/*************************************************************************************** * Genesis Plus 1.2a * * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code) * modified by Eke-Eke (compatibility fixes & additional code), GC/Wii port * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Sound Hardware ****************************************************************************************/ #include "shared.h" #include "samplerate.h" /* generic functions */ int (*_YM2612_Write)(unsigned char adr, unsigned char data); int (*_YM2612_Read)(void); void (*_YM2612_Update)(int **buf, int length); int (*_YM2612_Reset)(void); /* cycle-accurate samples */ static double m68cycles_per_sample[2]; static double z80cycles_per_sample[2]; /* libsamplerate buffers (max. is 488 cycles per line x 313 lines / 144) */ static SRC_DATA src_data; static float src_in[1061*2]; static int src_buffer[2][1061]; /* YM2612 register arrays */ int fm_reg[2][0x100]; /* return the number of samples that should have been rendered so far */ static inline uint32 fm_sample_cnt(uint8 is_z80) { if (is_z80) return (uint32) ((double)(count_z80 + current_z80 - z80_ICount) / z80cycles_per_sample[0]); else return (uint32) ((double) count_m68k / m68cycles_per_sample[0]); } static inline uint32 psg_sample_cnt(uint8 is_z80) { if (is_z80) return (uint32) ((double)(count_z80 + current_z80 - z80_ICount) / z80cycles_per_sample[1]); else return (uint32) ((double) count_m68k / m68cycles_per_sample[1]); } /* update FM samples */ static inline void fm_update() { if(snd.fm.curStage - snd.fm.lastStage > 0) { int *tempBuffer[2]; if (config.hq_fm && !config.fm_core) { tempBuffer[0] = src_buffer[0] + snd.fm.lastStage; tempBuffer[1] = src_buffer[1] + snd.fm.lastStage; } else { tempBuffer[0] = snd.fm.buffer[0] + snd.fm.lastStage; tempBuffer[1] = snd.fm.buffer[1] + snd.fm.lastStage; } _YM2612_Update(tempBuffer, snd.fm.curStage - snd.fm.lastStage); snd.fm.lastStage = snd.fm.curStage; } } /* update PSG samples */ static inline void psg_update() { if(snd.psg.curStage - snd.psg.lastStage > 0) { int16 *tempBuffer = snd.psg.buffer + snd.psg.lastStage; SN76489_Update (0, tempBuffer, snd.psg.curStage - snd.psg.lastStage); snd.psg.lastStage = snd.psg.curStage; } } void sound_init(int rate) { double vclk = Master_Clock / 7.0; /* 68000 and YM2612 clock */ double zclk = Master_Clock / 15.0; /* Z80 and SN76489 clock */ /* cycle-accurate FM samples */ if (config.hq_fm && !config.fm_core) { m68cycles_per_sample[0] = 144.0; z80cycles_per_sample[0] = (144.0 * 7.0) / 15.0; /* initialize samplerate converter data */ src_data.data_in = src_in; src_data.data_out = snd.fm.src_out; src_data.input_frames = (int)(((double)m68cycles_per_line * (double)lines_per_frame / 144.0) + 0.5); src_data.output_frames = rate / vdp_rate; src_data.src_ratio = (double)src_data.output_frames / (double)src_data.input_frames; } else { m68cycles_per_sample[0] = ((double)m68cycles_per_line * (double)lines_per_frame) / (double) (rate / vdp_rate); z80cycles_per_sample[0] = ((double)z80cycles_per_line * (double)lines_per_frame) / (double) (rate / vdp_rate); } /* cycle-accurate PSG samples */ m68cycles_per_sample[1] = ((double)m68cycles_per_line * (double)lines_per_frame) / (double) (rate / vdp_rate); z80cycles_per_sample[1] = ((double)z80cycles_per_line * (double)lines_per_frame) / (double) (rate / vdp_rate); /* initialize sound chips */ SN76489_Init(0, (int)zclk, rate); SN76489_Config(0, MUTE_ALLON, VOL_FULL, FB_SEGAVDP, SRW_SEGAVDP, 0); if (config.fm_core) { _YM2612_Write = YM2612_Write; _YM2612_Read = YM2612_Read; _YM2612_Update = YM2612_Update; _YM2612_Reset = YM2612_Reset; YM2612_Init((int)vclk, rate, config.hq_fm); } else { _YM2612_Write = YM2612Write; _YM2612_Read = YM2612Read; _YM2612_Update = YM2612UpdateOne; _YM2612_Reset = YM2612ResetChip; YM2612Init ((int)vclk, rate); } } void sound_update(void) { /* finalize sound buffers */ snd.fm.curStage = (config.hq_fm && !config.fm_core) ? src_data.input_frames : snd.buffer_size; snd.psg.curStage = snd.buffer_size; /* update last samples (if needed) */ fm_update(); psg_update(); /* Resampling */ if (config.hq_fm && !config.fm_core) { double scaled_value ; int len = src_data.input_frames; /* this is basically libsamplerate "src_int_to_float_array" function, adapted to interlace samples */ while (len) { len -- ; src_in[len*2] = (float) (src_buffer[0] [len] / (8.0 * 0x10000000)); src_in[len*2 + 1] = (float) (src_buffer[1] [len] / (8.0 * 0x10000000)); } /* samplerate conversion */ src_simple (&src_data, SRC_SINC_FASTEST, 2); /* this is basically libsamplerate "src_float_to_int_array" function, adapted to interlace samples */ len = snd.buffer_size; while (len) { len -- ; scaled_value = snd.fm.src_out[len*2] * (8.0 * 0x10000000); if (scaled_value >= (1.0 * 0x7FFFFFFF)) snd.fm.buffer[0][len] = 0x7fffffff; else if (scaled_value <= (-8.0 * 0x10000000)) snd.fm.buffer[0][len] = -1 - 0x7fffffff; else snd.fm.buffer[0][len] = (long)scaled_value; scaled_value = snd.fm.src_out[len*2+1] * (8.0 * 0x10000000); if (scaled_value >= (1.0 * 0x7FFFFFFF)) snd.fm.buffer[1][len] = 0x7fffffff; else if (scaled_value <= (-8.0 * 0x10000000)) snd.fm.buffer[1][len] = -1 - 0x7fffffff; else snd.fm.buffer[1][len] = (long)scaled_value; } } /* reset samples count */ snd.fm.curStage = 0; snd.fm.lastStage = 0; snd.psg.curStage = 0; snd.psg.lastStage = 0; } /* YM2612 control */ /* restore FM registers */ void fm_restore(void) { int i; _YM2612_Reset(); /* feed all the registers and update internal state */ for(i = 0; i < 0x100; i++) { _YM2612_Write(0, i); _YM2612_Write(1, fm_reg[0][i]); _YM2612_Write(2, i); _YM2612_Write(3, fm_reg[1][i]); } } /* write FM chip */ void fm_write(unsigned int cpu, unsigned int address, unsigned int data) { if (address & 1) { snd.fm.curStage = fm_sample_cnt(cpu); fm_update(); } _YM2612_Write(address & 3, data); } /* read FM status */ unsigned int fm_read(unsigned int cpu, unsigned int address) { snd.fm.curStage = fm_sample_cnt(cpu); fm_update(); return (_YM2612_Read() & 0xff); } /* PSG write */ void psg_write(unsigned int cpu, unsigned int data) { snd.psg.curStage = psg_sample_cnt(cpu); psg_update(); SN76489_Write(0, data); }