mirror of
https://github.com/Lime3DS/Lime3DS.git
synced 2024-11-14 05:55:13 +01:00
7d8f115185
done automatically by executing regex replace `([^:0-9a-zA-Z_])size_t([^0-9a-zA-Z_])` -> `$1std::size_t$2`
792 lines
27 KiB
C++
792 lines
27 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <array>
|
|
#include <cstring>
|
|
#include "audio_core/dsp_interface.h"
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/swap.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/core.h"
|
|
#include "core/hle/kernel/memory.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/lock.h"
|
|
#include "core/memory.h"
|
|
#include "core/memory_setup.h"
|
|
#include "video_core/renderer_base.h"
|
|
#include "video_core/video_core.h"
|
|
|
|
namespace Memory {
|
|
|
|
static std::array<u8, Memory::VRAM_SIZE> vram;
|
|
static std::array<u8, Memory::N3DS_EXTRA_RAM_SIZE> n3ds_extra_ram;
|
|
|
|
static PageTable* current_page_table = nullptr;
|
|
|
|
void SetCurrentPageTable(PageTable* page_table) {
|
|
current_page_table = page_table;
|
|
if (Core::System::GetInstance().IsPoweredOn()) {
|
|
Core::CPU().PageTableChanged();
|
|
}
|
|
}
|
|
|
|
PageTable* GetCurrentPageTable() {
|
|
return current_page_table;
|
|
}
|
|
|
|
static void MapPages(PageTable& page_table, u32 base, u32 size, u8* memory, PageType type) {
|
|
LOG_DEBUG(HW_Memory, "Mapping {} onto {:08X}-{:08X}", (void*)memory, base * PAGE_SIZE,
|
|
(base + size) * PAGE_SIZE);
|
|
|
|
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
|
|
FlushMode::FlushAndInvalidate);
|
|
|
|
u32 end = base + size;
|
|
while (base != end) {
|
|
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:08X}", base);
|
|
|
|
page_table.attributes[base] = type;
|
|
page_table.pointers[base] = memory;
|
|
|
|
base += 1;
|
|
if (memory != nullptr)
|
|
memory += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, u8* target) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
|
|
}
|
|
|
|
void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
|
|
|
|
page_table.special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
|
|
}
|
|
|
|
void UnmapRegion(PageTable& page_table, VAddr base, u32 size) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
|
|
}
|
|
|
|
/**
|
|
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
|
|
* using a VMA from the current process
|
|
*/
|
|
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
|
|
u8* direct_pointer = nullptr;
|
|
|
|
auto& vm_manager = process.vm_manager;
|
|
|
|
auto it = vm_manager.FindVMA(vaddr);
|
|
ASSERT(it != vm_manager.vma_map.end());
|
|
|
|
auto& vma = it->second;
|
|
switch (vma.type) {
|
|
case Kernel::VMAType::AllocatedMemoryBlock:
|
|
direct_pointer = vma.backing_block->data() + vma.offset;
|
|
break;
|
|
case Kernel::VMAType::BackingMemory:
|
|
direct_pointer = vma.backing_memory;
|
|
break;
|
|
case Kernel::VMAType::Free:
|
|
return nullptr;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
return direct_pointer + (vaddr - vma.base);
|
|
}
|
|
|
|
/**
|
|
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
|
|
* using a VMA from the current process.
|
|
*/
|
|
static u8* GetPointerFromVMA(VAddr vaddr) {
|
|
return GetPointerFromVMA(*Kernel::g_current_process, vaddr);
|
|
}
|
|
|
|
/**
|
|
* This function should only be called for virtual addreses with attribute `PageType::Special`.
|
|
*/
|
|
static MMIORegionPointer GetMMIOHandler(const PageTable& page_table, VAddr vaddr) {
|
|
for (const auto& region : page_table.special_regions) {
|
|
if (vaddr >= region.base && vaddr < (region.base + region.size)) {
|
|
return region.handler;
|
|
}
|
|
}
|
|
ASSERT_MSG(false, "Mapped IO page without a handler @ {:08X}", vaddr);
|
|
return nullptr; // Should never happen
|
|
}
|
|
|
|
static MMIORegionPointer GetMMIOHandler(VAddr vaddr) {
|
|
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
|
|
return GetMMIOHandler(page_table, vaddr);
|
|
}
|
|
|
|
template <typename T>
|
|
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);
|
|
|
|
template <typename T>
|
|
T Read(const VAddr vaddr) {
|
|
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
T value;
|
|
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
|
|
return value;
|
|
}
|
|
|
|
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
|
|
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
|
|
return 0;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
|
|
|
|
T value;
|
|
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
|
|
return value;
|
|
}
|
|
case PageType::Special:
|
|
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);
|
|
|
|
template <typename T>
|
|
void Write(const VAddr vaddr, const T data) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
|
|
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X}", sizeof(data) * 8, (u32)data,
|
|
vaddr);
|
|
return;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
|
|
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
|
|
break;
|
|
}
|
|
case PageType::Special:
|
|
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
|
|
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer)
|
|
return true;
|
|
|
|
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
|
|
return true;
|
|
|
|
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
|
|
return false;
|
|
|
|
MMIORegionPointer mmio_region = GetMMIOHandler(page_table, vaddr);
|
|
if (mmio_region) {
|
|
return mmio_region->IsValidAddress(vaddr);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IsValidVirtualAddress(const VAddr vaddr) {
|
|
return IsValidVirtualAddress(*Kernel::g_current_process, vaddr);
|
|
}
|
|
|
|
bool IsValidPhysicalAddress(const PAddr paddr) {
|
|
return GetPhysicalPointer(paddr) != nullptr;
|
|
}
|
|
|
|
u8* GetPointer(const VAddr vaddr) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
return page_pointer + (vaddr & PAGE_MASK);
|
|
}
|
|
|
|
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
|
|
return GetPointerFromVMA(vaddr);
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x}", vaddr);
|
|
return nullptr;
|
|
}
|
|
|
|
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
|
|
std::string string;
|
|
string.reserve(max_length);
|
|
for (std::size_t i = 0; i < max_length; ++i) {
|
|
char c = Read8(vaddr);
|
|
if (c == '\0')
|
|
break;
|
|
string.push_back(c);
|
|
++vaddr;
|
|
}
|
|
string.shrink_to_fit();
|
|
return string;
|
|
}
|
|
|
|
u8* GetPhysicalPointer(PAddr address) {
|
|
struct MemoryArea {
|
|
PAddr paddr_base;
|
|
u32 size;
|
|
};
|
|
|
|
static constexpr MemoryArea memory_areas[] = {
|
|
{VRAM_PADDR, VRAM_SIZE},
|
|
{IO_AREA_PADDR, IO_AREA_SIZE},
|
|
{DSP_RAM_PADDR, DSP_RAM_SIZE},
|
|
{FCRAM_PADDR, FCRAM_N3DS_SIZE},
|
|
{N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE},
|
|
};
|
|
|
|
const auto area =
|
|
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
|
|
return address >= area.paddr_base && address < area.paddr_base + area.size;
|
|
});
|
|
|
|
if (area == std::end(memory_areas)) {
|
|
LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x{:08X}", address);
|
|
return nullptr;
|
|
}
|
|
|
|
if (area->paddr_base == IO_AREA_PADDR) {
|
|
LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x{:08X}", address);
|
|
return nullptr;
|
|
}
|
|
|
|
u32 offset_into_region = address - area->paddr_base;
|
|
|
|
u8* target_pointer = nullptr;
|
|
switch (area->paddr_base) {
|
|
case VRAM_PADDR:
|
|
target_pointer = vram.data() + offset_into_region;
|
|
break;
|
|
case DSP_RAM_PADDR:
|
|
target_pointer = Core::DSP().GetDspMemory().data() + offset_into_region;
|
|
break;
|
|
case FCRAM_PADDR:
|
|
for (const auto& region : Kernel::memory_regions) {
|
|
if (offset_into_region >= region.base &&
|
|
offset_into_region < region.base + region.size) {
|
|
target_pointer =
|
|
region.linear_heap_memory->data() + offset_into_region - region.base;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT_MSG(target_pointer != nullptr, "Invalid FCRAM address");
|
|
break;
|
|
case N3DS_EXTRA_RAM_PADDR:
|
|
target_pointer = n3ds_extra_ram.data() + offset_into_region;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
return target_pointer;
|
|
}
|
|
|
|
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
|
|
if (start == 0) {
|
|
return;
|
|
}
|
|
|
|
u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
|
|
PAddr paddr = start;
|
|
|
|
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
|
|
boost::optional<VAddr> maybe_vaddr = PhysicalToVirtualAddress(paddr);
|
|
// While the physical <-> virtual mapping is 1:1 for the regions supported by the cache,
|
|
// some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond
|
|
// the end address of VRAM, causing the Virtual->Physical translation to fail when flushing
|
|
// parts of the texture.
|
|
if (!maybe_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Trying to flush a cached region to an invalid physical address {:08X}",
|
|
paddr);
|
|
continue;
|
|
}
|
|
VAddr vaddr = *maybe_vaddr;
|
|
|
|
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
|
|
if (cached) {
|
|
// Switch page type to cached if now cached
|
|
switch (page_type) {
|
|
case PageType::Unmapped:
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case PageType::Memory:
|
|
page_type = PageType::RasterizerCachedMemory;
|
|
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
// Switch page type to uncached if now uncached
|
|
switch (page_type) {
|
|
case PageType::Unmapped:
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
|
|
if (pointer == nullptr) {
|
|
// It's possible that this function has been called while updating the pagetable
|
|
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
|
|
// and we should just leave the pagetable entry blank.
|
|
page_type = PageType::Unmapped;
|
|
} else {
|
|
page_type = PageType::Memory;
|
|
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerFlushRegion(PAddr start, u32 size) {
|
|
if (VideoCore::g_renderer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
|
|
}
|
|
|
|
void RasterizerInvalidateRegion(PAddr start, u32 size) {
|
|
if (VideoCore::g_renderer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
VideoCore::g_renderer->Rasterizer()->InvalidateRegion(start, size);
|
|
}
|
|
|
|
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
|
|
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
|
|
// null here
|
|
if (VideoCore::g_renderer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
|
|
}
|
|
|
|
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
|
|
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
|
|
// null here
|
|
if (VideoCore::g_renderer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
VAddr end = start + size;
|
|
|
|
auto CheckRegion = [&](VAddr region_start, VAddr region_end) {
|
|
if (start >= region_end || end <= region_start) {
|
|
// No overlap with region
|
|
return;
|
|
}
|
|
|
|
VAddr overlap_start = std::max(start, region_start);
|
|
VAddr overlap_end = std::min(end, region_end);
|
|
|
|
PAddr physical_start = TryVirtualToPhysicalAddress(overlap_start).value();
|
|
u32 overlap_size = overlap_end - overlap_start;
|
|
|
|
auto* rasterizer = VideoCore::g_renderer->Rasterizer();
|
|
switch (mode) {
|
|
case FlushMode::Flush:
|
|
rasterizer->FlushRegion(physical_start, overlap_size);
|
|
break;
|
|
case FlushMode::Invalidate:
|
|
rasterizer->InvalidateRegion(physical_start, overlap_size);
|
|
break;
|
|
case FlushMode::FlushAndInvalidate:
|
|
rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size);
|
|
break;
|
|
}
|
|
};
|
|
|
|
CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END);
|
|
CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END);
|
|
CheckRegion(VRAM_VADDR, VRAM_VADDR_END);
|
|
}
|
|
|
|
u8 Read8(const VAddr addr) {
|
|
return Read<u8>(addr);
|
|
}
|
|
|
|
u16 Read16(const VAddr addr) {
|
|
return Read<u16_le>(addr);
|
|
}
|
|
|
|
u32 Read32(const VAddr addr) {
|
|
return Read<u32_le>(addr);
|
|
}
|
|
|
|
u64 Read64(const VAddr addr) {
|
|
return Read<u64_le>(addr);
|
|
}
|
|
|
|
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
|
|
std::size_t remaining_size = size;
|
|
std::size_t page_index = src_addr >> PAGE_BITS;
|
|
std::size_t page_offset = src_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"unmapped ReadBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
|
|
current_vaddr, src_addr, size);
|
|
std::memset(dest_buffer, 0, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memcpy(dest_buffer, src_ptr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Special: {
|
|
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
|
|
DEBUG_ASSERT(handler);
|
|
handler->ReadBlock(current_vaddr, dest_buffer, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Flush);
|
|
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
|
|
ReadBlock(*Kernel::g_current_process, src_addr, dest_buffer, size);
|
|
}
|
|
|
|
void Write8(const VAddr addr, const u8 data) {
|
|
Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const VAddr addr, const u16 data) {
|
|
Write<u16_le>(addr, data);
|
|
}
|
|
|
|
void Write32(const VAddr addr, const u32 data) {
|
|
Write<u32_le>(addr, data);
|
|
}
|
|
|
|
void Write64(const VAddr addr, const u64 data) {
|
|
Write<u64_le>(addr, data);
|
|
}
|
|
|
|
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
std::size_t remaining_size = size;
|
|
std::size_t page_index = dest_addr >> PAGE_BITS;
|
|
std::size_t page_offset = dest_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"unmapped WriteBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
|
|
current_vaddr, dest_addr, size);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memcpy(dest_ptr, src_buffer, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Special: {
|
|
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
|
|
DEBUG_ASSERT(handler);
|
|
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Invalidate);
|
|
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
|
|
WriteBlock(*Kernel::g_current_process, dest_addr, src_buffer, size);
|
|
}
|
|
|
|
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
std::size_t remaining_size = size;
|
|
std::size_t page_index = dest_addr >> PAGE_BITS;
|
|
std::size_t page_offset = dest_addr & PAGE_MASK;
|
|
|
|
static const std::array<u8, PAGE_SIZE> zeros = {};
|
|
|
|
while (remaining_size > 0) {
|
|
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"unmapped ZeroBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
|
|
current_vaddr, dest_addr, size);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memset(dest_ptr, 0, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Special: {
|
|
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
|
|
DEBUG_ASSERT(handler);
|
|
handler->WriteBlock(current_vaddr, zeros.data(), copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Invalidate);
|
|
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void ZeroBlock(const VAddr dest_addr, const std::size_t size) {
|
|
ZeroBlock(*Kernel::g_current_process, dest_addr, size);
|
|
}
|
|
|
|
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
|
|
const std::size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
std::size_t remaining_size = size;
|
|
std::size_t page_index = src_addr >> PAGE_BITS;
|
|
std::size_t page_offset = src_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
|
|
current_vaddr, src_addr, size);
|
|
ZeroBlock(process, dest_addr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
|
|
WriteBlock(process, dest_addr, src_ptr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Special: {
|
|
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
|
|
DEBUG_ASSERT(handler);
|
|
std::vector<u8> buffer(copy_amount);
|
|
handler->ReadBlock(current_vaddr, buffer.data(), buffer.size());
|
|
WriteBlock(process, dest_addr, buffer.data(), buffer.size());
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Flush);
|
|
WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
dest_addr += static_cast<VAddr>(copy_amount);
|
|
src_addr += static_cast<VAddr>(copy_amount);
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void CopyBlock(VAddr dest_addr, VAddr src_addr, const std::size_t size) {
|
|
CopyBlock(*Kernel::g_current_process, dest_addr, src_addr, size);
|
|
}
|
|
|
|
template <>
|
|
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) {
|
|
return mmio_handler->Read8(addr);
|
|
}
|
|
|
|
template <>
|
|
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) {
|
|
return mmio_handler->Read16(addr);
|
|
}
|
|
|
|
template <>
|
|
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) {
|
|
return mmio_handler->Read32(addr);
|
|
}
|
|
|
|
template <>
|
|
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) {
|
|
return mmio_handler->Read64(addr);
|
|
}
|
|
|
|
template <>
|
|
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) {
|
|
mmio_handler->Write8(addr, data);
|
|
}
|
|
|
|
template <>
|
|
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) {
|
|
mmio_handler->Write16(addr, data);
|
|
}
|
|
|
|
template <>
|
|
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) {
|
|
mmio_handler->Write32(addr, data);
|
|
}
|
|
|
|
template <>
|
|
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) {
|
|
mmio_handler->Write64(addr, data);
|
|
}
|
|
|
|
boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {
|
|
if (addr == 0) {
|
|
return 0;
|
|
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
|
|
return addr - VRAM_VADDR + VRAM_PADDR;
|
|
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
|
|
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
|
|
} else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
|
|
return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
|
|
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
|
|
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
|
|
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
|
|
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
|
|
} else if (addr >= N3DS_EXTRA_RAM_VADDR && addr < N3DS_EXTRA_RAM_VADDR_END) {
|
|
return addr - N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_PADDR;
|
|
}
|
|
|
|
return boost::none;
|
|
}
|
|
|
|
PAddr VirtualToPhysicalAddress(const VAddr addr) {
|
|
auto paddr = TryVirtualToPhysicalAddress(addr);
|
|
if (!paddr) {
|
|
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x{:08X}", addr);
|
|
// To help with debugging, set bit on address so that it's obviously invalid.
|
|
return addr | 0x80000000;
|
|
}
|
|
return *paddr;
|
|
}
|
|
|
|
boost::optional<VAddr> PhysicalToVirtualAddress(const PAddr addr) {
|
|
if (addr == 0) {
|
|
return 0;
|
|
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
|
|
return addr - VRAM_PADDR + VRAM_VADDR;
|
|
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
|
|
return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapAreaAddress();
|
|
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
|
|
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
|
|
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
|
|
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
|
|
} else if (addr >= N3DS_EXTRA_RAM_PADDR && addr < N3DS_EXTRA_RAM_PADDR_END) {
|
|
return addr - N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_VADDR;
|
|
}
|
|
|
|
return boost::none;
|
|
}
|
|
|
|
} // namespace Memory
|