/* ======================================================================== */ /* MAIN 68K CORE */ /* ======================================================================== */ extern int vdp_68k_irq_ack(int int_level); #define m68ki_cpu m68k #define MUL (7) /* ======================================================================== */ /* ================================ INCLUDES ============================== */ /* ======================================================================== */ #ifndef BUILD_TABLES #include "m68ki_cycles.h" #endif #include "m68kconf.h" #include "m68kcpu.h" #include "m68kops.h" /* ======================================================================== */ /* ================================= DATA ================================= */ /* ======================================================================== */ #ifdef BUILD_TABLES static unsigned char m68ki_cycles[0x10000]; #endif static int irq_latency; m68ki_cpu_core m68k; /* ======================================================================== */ /* =============================== CALLBACKS ============================== */ /* ======================================================================== */ /* Default callbacks used if the callback hasn't been set yet, or if the * callback is set to NULL */ #if M68K_EMULATE_INT_ACK == OPT_ON /* Interrupt acknowledge */ static int default_int_ack_callback(int int_level) { CPU_INT_LEVEL = 0; return M68K_INT_ACK_AUTOVECTOR; } #endif #if M68K_EMULATE_RESET == OPT_ON /* Called when a reset instruction is executed */ static void default_reset_instr_callback(void) { } #endif #if M68K_TAS_HAS_CALLBACK == OPT_ON /* Called when a tas instruction is executed */ static int default_tas_instr_callback(void) { return 1; // allow writeback } #endif #if M68K_EMULATE_FC == OPT_ON /* Called every time there's bus activity (read/write to/from memory */ static void default_set_fc_callback(unsigned int new_fc) { } #endif /* ======================================================================== */ /* ================================= API ================================== */ /* ======================================================================== */ /* Access the internals of the CPU */ unsigned int m68k_get_reg(m68k_register_t regnum) { switch(regnum) { case M68K_REG_D0: return m68ki_cpu.dar[0]; case M68K_REG_D1: return m68ki_cpu.dar[1]; case M68K_REG_D2: return m68ki_cpu.dar[2]; case M68K_REG_D3: return m68ki_cpu.dar[3]; case M68K_REG_D4: return m68ki_cpu.dar[4]; case M68K_REG_D5: return m68ki_cpu.dar[5]; case M68K_REG_D6: return m68ki_cpu.dar[6]; case M68K_REG_D7: return m68ki_cpu.dar[7]; case M68K_REG_A0: return m68ki_cpu.dar[8]; case M68K_REG_A1: return m68ki_cpu.dar[9]; case M68K_REG_A2: return m68ki_cpu.dar[10]; case M68K_REG_A3: return m68ki_cpu.dar[11]; case M68K_REG_A4: return m68ki_cpu.dar[12]; case M68K_REG_A5: return m68ki_cpu.dar[13]; case M68K_REG_A6: return m68ki_cpu.dar[14]; case M68K_REG_A7: return m68ki_cpu.dar[15]; case M68K_REG_PC: return MASK_OUT_ABOVE_32(m68ki_cpu.pc); case M68K_REG_SR: return m68ki_cpu.t1_flag | (m68ki_cpu.s_flag << 11) | m68ki_cpu.int_mask | ((m68ki_cpu.x_flag & XFLAG_SET) >> 4) | ((m68ki_cpu.n_flag & NFLAG_SET) >> 4) | ((!m68ki_cpu.not_z_flag) << 2) | ((m68ki_cpu.v_flag & VFLAG_SET) >> 6) | ((m68ki_cpu.c_flag & CFLAG_SET) >> 8); case M68K_REG_SP: return m68ki_cpu.dar[15]; case M68K_REG_USP: return m68ki_cpu.s_flag ? m68ki_cpu.sp[0] : m68ki_cpu.dar[15]; case M68K_REG_ISP: return m68ki_cpu.s_flag ? m68ki_cpu.dar[15] : m68ki_cpu.sp[4]; #if M68K_EMULATE_PREFETCH case M68K_REG_PREF_ADDR: return m68ki_cpu.pref_addr; case M68K_REG_PREF_DATA: return m68ki_cpu.pref_data; #endif case M68K_REG_IR: return m68ki_cpu.ir; default: return 0; } } void m68k_set_reg(m68k_register_t regnum, unsigned int value) { switch(regnum) { case M68K_REG_D0: REG_D[0] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D1: REG_D[1] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D2: REG_D[2] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D3: REG_D[3] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D4: REG_D[4] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D5: REG_D[5] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D6: REG_D[6] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_D7: REG_D[7] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A0: REG_A[0] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A1: REG_A[1] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A2: REG_A[2] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A3: REG_A[3] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A4: REG_A[4] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A5: REG_A[5] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A6: REG_A[6] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_A7: REG_A[7] = MASK_OUT_ABOVE_32(value); return; case M68K_REG_PC: m68ki_jump(MASK_OUT_ABOVE_32(value)); return; case M68K_REG_SR: m68ki_set_sr(value); return; case M68K_REG_SP: REG_SP = MASK_OUT_ABOVE_32(value); return; case M68K_REG_USP: if(FLAG_S) REG_USP = MASK_OUT_ABOVE_32(value); else REG_SP = MASK_OUT_ABOVE_32(value); return; case M68K_REG_ISP: if(FLAG_S) REG_SP = MASK_OUT_ABOVE_32(value); else REG_ISP = MASK_OUT_ABOVE_32(value); return; case M68K_REG_IR: REG_IR = MASK_OUT_ABOVE_16(value); return; #if M68K_EMULATE_PREFETCH case M68K_REG_PREF_ADDR: CPU_PREF_ADDR = MASK_OUT_ABOVE_32(value); return; #endif default: return; } } /* Set the callbacks */ #if M68K_EMULATE_INT_ACK == OPT_ON void m68k_set_int_ack_callback(int (*callback)(int int_level)) { CALLBACK_INT_ACK = callback ? callback : default_int_ack_callback; } #endif #if M68K_EMULATE_RESET == OPT_ON void m68k_set_reset_instr_callback(void (*callback)(void)) { CALLBACK_RESET_INSTR = callback ? callback : default_reset_instr_callback; } #endif #if M68K_TAS_HAS_CALLBACK == OPT_ON void m68k_set_tas_instr_callback(int (*callback)(void)) { CALLBACK_TAS_INSTR = callback ? callback : default_tas_instr_callback; } #endif #if M68K_EMULATE_FC == OPT_ON void m68k_set_fc_callback(void (*callback)(unsigned int new_fc)) { CALLBACK_SET_FC = callback ? callback : default_set_fc_callback; } #endif #ifdef LOGERROR extern void error(char *format, ...); extern uint16 v_counter; #endif /* ASG: rewrote so that the int_level is a mask of the IPL0/IPL1/IPL2 bits */ /* KS: Modified so that IPL* bits match with mask positions in the SR * and cleaned out remenants of the interrupt controller. */ void m68k_update_irq(unsigned int mask) { /* Update IRQ level */ CPU_INT_LEVEL |= (mask << 8); #ifdef LOGERROR error("[%d(%d)][%d(%d)] m68k IRQ Level = %d(0x%02x) (%x)\n", v_counter, m68k.cycles/3420, m68k.cycles, m68k.cycles%3420,CPU_INT_LEVEL>>8,FLAG_INT_MASK,m68k_get_reg(M68K_REG_PC)); #endif } void m68k_set_irq(unsigned int int_level) { /* Set IRQ level */ CPU_INT_LEVEL = int_level << 8; #ifdef LOGERROR error("[%d(%d)][%d(%d)] m68k IRQ Level = %d(0x%02x) (%x)\n", v_counter, m68k.cycles/3420, m68k.cycles, m68k.cycles%3420,CPU_INT_LEVEL>>8,FLAG_INT_MASK,m68k_get_reg(M68K_REG_PC)); #endif } /* IRQ latency (Fatal Rewind, Sesame's Street Counting Cafe)*/ void m68k_set_irq_delay(unsigned int int_level) { /* Prevent reentrance */ if (!irq_latency) { /* This is always triggered from MOVE instructions (VDP CTRL port write) */ /* We just make sure this is not a MOVE.L instruction as we could be in */ /* the middle of its execution (first memory write). */ if ((REG_IR & 0xF000) != 0x2000) { /* Finish executing current instruction */ USE_CYCLES(CYC_INSTRUCTION[REG_IR]); /* One instruction delay before interrupt */ irq_latency = 1; m68ki_trace_t1() /* auto-disable (see m68kcpu.h) */ m68ki_use_data_space() /* auto-disable (see m68kcpu.h) */ REG_IR = m68ki_read_imm_16(); m68ki_instruction_jump_table[REG_IR](); m68ki_exception_if_trace() /* auto-disable (see m68kcpu.h) */ irq_latency = 0; } /* Set IRQ level */ CPU_INT_LEVEL = int_level << 8; } #ifdef LOGERROR error("[%d(%d)][%d(%d)] m68k IRQ Level = %d(0x%02x) (%x)\n", v_counter, m68k.cycles/3420, m68k.cycles, m68k.cycles%3420,CPU_INT_LEVEL>>8,FLAG_INT_MASK,m68k_get_reg(M68K_REG_PC)); #endif /* Check interrupt mask to process IRQ */ m68ki_check_interrupts(); /* Level triggered (IRQ) */ } void m68k_run(unsigned int cycles) { /* Make sure CPU is not already ahead */ if (m68k.cycles >= cycles) { return; } /* Check interrupt mask to process IRQ if needed */ m68ki_check_interrupts(); /* Make sure we're not stopped */ if (CPU_STOPPED) { m68k.cycles = cycles; return; } /* Save end cycles count for when CPU is stopped */ m68k.cycle_end = cycles; /* Return point for when we have an address error (TODO: use goto) */ m68ki_set_address_error_trap() /* auto-disable (see m68kcpu.h) */ #ifdef LOGERROR error("[%d][%d] m68k run to %d cycles (%x), irq mask = %x (%x)\n", v_counter, m68k.cycles, cycles, m68k.pc,FLAG_INT_MASK, CPU_INT_LEVEL); #endif while (m68k.cycles < cycles) { /* Set tracing accodring to T1. */ m68ki_trace_t1() /* auto-disable (see m68kcpu.h) */ /* Set the address space for reads */ m68ki_use_data_space() /* auto-disable (see m68kcpu.h) */ #ifdef HOOK_CPU /* Trigger execution hook */ if (cpu_hook) cpu_hook(HOOK_M68K_E, 0, REG_PC, 0); #endif /* Save current instruction PC */ m68k.prev_pc = REG_PC; /* Decode next instruction */ REG_IR = m68ki_read_imm_16(); /* Execute instruction */ m68ki_instruction_jump_table[REG_IR](); USE_CYCLES(CYC_INSTRUCTION[REG_IR]); /* Trace m68k_exception, if necessary */ m68ki_exception_if_trace(); /* auto-disable (see m68kcpu.h) */ } } int m68k_cycles(void) { return CYC_INSTRUCTION[REG_IR]; } void m68k_init(void) { #ifdef BUILD_TABLES static uint emulation_initialized = 0; /* The first call to this function initializes the opcode handler jump table */ if(!emulation_initialized) { m68ki_build_opcode_table(); emulation_initialized = 1; } #endif #ifdef M68K_OVERCLOCK_SHIFT m68k.cycle_ratio = 1 << M68K_OVERCLOCK_SHIFT; #endif #if M68K_EMULATE_INT_ACK == OPT_ON m68k_set_int_ack_callback(NULL); #endif #if M68K_EMULATE_RESET == OPT_ON m68k_set_reset_instr_callback(NULL); #endif #if M68K_TAS_HAS_CALLBACK == OPT_ON m68k_set_tas_instr_callback(NULL); #endif #if M68K_EMULATE_FC == OPT_ON m68k_set_fc_callback(NULL); #endif } /* Pulse the RESET line on the CPU */ void m68k_pulse_reset(void) { /* Clear all stop levels */ CPU_STOPPED = 0; #if M68K_EMULATE_ADDRESS_ERROR CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET; #endif /* Turn off tracing */ FLAG_T1 = 0; m68ki_clear_trace() /* Interrupt mask to level 7 */ FLAG_INT_MASK = 0x0700; CPU_INT_LEVEL = 0; irq_latency = 0; /* Go to supervisor mode */ m68ki_set_s_flag(SFLAG_SET); /* Invalidate the prefetch queue */ #if M68K_EMULATE_PREFETCH /* Set to arbitrary number since our first fetch is from 0 */ CPU_PREF_ADDR = 0x1000; #endif /* M68K_EMULATE_PREFETCH */ /* Read the initial stack pointer and program counter */ m68ki_jump(0); REG_SP = m68ki_read_imm_32(); REG_PC = m68ki_read_imm_32(); m68ki_jump(REG_PC); #if M68K_EMULATE_ADDRESS_ERROR CPU_RUN_MODE = RUN_MODE_NORMAL; #endif USE_CYCLES(CYC_EXCEPTION[EXCEPTION_RESET]); } void m68k_pulse_halt(void) { /* Pulse the HALT line on the CPU */ CPU_STOPPED |= STOP_LEVEL_HALT; } void m68k_clear_halt(void) { /* Clear the HALT line on the CPU */ CPU_STOPPED &= ~STOP_LEVEL_HALT; } void m68k_pulse_wait(void) { /* Hold the DTACK line on the CPU */ CPU_STOPPED |= STOP_LEVEL_WAIT; /* End CPU execution */ m68k.cycles = m68k.cycle_end - m68k_cycles(); /* Rollback current instruction (memory access will be executed once /DTACK is asserted) */ m68k.pc = m68k.prev_pc; } void m68k_clear_wait(void) { /* Assert the DTACK line on the CPU */ CPU_STOPPED &= ~STOP_LEVEL_WAIT; } /* ======================================================================== */ /* ============================== END OF FILE ============================= */ /* ======================================================================== */