Lime3DS/src/core/core_timing.cpp
2023-10-02 11:09:27 -07:00

243 lines
7.9 KiB
C++

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <tuple>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core_timing.h"
namespace Core {
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
bool Timing::Event::operator>(const Timing::Event& right) const {
return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order);
}
bool Timing::Event::operator<(const Timing::Event& right) const {
return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order);
}
Timing::Timing(std::size_t num_cores, u32 cpu_clock_percentage) {
timers.resize(num_cores);
for (std::size_t i = 0; i < num_cores; ++i) {
timers[i] = std::make_shared<Timer>();
}
UpdateClockSpeed(cpu_clock_percentage);
current_timer = timers[0].get();
}
void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) {
for (auto& timer : timers) {
timer->cpu_clock_scale = 100.0 / cpu_clock_percentage;
}
}
TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) {
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
auto info = event_types.emplace(name, TimingEventType{});
TimingEventType* event_type = &info.first->second;
event_type->name = &info.first->first;
if (callback != nullptr) {
event_type->callback = callback;
}
return event_type;
}
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
std::uintptr_t user_data, std::size_t core_id, bool thread_safe_mode) {
if (event_queue_locked) {
return;
}
ASSERT(event_type != nullptr);
Timing::Timer* timer = nullptr;
if (core_id == std::numeric_limits<std::size_t>::max()) {
timer = current_timer;
} else {
ASSERT(core_id < timers.size());
timer = timers.at(core_id).get();
}
if (thread_safe_mode) {
// Events scheduled in thread safe mode come after blocking operations with
// unpredictable timings in the host machine, so there is no need to be cycle accurate.
// To prevent the event from scheduling before the next advance(), we set a minimum time
// of MAX_SLICE_LENGTH * 2 cycles into the future.
cycles_into_future = std::max(static_cast<s64>(MAX_SLICE_LENGTH * 2), cycles_into_future);
timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0,
user_data, event_type});
} else {
s64 timeout = timer->GetTicks() + cycles_into_future;
if (current_timer == timer) {
// If this event needs to be scheduled before the next advance(), force one early
if (!timer->is_timer_sane)
timer->ForceExceptionCheck(cycles_into_future);
timer->event_queue.emplace_back(
Event{timeout, timer->event_fifo_id++, user_data, event_type});
std::push_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
} else {
timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0,
user_data, event_type});
}
}
}
void Timing::UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data) {
if (event_queue_locked) {
return;
}
for (auto timer : timers) {
auto itr = std::remove_if(
timer->event_queue.begin(), timer->event_queue.end(),
[&](const Event& e) { return e.type == event_type && e.user_data == user_data; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != timer->event_queue.end()) {
timer->event_queue.erase(itr, timer->event_queue.end());
std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
}
}
// TODO:remove events from ts_queue
}
void Timing::RemoveEvent(const TimingEventType* event_type) {
if (event_queue_locked) {
return;
}
for (auto timer : timers) {
auto itr = std::remove_if(timer->event_queue.begin(), timer->event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != timer->event_queue.end()) {
timer->event_queue.erase(itr, timer->event_queue.end());
std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
}
}
// TODO:remove events from ts_queue
}
void Timing::SetCurrentTimer(std::size_t core_id) {
current_timer = timers[core_id].get();
}
s64 Timing::GetTicks() const {
return current_timer->GetTicks();
}
s64 Timing::GetGlobalTicks() const {
const auto& timer =
std::max_element(timers.cbegin(), timers.cend(), [](const auto& a, const auto& b) {
return a->GetTicks() < b->GetTicks();
});
return (*timer)->GetTicks();
}
std::chrono::microseconds Timing::GetGlobalTimeUs() const {
return std::chrono::microseconds{GetGlobalTicks() * 1000000 / BASE_CLOCK_RATE_ARM11};
}
std::shared_ptr<Timing::Timer> Timing::GetTimer(std::size_t cpu_id) {
return timers[cpu_id];
}
Timing::Timer::Timer() = default;
Timing::Timer::~Timer() {
MoveEvents();
}
u64 Timing::Timer::GetTicks() const {
u64 ticks = static_cast<u64>(executed_ticks);
if (!is_timer_sane) {
ticks += slice_length - downcount;
}
return ticks;
}
void Timing::Timer::AddTicks(u64 ticks) {
downcount -= static_cast<u64>(ticks * cpu_clock_scale);
}
u64 Timing::Timer::GetIdleTicks() const {
return static_cast<u64>(idled_cycles);
}
void Timing::Timer::ForceExceptionCheck(s64 cycles) {
cycles = std::max<s64>(0, cycles);
if (downcount > cycles) {
slice_length -= downcount - cycles;
downcount = cycles;
}
}
void Timing::Timer::MoveEvents() {
for (Event ev; ts_queue.Pop(ev);) {
ev.fifo_order = event_fifo_id++;
event_queue.emplace_back(std::move(ev));
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
s64 Timing::Timer::GetMaxSliceLength() const {
const auto& next_event = event_queue.begin();
if (next_event != event_queue.end()) {
ASSERT(next_event->time - executed_ticks > 0);
return next_event->time - executed_ticks;
}
return MAX_SLICE_LENGTH;
}
void Timing::Timer::Advance() {
MoveEvents();
s64 cycles_executed = slice_length - downcount;
idled_cycles = 0;
executed_ticks += cycles_executed;
slice_length = 0;
downcount = 0;
is_timer_sane = true;
while (!event_queue.empty() && event_queue.front().time <= executed_ticks) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
if (evt.type->callback != nullptr) {
evt.type->callback(evt.user_data, static_cast<int>(executed_ticks - evt.time));
} else {
LOG_ERROR(Core, "Event '{}' has no callback", *evt.type->name);
}
}
is_timer_sane = false;
}
void Timing::Timer::SetNextSlice(s64 max_slice_length) {
slice_length = max_slice_length;
// Still events left (scheduled in the future)
if (!event_queue.empty()) {
slice_length = static_cast<int>(
std::min<s64>(event_queue.front().time - executed_ticks, max_slice_length));
}
downcount = slice_length;
}
void Timing::Timer::Idle() {
idled_cycles += downcount;
downcount = 0;
}
s64 Timing::Timer::GetDowncount() const {
return downcount;
}
} // namespace Core