1; \ buf[0][i] += CH->Old_OUTd & CH->LEFT; \ buf[1][i] += CH->Old_OUTd & CH->RIGHT; \ } \ else i--; \ CH->Old_OUTd = CH->OUTd; #define DO_OUTPUT_INT \ if ((int_cnt += YM2612.Inter_Step) & 0x04000) \ { \ int_cnt &= 0x3FFF; \ CH->Old_OUTd = (((int_cnt ^ 0x3FFF) * CH->OUTd) + (int_cnt * CH->Old_OUTd)) >> 14; \ buf[0][i] += CH->Old_OUTd & CH->LEFT; \ buf[1][i] += CH->Old_OUTd & CH->RIGHT; \ } \ else i--; \ CH->Old_OUTd = CH->OUTd; void Update_Chan_Algo0(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 0 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_0 DO_OUTPUT } } void Update_Chan_Algo1(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 1 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_1 DO_OUTPUT } } void Update_Chan_Algo2(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 2 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_2 DO_OUTPUT } } void Update_Chan_Algo3(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 3 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_3 DO_OUTPUT } } void Update_Chan_Algo4(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 4 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_4 DO_OUTPUT } } void Update_Chan_Algo5(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 5 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_5 DO_OUTPUT } } void Update_Chan_Algo6(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 6 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_6 DO_OUTPUT } } void Update_Chan_Algo7(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S0].Ecnt == ENV_END) && (CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 7 len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_7 DO_OUTPUT } } void Update_Chan_Algo0_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 0 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_0 DO_OUTPUT } } void Update_Chan_Algo1_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 1 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_1 DO_OUTPUT } } void Update_Chan_Algo2_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 2 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_2 DO_OUTPUT } } void Update_Chan_Algo3_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 3 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_3 DO_OUTPUT } } void Update_Chan_Algo4_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 4 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_4 DO_OUTPUT } } void Update_Chan_Algo5_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 5 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_5 DO_OUTPUT } } void Update_Chan_Algo6_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 6 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_6 DO_OUTPUT } } void Update_Chan_Algo7_LFO(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S0].Ecnt == ENV_END) && (CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 7 LFO len = %d\n\n", lenght); #endif for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_7 DO_OUTPUT } } /****************************************************** * Interpolated output * *****************************************************/ void Update_Chan_Algo0_Int(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 0 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_0 DO_OUTPUT_INT } } void Update_Chan_Algo1_Int(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 1 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_1 DO_OUTPUT_INT } } void Update_Chan_Algo2_Int(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 2 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_2 DO_OUTPUT_INT } } void Update_Chan_Algo3_Int(channel_ *CH, int **buf, int lenght) { int i; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 3 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_3 DO_OUTPUT_INT } } void Update_Chan_Algo4_Int(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 4 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_4 DO_OUTPUT_INT } } void Update_Chan_Algo5_Int(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 5 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_5 DO_OUTPUT_INT } } void Update_Chan_Algo6_Int(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 6 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_6 DO_OUTPUT_INT } } void Update_Chan_Algo7_Int(channel_ *CH, int **buf, int lenght) { int i; if ((CH->SLOT[S0].Ecnt == ENV_END) && (CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 7 len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE GET_CURRENT_ENV UPDATE_ENV DO_ALGO_7 DO_OUTPUT_INT } } void Update_Chan_Algo0_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 0 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_0 DO_OUTPUT_INT } } void Update_Chan_Algo1_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 1 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_1 DO_OUTPUT_INT } } void Update_Chan_Algo2_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 2 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_2 DO_OUTPUT_INT } } void Update_Chan_Algo3_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if (CH->SLOT[S3].Ecnt == ENV_END) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 3 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_3 DO_OUTPUT_INT } } void Update_Chan_Algo4_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 4 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_4 DO_OUTPUT_INT } } void Update_Chan_Algo5_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 5 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_5 DO_OUTPUT_INT } } void Update_Chan_Algo6_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 6 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_6 DO_OUTPUT_INT } } void Update_Chan_Algo7_LFO_Int(channel_ *CH, int **buf, int lenght) { int i, env_LFO, freq_LFO; if ((CH->SLOT[S0].Ecnt == ENV_END) && (CH->SLOT[S1].Ecnt == ENV_END) && (CH->SLOT[S2].Ecnt == ENV_END) && (CH->SLOT[S3].Ecnt == ENV_END)) return; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nAlgo 7 LFO len = %d\n\n", lenght); #endif int_cnt = YM2612.Inter_Cnt; for(i = 0; i < lenght; i++) { GET_CURRENT_PHASE UPDATE_PHASE_LFO GET_CURRENT_ENV_LFO UPDATE_ENV DO_ALGO_7 DO_OUTPUT_INT } } /*********************************************** * fonctions publiques * ***********************************************/ static long dac_highpass; // Initialisation de l'émulateur YM2612 int YM2612_Init(int Clock, int Rate, int Interpolation) { int i, j; double x; if ((Rate == 0) || (Clock == 0)) return 1; memset(&YM2612, 0, sizeof(YM2612)); #if YM_DEBUG_LEVEL > 0 if (debug_file == NULL) { debug_file = fopen("ym2612.log", "w"); fprintf(debug_file, "YM2612 logging :\n\n"); } #endif YM2612.Clock = Clock; YM2612.Rate = Rate; // 144 = 12 * (prescale * 2) = 12 * 6 * 2 // prescale set to 6 by default YM2612.Frequence = ((double) YM2612.Clock / (double) YM2612.Rate) / 144.0; YM2612.TimerBase = (int) (YM2612.Frequence * 4096.0); if ((Interpolation) && (YM2612.Frequence > 1.0)) { YM2612.Inter_Step = (unsigned int) ((1.0 / YM2612.Frequence) * (double) (0x4000)); YM2612.Inter_Cnt = 0; // We recalculate rate and frequence after interpolation YM2612.Rate = YM2612.Clock / 144; YM2612.Frequence = 1.0; } else { YM2612.Inter_Step = 0x4000; YM2612.Inter_Cnt = 0; } #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "YM2612 frequence = %g rate = %d interp step = %.8X\n\n", YM2612.Frequence, YM2612.Rate, YM2612.Inter_Step); #endif // Tableau TL : // [0 - 4095] = +output [4095 - ...] = +output overflow (fill with 0) // [12288 - 16383] = -output [16384 - ...] = -output overflow (fill with 0) for(i = 0; i < TL_LENGHT; i++) { if (i >= PG_CUT_OFF) // YM2612 cut off sound after 78 dB (14 bits output ?) { TL_TAB[TL_LENGHT + i] = TL_TAB[i] = 0; } else { x = MAX_OUT; // Max output x /= pow(10, (ENV_STEP * i) / 20); // Decibel -> Voltage TL_TAB[i] = (int) x; TL_TAB[TL_LENGHT + i] = -TL_TAB[i]; } #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "TL_TAB[%d] = %.8X TL_TAB[%d] = %.8X\n", i, TL_TAB[i], TL_LENGHT + i, TL_TAB[TL_LENGHT + i]); #endif } #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "\n\n\n\n"); #endif // Tableau SIN : // SIN_TAB[x][y] = sin(x) * y; // x = phase and y = volume SIN_TAB[0] = SIN_TAB[SIN_LENGHT / 2] = &TL_TAB[(int)PG_CUT_OFF]; for(i = 1; i <= SIN_LENGHT / 4; i++) { x = sin(2.0 * PI * (double) (i) / (double) (SIN_LENGHT)); // Sinus x = 20 * log10(1 / x); // convert to dB j = (int) (x / ENV_STEP); // Get TL range if (j > PG_CUT_OFF) j = (int) PG_CUT_OFF; SIN_TAB[i] = SIN_TAB[(SIN_LENGHT / 2) - i] = &TL_TAB[j]; SIN_TAB[(SIN_LENGHT / 2) + i] = SIN_TAB[SIN_LENGHT - i] = &TL_TAB[TL_LENGHT + j]; #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "SIN[%d][0] = %.8X SIN[%d][0] = %.8X SIN[%d][0] = %.8X SIN[%d][0] = %.8X\n", i, SIN_TAB[i][0], (SIN_LENGHT / 2) - i, SIN_TAB[(SIN_LENGHT / 2) - i][0], (SIN_LENGHT / 2) + i, SIN_TAB[(SIN_LENGHT / 2) + i][0], SIN_LENGHT - i, SIN_TAB[SIN_LENGHT - i][0]); #endif } #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "\n\n\n\n"); #endif // Tableau LFO (LFO wav) : for(i = 0; i < LFO_LENGHT; i++) { x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus x += 1.0; x /= 2.0; // positive only x *= 11.8 / ENV_STEP; // ajusted to MAX enveloppe modulation LFO_ENV_TAB[i] = (int) x; x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus x *= (double) ((1 << (LFO_HBITS - 1)) - 1); LFO_FREQ_TAB[i] = (int) x; #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "LFO[%d] = %.8X\n", i, LFO_ENV_TAB[i]); #endif } #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "\n\n\n\n"); #endif // Tableau Enveloppe : // ENV_TAB[0] -> ENV_TAB[ENV_LENGHT - 1] = attack curve // ENV_TAB[ENV_LENGHT] -> ENV_TAB[2 * ENV_LENGHT - 1] = decay curve for(i = 0; i < ENV_LENGHT; i++) { // Attack curve (x^8 - music level 2 Vectorman 2) x = pow(((double) ((ENV_LENGHT - 1) - i) / (double) (ENV_LENGHT)), 8); x *= ENV_LENGHT; ENV_TAB[i] = (int) x; // Decay curve (just linear) x = pow(((double) (i) / (double) (ENV_LENGHT)), 1); x *= ENV_LENGHT; ENV_TAB[ENV_LENGHT + i] = (int) x; #if YM_DEBUG_LEVEL > 2 fprintf(debug_file, "ATTACK[%d] = %d DECAY[%d] = %d\n", i, ENV_TAB[i], i, ENV_TAB[ENV_LENGHT + i]); #endif } ENV_TAB[ENV_END >> ENV_LBITS] = ENV_LENGHT - 1; // for the stopped state // Tableau pour la conversion Attack -> Decay and Decay -> Attack for(i = 0, j = ENV_LENGHT - 1; i < ENV_LENGHT; i++) { while (j && (ENV_TAB[j] < (unsigned) i)) j--; DECAY_TO_ATTACK[i] = j << ENV_LBITS; } // Tableau pour le Substain Level for(i = 0; i < 15; i++) { x = i * 3; // 3 and not 6 (Mickey Mania first music for test) x /= ENV_STEP; j = (int) x; j <<= ENV_LBITS; SL_TAB[i] = j + ENV_DECAY; } j = ENV_LENGHT - 1; // special case : volume off j <<= ENV_LBITS; SL_TAB[15] = j + ENV_DECAY; // Tableau Frequency Step for(i = 0; i < 2048; i++) { x = (double) (i) * YM2612.Frequence; #if ((SIN_LBITS + SIN_HBITS - (21 - 7)) < 0) x /= (double) (1 << ((21 - 7) - SIN_LBITS - SIN_HBITS)); #else x *= (double) (1 << (SIN_LBITS + SIN_HBITS - (21 - 7))); #endif x /= 2.0; // because MUL = value * 2 FINC_TAB[i] = (unsigned int) x; } // Tableaux Attack & Decay Rate for(i = 0; i < 4; i++) { AR_TAB[i] = 0; DR_TAB[i] = 0; } for(i = 0; i < 60; i++) { x = YM2612.Frequence; x *= 1.0 + ((i & 3) * 0.25); // bits 0-1 : x1.00, x1.25, x1.50, x1.75 x *= (double) (1 << ((i >> 2))); // bits 2-5 : shift bits (x2^0 - x2^15) x *= (double) (ENV_LENGHT << ENV_LBITS); // on ajuste pour le tableau ENV_TAB AR_TAB[i + 4] = (unsigned int) (x / AR_RATE); DR_TAB[i + 4] = (unsigned int) (x / DR_RATE); } for(i = 64; i < 96; i++) { AR_TAB[i] = AR_TAB[63]; DR_TAB[i] = DR_TAB[63]; NULL_RATE[i - 64] = 0; } // Tableau Detune for(i = 0; i < 4; i++) { for (j = 0; j < 32; j++) { #if ((SIN_LBITS + SIN_HBITS - 21) < 0) x = (double) DT_DEF_TAB[(i << 5) + j] * YM2612.Frequence / (double) (1 << (21 - SIN_LBITS - SIN_HBITS)); #else x = (double) DT_DEF_TAB[(i << 5) + j] * YM2612.Frequence * (double) (1 << (SIN_LBITS + SIN_HBITS - 21)); #endif DT_TAB[i + 0][j] = (int) x; DT_TAB[i + 4][j] = (int) -x; } } // Tableau LFO j = (YM2612.Rate * YM2612.Inter_Step) / 0x4000; LFO_INC_TAB[0] = (unsigned int) (3.98 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[1] = (unsigned int) (5.56 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[2] = (unsigned int) (6.02 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[3] = (unsigned int) (6.37 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[4] = (unsigned int) (6.88 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[5] = (unsigned int) (9.63 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[6] = (unsigned int) (48.1 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); LFO_INC_TAB[7] = (unsigned int) (72.2 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / j); YM2612_Reset(); return 0; } int YM2612_Reset(void) { int i, j; YM2612.LFOcnt = 0; YM2612.TimerA = 0; YM2612.TimerAL = 0; YM2612.TimerAcnt = 0; YM2612.TimerB = 0; YM2612.TimerBL = 0; YM2612.TimerBcnt = 0; YM2612.DAC = 0; YM2612.DACdata = 0; dac_highpass = 0; YM2612.Status = 0; YM2612.OPNAadr = 0; YM2612.OPNBadr = 0; YM2612.Inter_Cnt = 0; for(i = 0; i < 6; i++) { YM2612.CHANNEL[i].Old_OUTd = 0; YM2612.CHANNEL[i].OUTd = 0; YM2612.CHANNEL[i].LEFT = 0xFFFFFFFF; YM2612.CHANNEL[i].RIGHT = 0xFFFFFFFF; YM2612.CHANNEL[i].ALGO = 0;; YM2612.CHANNEL[i].FB = 31; YM2612.CHANNEL[i].FMS = 0; YM2612.CHANNEL[i].AMS = 0; for(j = 0 ;j < 4 ; j++) { YM2612.CHANNEL[i].S0_OUT[j] = 0; YM2612.CHANNEL[i].FNUM[j] = 0; YM2612.CHANNEL[i].FOCT[j] = 0; YM2612.CHANNEL[i].KC[j] = 0; YM2612.CHANNEL[i].SLOT[j].Fcnt = 0; YM2612.CHANNEL[i].SLOT[j].Finc = 0; YM2612.CHANNEL[i].SLOT[j].Ecnt = ENV_END; // Put it at the end of Decay phase... YM2612.CHANNEL[i].SLOT[j].Einc = 0; YM2612.CHANNEL[i].SLOT[j].Ecmp = 0; YM2612.CHANNEL[i].SLOT[j].Ecurp = RELEASE; YM2612.CHANNEL[i].SLOT[j].ChgEnM = 0; } } for(i = 0; i < 0x100; i++) { YM2612.REG[0][i] = -1; YM2612.REG[1][i] = -1; } for(i = 0xB6; i >= 0xB4; i--) { YM2612_Write(0, (unsigned char) i); YM2612_Write(2, (unsigned char) i); YM2612_Write(1, 0xC0); YM2612_Write(3, 0xC0); } for(i = 0xB2; i >= 0x22; i--) { YM2612_Write(0, (unsigned char) i); YM2612_Write(2, (unsigned char) i); YM2612_Write(1, 0); YM2612_Write(3, 0); } YM2612_Write(0, 0x2A); YM2612_Write(1, 0x80); #if YM_DEBUG_LEVEL > 0 fprintf(debug_file, "\n\nFinishing reseting YM2612 ...\n\n"); #endif return 0; } int YM2612_Read(void) { /* static int cnt = 0; if (cnt++ == 50) { cnt = 0; return YM2612.Status; } else return YM2612.Status | 0x80; */ return YM2612.Status; } int YM2612_Write(unsigned char adr, unsigned char data) { int d; //data &= 0xFF; adr &= 0x03; switch(adr) { case 0: YM2612.OPNAadr = data; break; case 1: // Trivial optimisation if (YM2612.OPNAadr == 0x2A) { YM2612.DACdata = ((int) data - 0x80) << 7; YM2612.REG[0][0x2A] = data; return 0; } d = YM2612.OPNAadr & 0xF0; if (d >= 0x30) { if (YM2612.REG[0][YM2612.OPNAadr] == data) return 2; YM2612.REG[0][YM2612.OPNAadr] = data; if (d < 0xA0) // SLOT { SLOT_SET(YM2612.OPNAadr, data); } else // CHANNEL { CHANNEL_SET(YM2612.OPNAadr, data); } } else // YM2612 { YM2612.REG[0][YM2612.OPNAadr] = data; YM_SET(YM2612.OPNAadr, data); } break; case 2: YM2612.OPNBadr = data; break; case 3: d = YM2612.OPNBadr & 0xF0; if (d >= 0x30) { if (YM2612.REG[1][YM2612.OPNBadr] == data) return 2; YM2612.REG[1][YM2612.OPNBadr] = data; if (d < 0xA0) // SLOT { SLOT_SET(YM2612.OPNBadr + 0x100, data); } else // CHANNEL { CHANNEL_SET(YM2612.OPNBadr + 0x100, data); } } else return 1; break; } return 0; } void YM2612_Update(int **buf, int length) { int i, j, algo_type; #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nStarting generating sound...\n\n"); #endif // Mise à jour des pas des compteurs-fréquences s'ils ont été modifiés if (YM2612.CHANNEL[0].SLOT[0].Finc == -1) CALC_FINC_CH(&YM2612.CHANNEL[0]); if (YM2612.CHANNEL[1].SLOT[0].Finc == -1) CALC_FINC_CH(&YM2612.CHANNEL[1]); if (YM2612.CHANNEL[2].SLOT[0].Finc == -1) { /*---------------------- |Mode| Behaviour | |----|---------------| | 00 | Normal | | 01 | Special | | 10 | Special + CSM | | 11 | Special | ---------------------- */ if (YM2612.Mode & 0xC0) { CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[S0]), FINC_TAB[YM2612.CHANNEL[2].FNUM[2]] >> (7 - YM2612.CHANNEL[2].FOCT[2]), YM2612.CHANNEL[2].KC[2]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[S1]), FINC_TAB[YM2612.CHANNEL[2].FNUM[3]] >> (7 - YM2612.CHANNEL[2].FOCT[3]), YM2612.CHANNEL[2].KC[3]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[S2]), FINC_TAB[YM2612.CHANNEL[2].FNUM[1]] >> (7 - YM2612.CHANNEL[2].FOCT[1]), YM2612.CHANNEL[2].KC[1]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[S3]), FINC_TAB[YM2612.CHANNEL[2].FNUM[0]] >> (7 - YM2612.CHANNEL[2].FOCT[0]), YM2612.CHANNEL[2].KC[0]); } else { CALC_FINC_CH(&YM2612.CHANNEL[2]); } } if (YM2612.CHANNEL[3].SLOT[0].Finc == -1) CALC_FINC_CH(&YM2612.CHANNEL[3]); if (YM2612.CHANNEL[4].SLOT[0].Finc == -1) CALC_FINC_CH(&YM2612.CHANNEL[4]); if (YM2612.CHANNEL[5].SLOT[0].Finc == -1) CALC_FINC_CH(&YM2612.CHANNEL[5]); /* CALC_FINC_CH(&YM2612.CHANNEL[0]); CALC_FINC_CH(&YM2612.CHANNEL[1]); if (YM2612.Mode & 0x40) { CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[0]), FINC_TAB[YM2612.CHANNEL[2].FNUM[2]] >> (7 - YM2612.CHANNEL[2].FOCT[2]), YM2612.CHANNEL[2].KC[2]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[1]), FINC_TAB[YM2612.CHANNEL[2].FNUM[3]] >> (7 - YM2612.CHANNEL[2].FOCT[3]), YM2612.CHANNEL[2].KC[3]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[2]), FINC_TAB[YM2612.CHANNEL[2].FNUM[1]] >> (7 - YM2612.CHANNEL[2].FOCT[1]), YM2612.CHANNEL[2].KC[1]); CALC_FINC_SL(&(YM2612.CHANNEL[2].SLOT[3]), FINC_TAB[YM2612.CHANNEL[2].FNUM[0]] >> (7 - YM2612.CHANNEL[2].FOCT[0]), YM2612.CHANNEL[2].KC[0]); } else { CALC_FINC_CH(&YM2612.CHANNEL[2]); } CALC_FINC_CH(&YM2612.CHANNEL[3]); CALC_FINC_CH(&YM2612.CHANNEL[4]); CALC_FINC_CH(&YM2612.CHANNEL[5]); */ if (YM2612.Inter_Step & 0x04000) algo_type = 0; else algo_type = 16; if (YM2612.LFOinc) { // Precalcul LFO wav for(i = 0; i < length; i++) { j = ((YM2612.LFOcnt += YM2612.LFOinc) >> LFO_LBITS) & LFO_MASK; LFO_ENV_UP[i] = LFO_ENV_TAB[j]; LFO_FREQ_UP[i] = LFO_FREQ_TAB[j]; #if YM_DEBUG_LEVEL > 3 fprintf(debug_file, "LFO_ENV_UP[%d] = %d LFO_FREQ_UP[%d] = %d\n", i, LFO_ENV_UP[i], i, LFO_FREQ_UP[i]); #endif } algo_type |= 8; } UPDATE_CHAN[YM2612.CHANNEL[0].ALGO + algo_type](&(YM2612.CHANNEL[0]), buf, length); UPDATE_CHAN[YM2612.CHANNEL[1].ALGO + algo_type](&(YM2612.CHANNEL[1]), buf, length); UPDATE_CHAN[YM2612.CHANNEL[2].ALGO + algo_type](&(YM2612.CHANNEL[2]), buf, length); UPDATE_CHAN[YM2612.CHANNEL[3].ALGO + algo_type](&(YM2612.CHANNEL[3]), buf, length); UPDATE_CHAN[YM2612.CHANNEL[4].ALGO + algo_type](&(YM2612.CHANNEL[4]), buf, length); if (!(YM2612.DAC)) UPDATE_CHAN[YM2612.CHANNEL[5].ALGO + algo_type](&(YM2612.CHANNEL[5]), buf, length); else { for(i = 0; i < length; i++) { long dac = (YM2612.DACdata << 15) - dac_highpass; dac_highpass += dac >> 9; dac >>= 15; buf[0][i] += dac & YM2612.CHANNEL[5].LEFT; buf[1][i] += dac & YM2612.CHANNEL[5].RIGHT; } } YM2612.Inter_Cnt = int_cnt; /* update timers here */ YM2612_Timers_Update(length); #if YM_DEBUG_LEVEL > 1 fprintf(debug_file, "\n\nFinishing generating sound...\n\n"); #endif } void YM2612_Timers_Update(int length) { int i; i = YM2612.TimerBase * length; if (YM2612.Mode & 1) // Timer A ON ? { if ((YM2612.TimerAcnt -= i) <= 0) { YM2612.Status |= (YM2612.Mode & 0x04) >> 2; YM2612.TimerAcnt += YM2612.TimerAL; /*---------------------- |Mode| Behaviour | |----|---------------| | 00 | Normal | | 01 | Special | | 10 | Special + CSM | | 11 | Special | ---------------------- */ if ((YM2612.Mode & 0xC0) == 0x80) CSM_Key_Control(); // found by Nemesis } } if (YM2612.Mode & 2) // Timer B ON ? { if ((YM2612.TimerBcnt -= i) <= 0) { YM2612.Status |= (YM2612.Mode & 0x08) >> 2; YM2612.TimerBcnt += YM2612.TimerBL; } } } void YM2612_Special_Update () {}