// license:BSD-3-Clause // copyright-holders:Aaron Giles /*************************************************************************** huffman.c Static Huffman compression and decompression helpers. **************************************************************************** Maximum codelength is officially (alphabetsize - 1). This would be 255 bits (since we use 1 byte values). However, it is also dependent upon the number of samples used, as follows: 2 bits -> 3..4 samples 3 bits -> 5..7 samples 4 bits -> 8..12 samples 5 bits -> 13..20 samples 6 bits -> 21..33 samples 7 bits -> 34..54 samples 8 bits -> 55..88 samples 9 bits -> 89..143 samples 10 bits -> 144..232 samples 11 bits -> 233..376 samples 12 bits -> 377..609 samples 13 bits -> 610..986 samples 14 bits -> 987..1596 samples 15 bits -> 1597..2583 samples 16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits 17 bits -> 4181..6764 samples 18 bits -> 6765..10945 samples 19 bits -> 10946..17710 samples 20 bits -> 17711..28656 samples 21 bits -> 28657..46367 samples 22 bits -> 46368..75024 samples 23 bits -> 75025..121392 samples 24 bits -> 121393..196417 samples 25 bits -> 196418..317810 samples 26 bits -> 317811..514228 samples 27 bits -> 514229..832039 samples 28 bits -> 832040..1346268 samples 29 bits -> 1346269..2178308 samples 30 bits -> 2178309..3524577 samples 31 bits -> 3524578..5702886 samples 32 bits -> 5702887..9227464 samples Looking at it differently, here is where powers of 2 fall into these buckets: 256 samples -> 11 bits max 512 samples -> 12 bits max 1k samples -> 14 bits max 2k samples -> 15 bits max 4k samples -> 16 bits max 8k samples -> 18 bits max 16k samples -> 19 bits max 32k samples -> 21 bits max 64k samples -> 22 bits max 128k samples -> 24 bits max 256k samples -> 25 bits max 512k samples -> 27 bits max 1M samples -> 28 bits max 2M samples -> 29 bits max 4M samples -> 31 bits max 8M samples -> 32 bits max **************************************************************************** Delta-RLE encoding works as follows: Starting value is assumed to be 0. All data is encoded as a delta from the previous value, such that final[i] = final[i - 1] + delta. Long runs of 0s are RLE-encoded as follows: 0x100 = repeat count of 8 0x101 = repeat count of 9 0x102 = repeat count of 10 0x103 = repeat count of 11 0x104 = repeat count of 12 0x105 = repeat count of 13 0x106 = repeat count of 14 0x107 = repeat count of 15 0x108 = repeat count of 16 0x109 = repeat count of 32 0x10a = repeat count of 64 0x10b = repeat count of 128 0x10c = repeat count of 256 0x10d = repeat count of 512 0x10e = repeat count of 1024 0x10f = repeat count of 2048 Note that repeat counts are reset at the end of a row, so if a 0 run extends to the end of a row, a large repeat count may be used. The reason for starting the run counts at 8 is that 0 is expected to be the most common symbol, and is typically encoded in 1 or 2 bits. ***************************************************************************/ #include #include #include #include #include "huffman.h" #define MAX(x,y) ((x) > (y) ? (x) : (y)) //************************************************************************** // MACROS //************************************************************************** #define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f)) //************************************************************************** // IMPLEMENTATION //************************************************************************** //------------------------------------------------- // huffman_context_base - create an encoding/ // decoding context //------------------------------------------------- struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits) { // limit to 24 bits if (maxbits > 24) return NULL; struct huffman_decoder* decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder)); decoder->numcodes = numcodes; decoder->maxbits = maxbits; decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits)); decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes); decoder->datahisto = NULL; decoder->prevdata = 0; decoder->rleremaining = 0; return decoder; } void delete_huffman_decoder(struct huffman_decoder* decoder) { if (decoder != NULL) { if (decoder->lookup != NULL) free(decoder->lookup); if (decoder->huffnode != NULL) free(decoder->huffnode); free(decoder); } } //------------------------------------------------- // decode_one - decode a single code from the // huffman stream //------------------------------------------------- uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf) { // peek ahead to get maxbits worth of data uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits); // look it up, then remove the actual number of bits for this code lookup_value lookup = decoder->lookup[bits]; bitstream_remove(bitbuf, lookup & 0x1f); // return the value return lookup >> 5; } //------------------------------------------------- // import_tree_rle - import an RLE-encoded // huffman tree from a source data stream //------------------------------------------------- enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf) { // bits per entry depends on the maxbits int numbits; if (decoder->maxbits >= 16) numbits = 5; else if (decoder->maxbits >= 8) numbits = 4; else numbits = 3; // loop until we read all the nodes int curnode; for (curnode = 0; curnode < decoder->numcodes; ) { // a non-one value is just raw int nodebits = bitstream_read(bitbuf, numbits); if (nodebits != 1) decoder->huffnode[curnode++].numbits = nodebits; // a one value is an escape code else { // a double 1 is just a single 1 nodebits = bitstream_read(bitbuf, numbits); if (nodebits == 1) decoder->huffnode[curnode++].numbits = nodebits; // otherwise, we need one for value for the repeat count else { int repcount = bitstream_read(bitbuf, numbits) + 3; while (repcount--) decoder->huffnode[curnode++].numbits = nodebits; } } } // make sure we ended up with the right number if (curnode != decoder->numcodes) return HUFFERR_INVALID_DATA; // assign canonical codes for all nodes based on their code lengths enum huffman_error error = huffman_assign_canonical_codes(decoder); if (error != HUFFERR_NONE) return error; // build the lookup table huffman_build_lookup_table(decoder); // determine final input length and report errors return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE; } //------------------------------------------------- // import_tree_huffman - import a huffman-encoded // huffman tree from a source data stream //------------------------------------------------- enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf) { // start by parsing the lengths for the small tree struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6); smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3); int start = bitstream_read(bitbuf, 3) + 1; int index, count = 0; for (index = 1; index < 24; index++) { if (index < start || count == 7) smallhuff->huffnode[index].numbits = 0; else { count = bitstream_read(bitbuf, 3); smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count; } } // then regenerate the tree enum huffman_error error = huffman_assign_canonical_codes(smallhuff); if (error != HUFFERR_NONE) return error; huffman_build_lookup_table(smallhuff); // determine the maximum length of an RLE count uint32_t temp = decoder->numcodes - 9; uint8_t rlefullbits = 0; while (temp != 0) temp >>= 1, rlefullbits++; // now process the rest of the data int last = 0; int curcode; for (curcode = 0; curcode < decoder->numcodes; ) { int value = huffman_decode_one(smallhuff, bitbuf); if (value != 0) decoder->huffnode[curcode++].numbits = last = value - 1; else { int count = bitstream_read(bitbuf, 3) + 2; if (count == 7+2) count += bitstream_read(bitbuf, rlefullbits); for ( ; count != 0 && curcode < decoder->numcodes; count--) decoder->huffnode[curcode++].numbits = last; } } // make sure we ended up with the right number if (curcode != decoder->numcodes) return HUFFERR_INVALID_DATA; // assign canonical codes for all nodes based on their code lengths error = huffman_assign_canonical_codes(decoder); if (error != HUFFERR_NONE) return error; // build the lookup table huffman_build_lookup_table(decoder); // determine final input length and report errors return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE; } //------------------------------------------------- // compute_tree_from_histo - common backend for // computing a tree based on the data histogram //------------------------------------------------- enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder) { // compute the number of data items in the histogram int i; uint32_t sdatacount = 0; for (i = 0; i < decoder->numcodes; i++) sdatacount += decoder->datahisto[i]; // binary search to achieve the optimum encoding uint32_t lowerweight = 0; uint32_t upperweight = sdatacount * 2; while (1) { // build a tree using the current weight uint32_t curweight = (upperweight + lowerweight) / 2; int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight); // apply binary search here if (curmaxbits <= decoder->maxbits) { lowerweight = curweight; // early out if it worked with the raw weights, or if we're done searching if (curweight == sdatacount || (upperweight - lowerweight) <= 1) break; } else upperweight = curweight; } // assign canonical codes for all nodes based on their code lengths return huffman_assign_canonical_codes(decoder); } //************************************************************************** // INTERNAL FUNCTIONS //************************************************************************** //------------------------------------------------- // tree_node_compare - compare two tree nodes // by weight //------------------------------------------------- static int huffman_tree_node_compare(const void *item1, const void *item2) { const struct node_t *node1 = *(const struct node_t **)item1; const struct node_t *node2 = *(const struct node_t **)item2; if (node2->weight != node1->weight) return node2->weight - node1->weight; if (node2->bits - node1->bits == 0) fprintf(stderr, "identical node sort keys, should not happen!\n"); return (int)node1->bits - (int)node2->bits; } //------------------------------------------------- // build_tree - build a huffman tree based on the // data distribution //------------------------------------------------- int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight) { // make a list of all non-zero nodes struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2); int curcode, listitems = 0; memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0])); for (curcode = 0; curcode < decoder->numcodes; curcode++) if (decoder->datahisto[curcode] != 0) { list[listitems++] = &decoder->huffnode[curcode]; decoder->huffnode[curcode].count = decoder->datahisto[curcode]; decoder->huffnode[curcode].bits = curcode; // scale the weight by the current effective length, ensuring we don't go to 0 decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata); if (decoder->huffnode[curcode].weight == 0) decoder->huffnode[curcode].weight = 1; } /* fprintf(stderr, "Pre-sort:\n"); for (int i = 0; i < listitems; i++) { fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits); } */ // sort the list by weight, largest weight first qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare); /* fprintf(stderr, "Post-sort:\n"); for (int i = 0; i < listitems; i++) { fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits); } fprintf(stderr, "===================\n"); */ // now build the tree int nextalloc = decoder->numcodes; while (listitems > 1) { // remove lowest two items struct node_t* node1 = &(*list[--listitems]); struct node_t* node0 = &(*list[--listitems]); // create new node struct node_t* newnode = &decoder->huffnode[nextalloc++]; newnode->parent = NULL; node0->parent = node1->parent = newnode; newnode->weight = node0->weight + node1->weight; // insert into list at appropriate location int curitem; for (curitem = 0; curitem < listitems; curitem++) if (newnode->weight > list[curitem]->weight) { memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0])); break; } list[curitem] = newnode; listitems++; } // compute the number of bits in each code, and fill in another histogram int maxbits = 0; for (curcode = 0; curcode < decoder->numcodes; curcode++) { struct node_t *curnode; struct node_t* node = &decoder->huffnode[curcode]; node->numbits = 0; node->bits = 0; // if we have a non-zero weight, compute the number of bits if (node->weight > 0) { // determine the number of bits for this node for (curnode = node; curnode->parent != NULL; curnode = curnode->parent) node->numbits++; if (node->numbits == 0) node->numbits = 1; // keep track of the max maxbits = MAX(maxbits, ((int)node->numbits)); } } return maxbits; } //------------------------------------------------- // assign_canonical_codes - assign canonical codes // to all the nodes based on the number of bits // in each //------------------------------------------------- enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder) { // build up a histogram of bit lengths int curcode, codelen; uint32_t bithisto[33] = { 0 }; for (curcode = 0; curcode < decoder->numcodes; curcode++) { struct node_t* node = &decoder->huffnode[curcode]; if (node->numbits > decoder->maxbits) return HUFFERR_INTERNAL_INCONSISTENCY; if (node->numbits <= 32) bithisto[node->numbits]++; } // for each code length, determine the starting code number uint32_t curstart = 0; for (codelen = 32; codelen > 0; codelen--) { uint32_t nextstart = (curstart + bithisto[codelen]) >> 1; if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen])) return HUFFERR_INTERNAL_INCONSISTENCY; bithisto[codelen] = curstart; curstart = nextstart; } // now assign canonical codes for (curcode = 0; curcode < decoder->numcodes; curcode++) { struct node_t* node = &decoder->huffnode[curcode]; if (node->numbits > 0) node->bits = bithisto[node->numbits]++; } return HUFFERR_NONE; } //------------------------------------------------- // build_lookup_table - build a lookup table for // fast decoding //------------------------------------------------- void huffman_build_lookup_table(struct huffman_decoder* decoder) { // iterate over all codes int curcode; for (curcode = 0; curcode < decoder->numcodes; curcode++) { // process all nodes which have non-zero bits struct node_t* node = &decoder->huffnode[curcode]; if (node->numbits > 0) { // set up the entry lookup_value value = MAKE_LOOKUP(curcode, node->numbits); // fill all matching entries int shift = decoder->maxbits - node->numbits; lookup_value *dest = &decoder->lookup[node->bits << shift]; lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1]; while (dest <= destend) *dest++ = value; } } }