Lime3DS/src/core/core.cpp

739 lines
24 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <stdexcept>
#include <utility>
#include <boost/serialization/array.hpp>
#include "audio_core/dsp_interface.h"
#include "audio_core/hle/hle.h"
#include "audio_core/lle/lle.h"
#include "common/arch.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
#include "core/hle/service/cam/cam.h"
#include "core/hle/service/hid/hid.h"
#include "core/hle/service/ir/ir_user.h"
#if CITRA_ARCH(x86_64) || CITRA_ARCH(arm64)
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/dyncom/arm_dyncom.h"
#include "core/cheats/cheats.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/dumping/backend.h"
#include "core/frontend/image_interface.h"
#include "core/gdbstub/gdbstub.h"
#include "core/global.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/service/apt/applet_manager.h"
#include "core/hle/service/apt/apt.h"
#include "core/hle/service/cam/cam.h"
#include "core/hle/service/fs/archive.h"
#include "core/hle/service/gsp/gsp.h"
#include "core/hle/service/gsp/gsp_gpu.h"
#include "core/hle/service/ir/ir_rst.h"
#include "core/hle/service/mic/mic_u.h"
#include "core/hle/service/plgldr/plgldr.h"
#include "core/hle/service/service.h"
#include "core/hle/service/sm/sm.h"
#include "core/hw/aes/key.h"
#include "core/loader/loader.h"
#include "core/movie.h"
#ifdef ENABLE_SCRIPTING
#include "core/rpc/server.h"
#endif
#include "core/telemetry_session.h"
#include "network/network.h"
#include "video_core/custom_textures/custom_tex_manager.h"
#include "video_core/gpu.h"
#include "video_core/renderer_base.h"
namespace Core {
/*static*/ System System::s_instance;
template <>
Core::System& Global() {
return System::GetInstance();
}
template <>
Kernel::KernelSystem& Global() {
return System::GetInstance().Kernel();
}
template <>
Core::Timing& Global() {
return System::GetInstance().CoreTiming();
}
System::System() : movie{*this}, cheat_engine{*this} {}
System::~System() = default;
System::ResultStatus System::RunLoop(bool tight_loop) {
status = ResultStatus::Success;
if (!IsPoweredOn()) {
return ResultStatus::ErrorNotInitialized;
}
if (GDBStub::IsServerEnabled()) {
Kernel::Thread* thread = kernel->GetCurrentThreadManager().GetCurrentThread();
if (thread && running_core) {
running_core->SaveContext(thread->context);
}
GDBStub::HandlePacket(*this);
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
// execute. Otherwise, get out of the loop function.
if (GDBStub::GetCpuHaltFlag()) {
if (GDBStub::GetCpuStepFlag()) {
tight_loop = false;
} else {
return ResultStatus::Success;
}
}
}
Signal signal{Signal::None};
u32 param{};
{
std::scoped_lock lock{signal_mutex};
if (current_signal != Signal::None) {
signal = current_signal;
param = signal_param;
current_signal = Signal::None;
}
}
switch (signal) {
case Signal::Reset:
Reset();
return ResultStatus::Success;
case Signal::Shutdown:
return ResultStatus::ShutdownRequested;
case Signal::Load: {
const u32 slot = param;
LOG_INFO(Core, "Begin load of slot {}", slot);
try {
System::LoadState(slot);
LOG_INFO(Core, "Load completed");
} catch (const std::exception& e) {
LOG_ERROR(Core, "Error loading: {}", e.what());
status_details = e.what();
return ResultStatus::ErrorSavestate;
}
frame_limiter.WaitOnce();
return ResultStatus::Success;
}
case Signal::Save: {
const u32 slot = param;
LOG_INFO(Core, "Begin save to slot {}", slot);
try {
System::SaveState(slot);
LOG_INFO(Core, "Save completed");
} catch (const std::exception& e) {
LOG_ERROR(Core, "Error saving: {}", e.what());
status_details = e.what();
return ResultStatus::ErrorSavestate;
}
frame_limiter.WaitOnce();
return ResultStatus::Success;
}
default:
break;
}
// All cores should have executed the same amount of ticks. If this is not the case an event was
// scheduled with a cycles_into_future smaller then the current downcount.
// So we have to get those cores to the same global time first
u64 global_ticks = timing->GetGlobalTicks();
s64 max_delay = 0;
ARM_Interface* current_core_to_execute = nullptr;
for (auto& cpu_core : cpu_cores) {
if (cpu_core->GetTimer().GetTicks() < global_ticks) {
s64 delay = global_ticks - cpu_core->GetTimer().GetTicks();
running_core = cpu_core.get();
kernel->SetRunningCPU(running_core);
cpu_core->GetTimer().Advance();
cpu_core->PrepareReschedule();
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
cpu_core->GetTimer().SetNextSlice(delay);
if (max_delay < delay) {
max_delay = delay;
current_core_to_execute = cpu_core.get();
}
}
}
// jit sometimes overshoot by a few ticks which might lead to a minimal desync in the cores.
// This small difference shouldn't make it necessary to sync the cores and would only cost
// performance. Thus we don't sync delays below min_delay
static constexpr s64 min_delay = 100;
if (max_delay > min_delay) {
LOG_TRACE(Core_ARM11, "Core {} running (delayed) for {} ticks",
current_core_to_execute->GetID(),
current_core_to_execute->GetTimer().GetDowncount());
if (running_core != current_core_to_execute) {
running_core = current_core_to_execute;
kernel->SetRunningCPU(running_core);
}
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", current_core_to_execute->GetID());
current_core_to_execute->GetTimer().Idle();
PrepareReschedule();
} else {
if (tight_loop) {
current_core_to_execute->Run();
} else {
current_core_to_execute->Step();
}
}
} else {
// Now all cores are at the same global time. So we will run them one after the other
// with a max slice that is the minimum of all max slices of all cores
// TODO: Make special check for idle since we can easily revert the time of idle cores
s64 max_slice = Timing::MAX_SLICE_LENGTH;
for (const auto& cpu_core : cpu_cores) {
running_core = cpu_core.get();
kernel->SetRunningCPU(running_core);
cpu_core->GetTimer().Advance();
cpu_core->PrepareReschedule();
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
max_slice = std::min(max_slice, cpu_core->GetTimer().GetMaxSliceLength());
}
for (auto& cpu_core : cpu_cores) {
cpu_core->GetTimer().SetNextSlice(max_slice);
auto start_ticks = cpu_core->GetTimer().GetTicks();
LOG_TRACE(Core_ARM11, "Core {} running for {} ticks", cpu_core->GetID(),
cpu_core->GetTimer().GetDowncount());
running_core = cpu_core.get();
kernel->SetRunningCPU(running_core);
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", cpu_core->GetID());
cpu_core->GetTimer().Idle();
PrepareReschedule();
} else {
if (tight_loop) {
cpu_core->Run();
} else {
cpu_core->Step();
}
}
max_slice = cpu_core->GetTimer().GetTicks() - start_ticks;
}
}
if (GDBStub::IsServerEnabled()) {
GDBStub::SetCpuStepFlag(false);
}
Reschedule();
return status;
}
bool System::SendSignal(System::Signal signal, u32 param) {
std::scoped_lock lock{signal_mutex};
if (current_signal != signal && current_signal != Signal::None) {
LOG_ERROR(Core, "Unable to {} as {} is ongoing", signal, current_signal);
return false;
}
current_signal = signal;
signal_param = param;
return true;
}
System::ResultStatus System::SingleStep() {
return RunLoop(false);
}
System::ResultStatus System::Load(Frontend::EmuWindow& emu_window, const std::string& filepath,
Frontend::EmuWindow* secondary_window) {
FileUtil::SetCurrentRomPath(filepath);
app_loader = Loader::GetLoader(filepath);
if (!app_loader) {
LOG_CRITICAL(Core, "Failed to obtain loader for {}!", filepath);
return ResultStatus::ErrorGetLoader;
}
auto memory_mode = app_loader->LoadKernelMemoryMode();
if (memory_mode.second != Loader::ResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to determine system mode (Error {})!",
static_cast<int>(memory_mode.second));
switch (memory_mode.second) {
case Loader::ResultStatus::ErrorEncrypted:
return ResultStatus::ErrorLoader_ErrorEncrypted;
case Loader::ResultStatus::ErrorInvalidFormat:
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
case Loader::ResultStatus::ErrorGbaTitle:
return ResultStatus::ErrorLoader_ErrorGbaTitle;
default:
return ResultStatus::ErrorSystemMode;
}
}
ASSERT(memory_mode.first);
auto n3ds_hw_caps = app_loader->LoadNew3dsHwCapabilities();
ASSERT(n3ds_hw_caps.first);
u32 num_cores = 2;
if (Settings::values.is_new_3ds) {
num_cores = 4;
}
ResultStatus init_result{
Init(emu_window, secondary_window, *memory_mode.first, *n3ds_hw_caps.first, num_cores)};
if (init_result != ResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<u32>(init_result));
System::Shutdown();
return init_result;
}
telemetry_session->AddInitialInfo(*app_loader);
std::shared_ptr<Kernel::Process> process;
const Loader::ResultStatus load_result{app_loader->Load(process)};
if (Loader::ResultStatus::Success != load_result) {
LOG_CRITICAL(Core, "Failed to load ROM (Error {})!", load_result);
System::Shutdown();
switch (load_result) {
case Loader::ResultStatus::ErrorEncrypted:
return ResultStatus::ErrorLoader_ErrorEncrypted;
case Loader::ResultStatus::ErrorInvalidFormat:
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
case Loader::ResultStatus::ErrorGbaTitle:
return ResultStatus::ErrorLoader_ErrorGbaTitle;
default:
return ResultStatus::ErrorLoader;
}
}
kernel->SetCurrentProcess(process);
title_id = 0;
if (app_loader->ReadProgramId(title_id) != Loader::ResultStatus::Success) {
LOG_ERROR(Core, "Failed to find title id for ROM (Error {})",
static_cast<u32>(load_result));
}
cheat_engine.LoadCheatFile(title_id);
cheat_engine.Connect();
perf_stats = std::make_unique<PerfStats>(title_id);
if (Settings::values.dump_textures) {
custom_tex_manager->PrepareDumping(title_id);
}
if (Settings::values.custom_textures) {
custom_tex_manager->FindCustomTextures();
}
status = ResultStatus::Success;
m_emu_window = &emu_window;
m_secondary_window = secondary_window;
m_filepath = filepath;
self_delete_pending = false;
// Reset counters and set time origin to current frame
[[maybe_unused]] const PerfStats::Results result = GetAndResetPerfStats();
perf_stats->BeginSystemFrame();
return status;
}
void System::PrepareReschedule() {
running_core->PrepareReschedule();
reschedule_pending = true;
}
PerfStats::Results System::GetAndResetPerfStats() {
return (perf_stats && timing) ? perf_stats->GetAndResetStats(timing->GetGlobalTimeUs())
: PerfStats::Results{};
}
PerfStats::Results System::GetLastPerfStats() {
return perf_stats ? perf_stats->GetLastStats() : PerfStats::Results{};
}
void System::Reschedule() {
if (!reschedule_pending) {
return;
}
reschedule_pending = false;
for (const auto& core : cpu_cores) {
LOG_TRACE(Core_ARM11, "Reschedule core {}", core->GetID());
kernel->GetThreadManager(core->GetID()).Reschedule();
}
}
System::ResultStatus System::Init(Frontend::EmuWindow& emu_window,
Frontend::EmuWindow* secondary_window,
Kernel::MemoryMode memory_mode,
const Kernel::New3dsHwCapabilities& n3ds_hw_caps, u32 num_cores) {
LOG_DEBUG(HW_Memory, "initialized OK");
memory = std::make_unique<Memory::MemorySystem>(*this);
timing = std::make_unique<Timing>(num_cores, Settings::values.cpu_clock_percentage.GetValue());
kernel = std::make_unique<Kernel::KernelSystem>(
*memory, *timing, [this] { PrepareReschedule(); }, memory_mode, num_cores, n3ds_hw_caps,
movie.GetOverrideInitTime());
exclusive_monitor = MakeExclusiveMonitor(*memory, num_cores);
cpu_cores.reserve(num_cores);
if (Settings::values.use_cpu_jit) {
#if CITRA_ARCH(x86_64) || CITRA_ARCH(arm64)
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(std::make_shared<ARM_Dynarmic>(
*this, *memory, i, timing->GetTimer(i), *exclusive_monitor));
}
#else
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(
std::make_shared<ARM_DynCom>(this, *memory, USER32MODE, i, timing->GetTimer(i)));
}
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
for (u32 i = 0; i < num_cores; ++i) {
cpu_cores.push_back(
std::make_shared<ARM_DynCom>(*this, *memory, USER32MODE, i, timing->GetTimer(i)));
}
}
running_core = cpu_cores[0].get();
kernel->SetCPUs(cpu_cores);
kernel->SetRunningCPU(cpu_cores[0].get());
const auto audio_emulation = Settings::values.audio_emulation.GetValue();
if (audio_emulation == Settings::AudioEmulation::HLE) {
dsp_core = std::make_unique<AudioCore::DspHle>(*this);
} else {
const bool multithread = audio_emulation == Settings::AudioEmulation::LLEMultithreaded;
dsp_core = std::make_unique<AudioCore::DspLle>(*this, multithread);
}
memory->SetDSP(*dsp_core);
dsp_core->SetSink(Settings::values.output_type.GetValue(),
Settings::values.output_device.GetValue());
dsp_core->EnableStretching(Settings::values.enable_audio_stretching.GetValue());
telemetry_session = std::make_unique<Core::TelemetrySession>();
#ifdef ENABLE_SCRIPTING
rpc_server = std::make_unique<RPC::Server>(*this);
#endif
service_manager = std::make_unique<Service::SM::ServiceManager>(*this);
archive_manager = std::make_unique<Service::FS::ArchiveManager>(*this);
HW::AES::InitKeys();
Service::Init(*this);
GDBStub::DeferStart();
if (!registered_image_interface) {
registered_image_interface = std::make_shared<Frontend::ImageInterface>();
}
custom_tex_manager = std::make_unique<VideoCore::CustomTexManager>(*this);
auto gsp = service_manager->GetService<Service::GSP::GSP_GPU>("gsp::Gpu");
gpu = std::make_unique<VideoCore::GPU>(*this, emu_window, secondary_window);
gpu->SetInterruptHandler(
[gsp](Service::GSP::InterruptId interrupt_id) { gsp->SignalInterrupt(interrupt_id); });
LOG_DEBUG(Core, "Initialized OK");
is_powered_on = true;
return ResultStatus::Success;
}
VideoCore::GPU& System::GPU() {
return *gpu;
}
Service::SM::ServiceManager& System::ServiceManager() {
return *service_manager;
}
const Service::SM::ServiceManager& System::ServiceManager() const {
return *service_manager;
}
Service::FS::ArchiveManager& System::ArchiveManager() {
return *archive_manager;
}
const Service::FS::ArchiveManager& System::ArchiveManager() const {
return *archive_manager;
}
Kernel::KernelSystem& System::Kernel() {
return *kernel;
}
const Kernel::KernelSystem& System::Kernel() const {
return *kernel;
}
bool System::KernelRunning() {
return kernel != nullptr;
}
Timing& System::CoreTiming() {
return *timing;
}
const Timing& System::CoreTiming() const {
return *timing;
}
Memory::MemorySystem& System::Memory() {
return *memory;
}
const Memory::MemorySystem& System::Memory() const {
return *memory;
}
Cheats::CheatEngine& System::CheatEngine() {
return cheat_engine;
}
const Cheats::CheatEngine& System::CheatEngine() const {
return cheat_engine;
}
void System::RegisterVideoDumper(std::shared_ptr<VideoDumper::Backend> dumper) {
video_dumper = std::move(dumper);
}
VideoCore::CustomTexManager& System::CustomTexManager() {
return *custom_tex_manager;
}
const VideoCore::CustomTexManager& System::CustomTexManager() const {
return *custom_tex_manager;
}
Core::Movie& System::Movie() {
return movie;
}
const Core::Movie& System::Movie() const {
return movie;
}
void System::RegisterMiiSelector(std::shared_ptr<Frontend::MiiSelector> mii_selector) {
registered_mii_selector = std::move(mii_selector);
}
void System::RegisterSoftwareKeyboard(std::shared_ptr<Frontend::SoftwareKeyboard> swkbd) {
registered_swkbd = std::move(swkbd);
}
void System::RegisterImageInterface(std::shared_ptr<Frontend::ImageInterface> image_interface) {
registered_image_interface = std::move(image_interface);
}
void System::Shutdown(bool is_deserializing) {
// Log last frame performance stats
const auto perf_results = GetAndResetPerfStats();
constexpr auto performance = Common::Telemetry::FieldType::Performance;
telemetry_session->AddField(performance, "Shutdown_EmulationSpeed",
perf_results.emulation_speed * 100.0);
telemetry_session->AddField(performance, "Shutdown_Framerate", perf_results.game_fps);
telemetry_session->AddField(performance, "Shutdown_Frametime", perf_results.frametime * 1000.0);
telemetry_session->AddField(performance, "Mean_Frametime_MS",
perf_stats ? perf_stats->GetMeanFrametime() : 0);
// Shutdown emulation session
is_powered_on = false;
gpu.reset();
if (!is_deserializing) {
GDBStub::Shutdown();
perf_stats.reset();
app_loader.reset();
}
custom_tex_manager.reset();
telemetry_session.reset();
#ifdef ENABLE_SCRIPTING
rpc_server.reset();
#endif
archive_manager.reset();
service_manager.reset();
dsp_core.reset();
kernel.reset();
cpu_cores.clear();
exclusive_monitor.reset();
timing.reset();
if (video_dumper && video_dumper->IsDumping()) {
video_dumper->StopDumping();
}
if (auto room_member = Network::GetRoomMember().lock()) {
Network::GameInfo game_info{};
room_member->SendGameInfo(game_info);
}
memory.reset();
if (self_delete_pending)
FileUtil::Delete(m_filepath);
self_delete_pending = false;
LOG_DEBUG(Core, "Shutdown OK");
}
void System::Reset() {
// This is NOT a proper reset, but a temporary workaround by shutting down the system and
// reloading.
// TODO: Properly implement the reset
// Since the system is completely reinitialized, we'll have to store the deliver arg manually.
boost::optional<Service::APT::DeliverArg> deliver_arg;
if (auto apt = Service::APT::GetModule(*this)) {
deliver_arg = apt->GetAppletManager()->ReceiveDeliverArg();
}
Shutdown();
if (!m_chainloadpath.empty()) {
m_filepath = m_chainloadpath;
m_chainloadpath.clear();
}
// Reload the system with the same setting
[[maybe_unused]] const System::ResultStatus result =
Load(*m_emu_window, m_filepath, m_secondary_window);
// Restore the deliver arg.
if (auto apt = Service::APT::GetModule(*this)) {
apt->GetAppletManager()->SetDeliverArg(std::move(deliver_arg));
}
}
void System::ApplySettings() {
GDBStub::SetServerPort(Settings::values.gdbstub_port.GetValue());
GDBStub::ToggleServer(Settings::values.use_gdbstub.GetValue());
if (gpu) {
gpu->Renderer().UpdateCurrentFramebufferLayout();
auto& settings = gpu->Renderer().Settings();
settings.bg_color_update_requested = true;
settings.shader_update_requested = true;
}
if (IsPoweredOn()) {
CoreTiming().UpdateClockSpeed(Settings::values.cpu_clock_percentage.GetValue());
dsp_core->SetSink(Settings::values.output_type.GetValue(),
Settings::values.output_device.GetValue());
dsp_core->EnableStretching(Settings::values.enable_audio_stretching.GetValue());
auto hid = Service::HID::GetModule(*this);
if (hid) {
hid->ReloadInputDevices();
}
auto apt = Service::APT::GetModule(*this);
if (apt) {
apt->GetAppletManager()->ReloadInputDevices();
}
auto ir_user = service_manager->GetService<Service::IR::IR_USER>("ir:USER");
if (ir_user)
ir_user->ReloadInputDevices();
auto ir_rst = service_manager->GetService<Service::IR::IR_RST>("ir:rst");
if (ir_rst)
ir_rst->ReloadInputDevices();
auto cam = Service::CAM::GetModule(*this);
if (cam) {
cam->ReloadCameraDevices();
}
Service::MIC::ReloadMic(*this);
}
auto plg_ldr = Service::PLGLDR::GetService(*this);
if (plg_ldr) {
plg_ldr->SetEnabled(Settings::values.plugin_loader_enabled.GetValue());
plg_ldr->SetAllowGameChangeState(Settings::values.allow_plugin_loader.GetValue());
}
}
template <class Archive>
void System::serialize(Archive& ar, const unsigned int file_version) {
u32 num_cores;
if (Archive::is_saving::value) {
num_cores = this->GetNumCores();
}
ar& num_cores;
if (Archive::is_loading::value) {
// When loading, we want to make sure any lingering state gets cleared out before we begin.
// Shutdown, but persist a few things between loads...
Shutdown(true);
// Re-initialize everything like it was before
auto memory_mode = this->app_loader->LoadKernelMemoryMode();
auto n3ds_hw_caps = this->app_loader->LoadNew3dsHwCapabilities();
[[maybe_unused]] const System::ResultStatus result = Init(
*m_emu_window, m_secondary_window, *memory_mode.first, *n3ds_hw_caps.first, num_cores);
}
// Flush on save, don't flush on load
const bool should_flush = !Archive::is_loading::value;
gpu->ClearAll(should_flush);
ar&* timing.get();
for (u32 i = 0; i < num_cores; i++) {
ar&* cpu_cores[i].get();
}
ar&* service_manager.get();
ar&* archive_manager.get();
// NOTE: DSP doesn't like being destroyed and recreated. So instead we do an inline
// serialization; this means that the DSP Settings need to match for loading to work.
auto dsp_hle = dynamic_cast<AudioCore::DspHle*>(dsp_core.get());
if (dsp_hle) {
ar&* dsp_hle;
} else {
throw std::runtime_error("LLE audio not supported for save states");
}
ar&* memory.get();
ar&* kernel.get();
ar&* gpu.get();
ar& movie;
// This needs to be set from somewhere - might as well be here!
if (Archive::is_loading::value) {
timing->UnlockEventQueue();
memory->SetDSP(*dsp_core);
cheat_engine.Connect();
gpu->Sync();
// Re-register gpu callback, because gsp service changed after service_manager got
// serialized
auto gsp = service_manager->GetService<Service::GSP::GSP_GPU>("gsp::Gpu");
gpu->SetInterruptHandler(
[gsp](Service::GSP::InterruptId interrupt_id) { gsp->SignalInterrupt(interrupt_id); });
}
}
SERIALIZE_IMPL(System)
} // namespace Core