Lime3DS/src/core/memory.cpp
Weiyi Wang 2067946f59
Kernel: reimplement memory management on physical FCRAM (#4392)
* Kernel: reimplement memory management on physical FCRAM

* Kernel/Process: Unmap does not care the source memory permission

What game usually does is after mapping the memory, they reprotect the source memory as no permission to avoid modification there

* Kernel/SharedMemory: zero initialize new-allocated memory

* Process/Thread: zero new TLS entry

* Kernel: fix a bug where code segments memory usage are accumulated twice

It is added to both misc and heap (done inside HeapAlloc), which results a doubled number reported by svcGetProcessInfo. While we are on it, we just merge the three number misc, heap and linear heap usage together, as there is no where they are distinguished.

Question: is TLS page also added to this number?

* Kernel/SharedMemory: add more object info on mapping error

* Process: lower log level; SharedMemory: store phys offset

* VMManager: add helper function to retrieve backing block list for a range
2018-11-06 15:00:47 -05:00

848 lines
29 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstring>
#include "audio_core/dsp_interface.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/lock.h"
#include "core/memory.h"
#include "core/memory_setup.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
namespace Memory {
static std::array<u8, Memory::VRAM_SIZE> vram;
static std::array<u8, Memory::N3DS_EXTRA_RAM_SIZE> n3ds_extra_ram;
std::array<u8, Memory::FCRAM_N3DS_SIZE> fcram;
static PageTable* current_page_table = nullptr;
void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
}
}
PageTable* GetCurrentPageTable() {
return current_page_table;
}
static void MapPages(PageTable& page_table, u32 base, u32 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping {} onto {:08X}-{:08X}", (void*)memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE);
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
FlushMode::FlushAndInvalidate);
u32 end = base + size;
while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:08X}", base);
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
base += 1;
if (memory != nullptr)
memory += PAGE_SIZE;
}
}
void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
page_table.special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
}
void UnmapRegion(PageTable& page_table, VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process
*/
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vm_manager = process.vm_manager;
auto it = vm_manager.FindVMA(vaddr);
ASSERT(it != vm_manager.vma_map.end());
auto& vma = it->second;
switch (vma.type) {
case Kernel::VMAType::AllocatedMemoryBlock:
direct_pointer = vma.backing_block->data() + vma.offset;
break;
case Kernel::VMAType::BackingMemory:
direct_pointer = vma.backing_memory;
break;
case Kernel::VMAType::Free:
return nullptr;
default:
UNREACHABLE();
}
return direct_pointer + (vaddr - vma.base);
}
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process.
*/
static u8* GetPointerFromVMA(VAddr vaddr) {
return GetPointerFromVMA(*Core::System::GetInstance().Kernel().GetCurrentProcess(), vaddr);
}
/**
* This function should only be called for virtual addreses with attribute `PageType::Special`.
*/
static MMIORegionPointer GetMMIOHandler(const PageTable& page_table, VAddr vaddr) {
for (const auto& region : page_table.special_regions) {
if (vaddr >= region.base && vaddr < (region.base + region.size)) {
return region.handler;
}
}
ASSERT_MSG(false, "Mapped IO page without a handler @ {:08X}", vaddr);
return nullptr; // Should never happen
}
static MMIORegionPointer GetMMIOHandler(VAddr vaddr) {
const PageTable& page_table =
Core::System::GetInstance().Kernel().GetCurrentProcess()->vm_manager.page_table;
return GetMMIOHandler(page_table, vaddr);
}
template <typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
T value;
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
return value;
}
case PageType::Special:
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
default:
UNREACHABLE();
}
}
template <typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X}", sizeof(data) * 8, (u32)data,
vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
}
case PageType::Special:
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
default:
UNREACHABLE();
}
}
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table;
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
if (page_pointer)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false;
MMIORegionPointer mmio_region = GetMMIOHandler(page_table, vaddr);
if (mmio_region) {
return mmio_region->IsValidAddress(vaddr);
}
return false;
}
bool IsValidVirtualAddress(const VAddr vaddr) {
return IsValidVirtualAddress(*Core::System::GetInstance().Kernel().GetCurrentProcess(), vaddr);
}
bool IsValidPhysicalAddress(const PAddr paddr) {
return GetPhysicalPointer(paddr) != nullptr;
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerFromVMA(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x}", vaddr);
return nullptr;
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
char c = Read8(vaddr);
if (c == '\0')
break;
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
u8* GetPhysicalPointer(PAddr address) {
struct MemoryArea {
PAddr paddr_base;
u32 size;
};
static constexpr MemoryArea memory_areas[] = {
{VRAM_PADDR, VRAM_SIZE},
{IO_AREA_PADDR, IO_AREA_SIZE},
{DSP_RAM_PADDR, DSP_RAM_SIZE},
{FCRAM_PADDR, FCRAM_N3DS_SIZE},
{N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE},
};
const auto area =
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
return address >= area.paddr_base && address < area.paddr_base + area.size;
});
if (area == std::end(memory_areas)) {
LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x{:08X}", address);
return nullptr;
}
if (area->paddr_base == IO_AREA_PADDR) {
LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x{:08X}", address);
return nullptr;
}
u32 offset_into_region = address - area->paddr_base;
u8* target_pointer = nullptr;
switch (area->paddr_base) {
case VRAM_PADDR:
target_pointer = vram.data() + offset_into_region;
break;
case DSP_RAM_PADDR:
target_pointer = Core::DSP().GetDspMemory().data() + offset_into_region;
break;
case FCRAM_PADDR:
target_pointer = fcram.data() + offset_into_region;
break;
case N3DS_EXTRA_RAM_PADDR:
target_pointer = n3ds_extra_ram.data() + offset_into_region;
break;
default:
UNREACHABLE();
}
return target_pointer;
}
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
if (start == 0) {
return;
}
u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
PAddr paddr = start;
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
std::optional<VAddr> maybe_vaddr = PhysicalToVirtualAddress(paddr);
// While the physical <-> virtual mapping is 1:1 for the regions supported by the cache,
// some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond
// the end address of VRAM, causing the Virtual->Physical translation to fail when flushing
// parts of the texture.
if (!maybe_vaddr) {
LOG_ERROR(HW_Memory,
"Trying to flush a cached region to an invalid physical address {:08X}",
paddr);
continue;
}
VAddr vaddr = *maybe_vaddr;
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::RasterizerCachedMemory: {
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
if (pointer == nullptr) {
// It's possible that this function has been called while updating the pagetable
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
// and we should just leave the pagetable entry blank.
page_type = PageType::Unmapped;
} else {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
}
break;
}
default:
UNREACHABLE();
}
}
}
}
void RasterizerFlushRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
}
void RasterizerInvalidateRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->InvalidateRegion(start, size);
}
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
}
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer == nullptr) {
return;
}
VAddr end = start + size;
auto CheckRegion = [&](VAddr region_start, VAddr region_end) {
if (start >= region_end || end <= region_start) {
// No overlap with region
return;
}
VAddr overlap_start = std::max(start, region_start);
VAddr overlap_end = std::min(end, region_end);
auto maybe_paddr = TryVirtualToPhysicalAddress(overlap_start);
ASSERT(maybe_paddr);
PAddr physical_start = *maybe_paddr;
u32 overlap_size = overlap_end - overlap_start;
auto* rasterizer = VideoCore::g_renderer->Rasterizer();
switch (mode) {
case FlushMode::Flush:
rasterizer->FlushRegion(physical_start, overlap_size);
break;
case FlushMode::Invalidate:
rasterizer->InvalidateRegion(physical_start, overlap_size);
break;
case FlushMode::FlushAndInvalidate:
rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size);
break;
}
};
CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END);
CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END);
CheckRegion(VRAM_VADDR, VRAM_VADDR_END);
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped ReadBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->ReadBlock(current_vaddr, dest_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
ReadBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), src_addr, dest_buffer,
size);
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
WriteBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), dest_addr, src_buffer,
size);
}
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
static const std::array<u8, PAGE_SIZE> zeros = {};
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped ZeroBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memset(dest_ptr, 0, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->WriteBlock(current_vaddr, zeros.data(), copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
}
void ZeroBlock(const VAddr dest_addr, const std::size_t size) {
ZeroBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), dest_addr, size);
}
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(process, dest_addr, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
std::vector<u8> buffer(copy_amount);
handler->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(process, dest_addr, buffer.data(), buffer.size());
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
void CopyBlock(VAddr dest_addr, VAddr src_addr, const std::size_t size) {
CopyBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), dest_addr, src_addr, size);
}
void CopyBlock(const Kernel::Process& src_process, const Kernel::Process& dest_process,
VAddr src_addr, VAddr dest_addr, std::size_t size) {
auto& page_table = src_process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(dest_process, dest_addr, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(dest_process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
std::vector<u8> buffer(copy_amount);
handler->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(dest_process, dest_addr, buffer.data(), buffer.size());
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(dest_process, dest_addr, GetPointerFromVMA(src_process, current_vaddr),
copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
template <>
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read8(addr);
}
template <>
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read16(addr);
}
template <>
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read32(addr);
}
template <>
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read64(addr);
}
template <>
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) {
mmio_handler->Write8(addr, data);
}
template <>
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) {
mmio_handler->Write16(addr, data);
}
template <>
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) {
mmio_handler->Write32(addr, data);
}
template <>
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) {
mmio_handler->Write64(addr, data);
}
std::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return addr - VRAM_VADDR + VRAM_PADDR;
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
} else if (addr >= N3DS_EXTRA_RAM_VADDR && addr < N3DS_EXTRA_RAM_VADDR_END) {
return addr - N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_PADDR;
}
return {};
}
PAddr VirtualToPhysicalAddress(const VAddr addr) {
auto paddr = TryVirtualToPhysicalAddress(addr);
if (!paddr) {
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x{:08X}", addr);
// To help with debugging, set bit on address so that it's obviously invalid.
return addr | 0x80000000;
}
return *paddr;
}
std::optional<VAddr> PhysicalToVirtualAddress(const PAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
return addr - VRAM_PADDR + VRAM_VADDR;
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
return addr - FCRAM_PADDR +
Core::System::GetInstance().Kernel().GetCurrentProcess()->GetLinearHeapAreaAddress();
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
} else if (addr >= N3DS_EXTRA_RAM_PADDR && addr < N3DS_EXTRA_RAM_PADDR_END) {
return addr - N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_VADDR;
}
return {};
}
u32 GetFCRAMOffset(u8* pointer) {
ASSERT(pointer >= fcram.data() && pointer < fcram.data() + fcram.size());
return pointer - fcram.data();
}
} // namespace Memory