/*************************************************************************************** * Genesis Plus * XE-A1P analog controller support * * Copyright Eke-Eke (2007-2011) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ****************************************************************************************/ #include "shared.h" static struct { uint8 State; uint8 Counter; uint8 Latency; } xe_a1p; void xe_a1p_reset(void) { input.analog[0][0] = 128; input.analog[0][1] = 128; input.analog[1][0] = 128; xe_a1p.State = 0x40; xe_a1p.Counter = 0; xe_a1p.Latency = 0; } unsigned char xe_a1p_read() { unsigned int temp = 0x40; /* Left Stick X & Y analog values (bidirectional) */ int x = input.analog[0][0]; int y = input.analog[0][1]; /* Right Stick X or Y value (unidirectional) */ int z = input.analog[1][0]; /* Buttons status (active low) */ uint16 pad = ~input.pad[0]; /* Current 4-bit data cycle */ /* There are eight internal data cycle for each 5 acquisition sequence */ /* First 4 return the same 4-bit data, next 4 return next 4-bit data */ switch (xe_a1p.Counter >> 2) { case 0: temp |= ((pad >> 8) & 0x0F); /* E1 E2 Start Select */ break; case 1: temp |= ((pad >> 4) & 0x0F); /* A B C D */ break; case 2: temp |= ((x >> 4) & 0x0F); break; case 3: temp |= ((y >> 4) & 0x0F); break; case 4: break; case 5: temp |= ((z >> 4) & 0x0F); break; case 6: temp |= (x & 0x0F); break; case 7: temp |= (y & 0x0F); break; case 8: break; case 9: temp |= (z & 0x0F); break; } /* Get current internal cycle (0-7) */ unsigned int cycle = xe_a1p.Counter & 7; /* TL indicates which part of data is returned (0=1st part, 1=2nd part) */ temp |= ((cycle & 4) << 2); /* TR indicates if data is ready (0=ready, 1=not ready) */ /* Fastest One input routine actually expects this bit to switch between 0 & 1 */ /* so we make the first read of a data cycle return 1 then 0 for remaining reads */ temp |= (!(cycle & 3) << 5); /* Automatically increment data cycle on each read (within current acquisition sequence) */ cycle = (cycle + 1) & 7; /* Update internal cycle counter */ xe_a1p.Counter = (xe_a1p.Counter & ~7) | cycle; /* Update internal latency on each read */ xe_a1p.Latency++; return temp; } void xe_a1p_write(unsigned char data, unsigned char mask) { /* update bits set as output only */ data = (xe_a1p.State & ~mask) | (data & mask); /* look for TH 1->0 transitions */ if (!(data & 0x40) && (xe_a1p.State & 0x40)) { /* reset acquisition cycle */ xe_a1p.Latency = xe_a1p.Counter = 0; } else { /* some games immediately write new data to TH */ /* so we make sure first sequence has actually been handled */ if (xe_a1p.Latency > 2) { /* next acquisition sequence */ xe_a1p.Counter = (xe_a1p.Counter & ~7) + 8; /* 5 sequence max with 8 cycles each */ if (xe_a1p.Counter > 32) { xe_a1p.Counter = 32; } } } /* update internal state */ xe_a1p.State = data; }