mirror of
https://vps.suchmeme.nl/git/mudkip/Lockpick_RCM.git
synced 2024-11-22 04:19:19 +01:00
keys: Refactor key crypto, fix SSL key dumping
This commit is contained in:
parent
5768fba4a7
commit
e8d66f318d
@ -100,12 +100,15 @@ static const u8 mariko_key_vectors[][0x10] __attribute__((aligned(4))) = {
|
||||
// from Package1 -> Secure_Monitor
|
||||
static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = {
|
||||
0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9};
|
||||
static const u8 aes_seal_key_mask_decrypt_device_unique_data[0x10] __attribute__((aligned(4))) = {
|
||||
0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74};
|
||||
static const u8 aes_seal_key_mask_import_es_device_key[0x10] __attribute__((aligned(4))) = {
|
||||
0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB};
|
||||
static const u8 aes_seal_key_mask_decrypt_ssl_client_cert_key[0x10] __attribute__((aligned(4))) = {
|
||||
0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75};
|
||||
static const u8 seal_key_masks[][0x10] __attribute__((aligned(4))) = {
|
||||
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // SealKey_LoadAesKey
|
||||
{0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}, // SealKey_DecryptDeviceUniqueData
|
||||
{0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C}, // SealKey_ImportLotusKey
|
||||
{0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}, // SealKey_ImportEsDeviceKey
|
||||
{0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31}, // SealKey_ReencryptDeviceUniqueData
|
||||
{0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}, // SealKey_ImportSslKey
|
||||
{0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61}, // SealKey_ImportEsClientCertKey
|
||||
};
|
||||
static const u8 package2_key_source[0x10] __attribute__((aligned(4))) = {
|
||||
0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7};
|
||||
static const u8 titlekek_source[0x10] __attribute__((aligned(4))) = {
|
||||
@ -181,12 +184,14 @@ static const u8 eticket_rsa_kekek_source[0x10] __attribute__((aligned(4))) = {
|
||||
0X46, 0X6E, 0X57, 0XB7, 0X4A, 0X44, 0X7F, 0X02, 0XF3, 0X21, 0XCD, 0XE5, 0X8F, 0X2F, 0X55, 0X35};
|
||||
|
||||
// from SSL
|
||||
static const u8 ssl_rsa_kek_source_x[0x10] __attribute__((aligned(4))) = {
|
||||
static const u8 ssl_rsa_kekek_source[0x10] __attribute__((aligned(4))) = {
|
||||
0X7F, 0X5B, 0XB0, 0X84, 0X7B, 0X25, 0XAA, 0X67, 0XFA, 0XC8, 0X4B, 0XE2, 0X3D, 0X7B, 0X69, 0X03};
|
||||
static const u8 ssl_rsa_kek_source_y[0x10] __attribute__((aligned(4))) = {
|
||||
static const u8 ssl_rsa_kek_source[0x10] __attribute__((aligned(4))) = {
|
||||
0X9A, 0X38, 0X3B, 0XF4, 0X31, 0XD0, 0XBD, 0X81, 0X32, 0X53, 0X4B, 0XA9, 0X64, 0X39, 0X7D, 0XE3};
|
||||
static const u8 ssl_rsa_kek_source_y_dev[0x10] __attribute__((aligned(4))) = {
|
||||
static const u8 ssl_rsa_kek_source_dev[0x10] __attribute__((aligned(4))) = {
|
||||
0xD5, 0xD2, 0xFC, 0x00, 0xFD, 0x49, 0xDD, 0xF8, 0xEE, 0x7B, 0xC4, 0x4B, 0xE1, 0x4C, 0xAA, 0x99};
|
||||
static const u8 ssl_rsa_kek_source_legacy[0x10] __attribute__((aligned(4))) = {
|
||||
0xED, 0x36, 0xB1, 0x32, 0x27, 0x17, 0xD2, 0xB0, 0xBA, 0x1F, 0xC1, 0xBD, 0x4D, 0x38, 0x0F, 0x5E};
|
||||
static const u8 ssl_client_cert_kek_source[0x10] __attribute__((aligned(4))) = {
|
||||
0x64, 0xB8, 0x30, 0xDD, 0x0F, 0x3C, 0xB7, 0xFB, 0x4C, 0x16, 0x01, 0x97, 0xEA, 0x9D, 0x12, 0x10};
|
||||
static const u8 ssl_client_cert_key_source[0x10] __attribute__((aligned(4))) = {
|
||||
|
@ -73,10 +73,14 @@ static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
|
||||
static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
|
||||
static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
|
||||
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
|
||||
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed);
|
||||
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key);
|
||||
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation);
|
||||
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision);
|
||||
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
|
||||
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source);
|
||||
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
|
||||
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
|
||||
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
|
||||
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation);
|
||||
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation);
|
||||
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt);
|
||||
// titlekey functions
|
||||
static bool _test_key_pair(const void *E, const void *D, const void *N);
|
||||
|
||||
@ -87,8 +91,7 @@ static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) {
|
||||
for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) {
|
||||
// Relies on the Mariko KEK being properly set in slot 12
|
||||
se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source)
|
||||
se_aes_key_set(8, keys->master_kek[i], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys)
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i], master_key_source);
|
||||
_load_aes_key(8, keys->master_key[i], keys->master_kek[i], master_key_source);
|
||||
}
|
||||
}
|
||||
|
||||
@ -116,18 +119,15 @@ static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool
|
||||
// Derive all master keys based on current root key
|
||||
for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) {
|
||||
se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks)
|
||||
se_aes_key_set(8, keys->master_kek[i + KB_FIRMWARE_VERSION_620], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys)
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i + KB_FIRMWARE_VERSION_620], master_key_source);
|
||||
_load_aes_key(8, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source);
|
||||
}
|
||||
}
|
||||
|
||||
// Derive all lower master keys
|
||||
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
|
||||
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i - 1], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
|
||||
_load_aes_key(8, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
|
||||
}
|
||||
se_aes_key_set(8, keys->master_key[0], AES_128_KEY_SIZE);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->temp_key, is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
|
||||
_load_aes_key(8, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
|
||||
|
||||
if (_key_exists(keys->temp_key)) {
|
||||
EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod");
|
||||
@ -166,8 +166,7 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
|
||||
minerva_periodic_training();
|
||||
se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec)
|
||||
se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk)
|
||||
se_aes_key_set(7, keys->keyblob_key[i], sizeof(keys->keyblob_key[i]));
|
||||
se_aes_crypt_block_ecb(7, DECRYPT, keys->keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
|
||||
_load_aes_key(7, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
|
||||
if (i == 0) {
|
||||
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
|
||||
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
|
||||
@ -191,82 +190,84 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
|
||||
|
||||
memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i]));
|
||||
memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i]));
|
||||
se_aes_key_set(7, keys->master_kek[i], sizeof(keys->master_kek[i]));
|
||||
if (!_key_exists(keys->master_key[i])) {
|
||||
se_aes_crypt_block_ecb(7, DECRYPT, keys->master_key[i], master_key_source);
|
||||
_load_aes_key(7, keys->master_key[i], keys->master_kek[i], master_key_source);
|
||||
}
|
||||
}
|
||||
free(keyblob_block);
|
||||
}
|
||||
|
||||
static void _derive_bis_keys(key_derivation_ctx_t *keys) {
|
||||
/* key = unwrap(source, wrapped_key):
|
||||
key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key
|
||||
*/
|
||||
minerva_periodic_training();
|
||||
u32 key_generation = fuse_read_odm_keygen_rev();
|
||||
if (key_generation)
|
||||
key_generation--;
|
||||
u32 generation = fuse_read_odm_keygen_rev();
|
||||
|
||||
if (!(_key_exists(keys->device_key) || (key_generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
|
||||
if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
|
||||
return;
|
||||
}
|
||||
_generate_specific_aes_key(8, keys, &keys->bis_key[0], &bis_key_sources[0], key_generation);
|
||||
// kek = generate_kek(bkeks, devkey, aeskek, aeskey)
|
||||
_get_device_key(8, keys, keys->temp_key, key_generation);
|
||||
_generate_kek(8, bis_kek_source, keys->temp_key, aes_kek_generation_source, aes_key_generation_source);
|
||||
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[1], AES_128_KEY_SIZE * 2, bis_key_sources[1], AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek)
|
||||
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[2], AES_128_KEY_SIZE * 2, bis_key_sources[2], AES_128_KEY_SIZE * 2);
|
||||
memcpy(keys->bis_key[3], keys->bis_key[2], 0x20);
|
||||
_generate_specific_aes_key(8, keys, &keys->bis_key[0], bis_key_sources[0], generation);
|
||||
u32 access_key[AES_128_KEY_SIZE / 4] = {0};
|
||||
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
|
||||
_generate_aes_kek(8, keys, access_key, bis_kek_source, generation, option);
|
||||
_generate_aes_key(8, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
|
||||
_generate_aes_key(8, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
|
||||
memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3]));
|
||||
}
|
||||
|
||||
static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
|
||||
if (_key_exists(keys->master_key[0])) {
|
||||
_generate_kek(8, header_kek_source, keys->master_key[0], aes_kek_generation_source, aes_key_generation_source);
|
||||
se_aes_crypt_ecb(8, DECRYPT, keys->header_key, AES_128_KEY_SIZE * 2, header_key_source, AES_128_KEY_SIZE * 2);
|
||||
const u32 generation = 0;
|
||||
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
||||
_generate_aes_kek(8, keys, keys->temp_key, header_kek_source, generation, option);
|
||||
_generate_aes_key(8, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source);
|
||||
}
|
||||
}
|
||||
|
||||
static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kek_source) {
|
||||
u8 kek_seed[AES_128_KEY_SIZE];
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
||||
kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i];
|
||||
_generate_kek(ks, eticket_rsa_kekek_source, master_key, kek_seed, NULL);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, out_rsa_kek, kek_source);
|
||||
static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) {
|
||||
void *access_key = keys->temp_key;
|
||||
_generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option);
|
||||
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
|
||||
|
||||
}
|
||||
|
||||
static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kekek_source, const void *kek_source) {
|
||||
u8 kek_seed[AES_128_KEY_SIZE];
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
||||
kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i];
|
||||
_generate_kek(8, kekek_source, master_key, kek_seed, NULL);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, out_rsa_kek, kek_source);
|
||||
static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
|
||||
void *access_key = keys->temp_key;
|
||||
_generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
|
||||
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
|
||||
}
|
||||
|
||||
static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
|
||||
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
|
||||
_get_device_key(8, keys, keys->temp_key, 0);
|
||||
_generate_kek(8, save_mac_kek_source, keys->temp_key, aes_kek_generation_source, NULL);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->save_mac_key, save_mac_key_source);
|
||||
void *access_key = keys->temp_key;
|
||||
const u32 generation = 0;
|
||||
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
|
||||
_generate_aes_kek(8, keys, access_key, save_mac_kek_source, generation, option);
|
||||
_load_aes_key(8, keys->save_mac_key, access_key, save_mac_key_source);
|
||||
}
|
||||
|
||||
if (_key_exists(keys->master_key[0])) {
|
||||
_derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, keys->master_key[0], is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source);
|
||||
_derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, keys->master_key[0], ssl_rsa_kek_source_x, is_dev ? ssl_rsa_kek_source_y_dev : ssl_rsa_kek_source_y);
|
||||
const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
|
||||
const u32 generation = 0;
|
||||
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
|
||||
_derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, eticket_kek_source, generation, option);
|
||||
|
||||
const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source;
|
||||
option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
|
||||
_derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option);
|
||||
}
|
||||
}
|
||||
|
||||
static void _derive_per_generation_keys(key_derivation_ctx_t *keys) {
|
||||
for (u32 i = 0; i < KB_FIRMWARE_VERSION_MAX + 1; i++) {
|
||||
if (!_key_exists(keys->master_key[i]))
|
||||
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
|
||||
if (!_key_exists(keys->master_key[generation]))
|
||||
continue;
|
||||
for (u32 j = 0; j < 3; j++) {
|
||||
_generate_kek(8, key_area_key_sources[j], keys->master_key[i], aes_kek_generation_source, NULL);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->key_area_key[j][i], aes_key_generation_source);
|
||||
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
|
||||
void *access_key = keys->temp_key;
|
||||
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
||||
_generate_aes_kek(8, keys, access_key, key_area_key_sources[source_type], generation + 1, option);
|
||||
_load_aes_key(8, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source);
|
||||
}
|
||||
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->package2_key[i], package2_key_source);
|
||||
se_aes_crypt_block_ecb(8, DECRYPT, keys->titlekek[i], titlekek_source);
|
||||
_load_aes_key(8, keys->package2_key[generation], keys->master_key[generation], package2_key_source);
|
||||
_load_aes_key(8, keys->titlekek[generation], keys->master_key[generation], titlekek_source);
|
||||
}
|
||||
}
|
||||
|
||||
@ -343,6 +344,10 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
|
||||
return false;
|
||||
}
|
||||
|
||||
if (is_personalized) {
|
||||
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
|
||||
}
|
||||
|
||||
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
|
||||
|
||||
offset = 0;
|
||||
@ -467,6 +472,29 @@ static bool _read_cal0(void *read_buffer) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
|
||||
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
|
||||
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
|
||||
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
|
||||
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18);
|
||||
|
||||
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) {
|
||||
*out_key = cal0->ext_ssl_key;
|
||||
*out_key_size = ext_key_size;
|
||||
*out_iv = cal0->ext_ssl_key_iv;
|
||||
// settings sysmodule manually zeroes this out below cal version 9
|
||||
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
|
||||
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) {
|
||||
*out_key = cal0->ssl_key;
|
||||
*out_key_size = key_size;
|
||||
*out_iv = cal0->ssl_key_iv;
|
||||
*out_generation = 0;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
|
||||
if (!_read_cal0(titlekey_buffer->read_buffer)) {
|
||||
return false;
|
||||
@ -477,40 +505,59 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
|
||||
const void *ssl_device_key = NULL;
|
||||
const void *ssl_iv = NULL;
|
||||
u32 key_size = 0;
|
||||
void *keypair_ctr_key = NULL;
|
||||
bool enforce_unique = true;
|
||||
|
||||
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, 0x13E)) {
|
||||
ssl_device_key = cal0->ext_ssl_key;
|
||||
ssl_iv = cal0->ext_ssl_key_iv;
|
||||
key_size = 0x120;
|
||||
|
||||
// settings sysmodule manually zeroes this out below cal version 9
|
||||
keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
|
||||
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, 0x11E)) {
|
||||
ssl_device_key = cal0->ssl_key;
|
||||
ssl_iv = cal0->ssl_key_iv;
|
||||
key_size = 0x100;
|
||||
} else {
|
||||
if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &keypair_generation)) {
|
||||
EPRINTF("Crc16 error reading device key.");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (keypair_generation) {
|
||||
keypair_generation--;
|
||||
_get_device_key(7, keys, keys->temp_key, keypair_generation);
|
||||
_derive_ssl_rsa_kek(keys, 7, keys->ssl_rsa_kek_personalized, keys->temp_key, ssl_client_cert_kek_source, ssl_client_cert_key_source);
|
||||
|
||||
memcpy(keys->temp_key, keys->ssl_rsa_kek_personalized, sizeof(keys->temp_key));
|
||||
} else {
|
||||
memcpy(keys->temp_key, keys->ssl_rsa_kek, sizeof(keys->temp_key));
|
||||
if (key_size == SSL_RSA_KEYPAIR_SIZE) {
|
||||
bool all_zero = true;
|
||||
const u8 *key8 = (const u8 *)ssl_device_key;
|
||||
for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEYPAIR_SIZE; i++) {
|
||||
if (key8[i] != 0) {
|
||||
all_zero = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (all_zero) {
|
||||
// keypairs of this form are not encrypted
|
||||
memcpy(keys->ssl_rsa_keypair, ssl_device_key, RSA_2048_KEY_SIZE);
|
||||
return true;
|
||||
}
|
||||
|
||||
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key));
|
||||
se_aes_crypt_ctr(6, &keys->ssl_rsa_key, sizeof(keys->ssl_rsa_key), ssl_device_key, sizeof(keys->ssl_rsa_key), ssl_iv);
|
||||
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
|
||||
keypair_ctr_key = keys->ssl_rsa_kek_legacy;
|
||||
_derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, keypair_generation, option);
|
||||
enforce_unique = false;
|
||||
}
|
||||
|
||||
if (key_size == 0x120) {
|
||||
if (_key_exists(keys->ssl_rsa_key + 0x100)) {
|
||||
EPRINTF("Invalid SSL key.");
|
||||
memset(&keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key));
|
||||
if (keypair_generation) {
|
||||
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
|
||||
keypair_ctr_key = keys->ssl_rsa_kek_personalized;
|
||||
_derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, keypair_generation, option);
|
||||
} else {
|
||||
keypair_ctr_key = keys->ssl_rsa_kek;
|
||||
}
|
||||
|
||||
u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10;
|
||||
se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_ctr(6, keys->ssl_rsa_keypair, ctr_size, ssl_device_key, ctr_size, ssl_iv);
|
||||
|
||||
if (enforce_unique) {
|
||||
u32 j_block[AES_128_KEY_SIZE / 4] = {0};
|
||||
se_aes_key_set(7, keypair_ctr_key, AES_128_KEY_SIZE);
|
||||
_ghash(7, j_block, ssl_iv, 0x10, NULL, false);
|
||||
|
||||
u32 calc_mac[AES_128_KEY_SIZE / 4] = {0};
|
||||
_ghash(7, calc_mac, keys->ssl_rsa_keypair, ctr_size, j_block, true);
|
||||
|
||||
const u8 *key8 = (const u8 *)ssl_device_key;
|
||||
if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) {
|
||||
EPRINTF("SSL keypair has invalid GMac.");
|
||||
memset(keys->ssl_rsa_keypair, 0, sizeof(keys->ssl_rsa_keypair));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -518,6 +565,27 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_key, const void **out_iv, u32 *out_generation) {
|
||||
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
|
||||
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
|
||||
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
|
||||
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21);
|
||||
|
||||
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
|
||||
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
|
||||
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
|
||||
// settings sysmodule manually zeroes this out below cal version 9
|
||||
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
|
||||
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
|
||||
*out_key = cal0->rsa2048_eticket_key;
|
||||
*out_iv = cal0->rsa2048_eticket_key_iv;
|
||||
*out_generation = 0;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
|
||||
if (!_key_exists(keys->eticket_rsa_kek)) {
|
||||
return false;
|
||||
@ -533,61 +601,51 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
|
||||
u32 keypair_generation = 0;
|
||||
const void *eticket_device_key = NULL;
|
||||
const void *eticket_iv = NULL;
|
||||
void *keypair_ctr_key = NULL;
|
||||
|
||||
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, 0x24E)) {
|
||||
eticket_device_key = cal0->ext_ecc_rsa2048_eticket_key;
|
||||
eticket_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
|
||||
|
||||
// settings sysmodule manually zeroes this out below cal version 9
|
||||
keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
|
||||
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, 0x22E)) {
|
||||
eticket_device_key = cal0->rsa2048_eticket_key;
|
||||
eticket_iv = cal0->rsa2048_eticket_key_iv;
|
||||
} else {
|
||||
if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &keypair_generation)) {
|
||||
EPRINTF("Crc16 error reading device key.");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (keypair_generation) {
|
||||
keypair_generation--;
|
||||
_get_device_key(7, keys, keys->temp_key, keypair_generation);
|
||||
_derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, keys->temp_key, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source);
|
||||
memcpy(keys->temp_key, keys->eticket_rsa_kek_personalized, sizeof(keys->temp_key));
|
||||
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
|
||||
_derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, keypair_generation, option);
|
||||
keypair_ctr_key = keys->eticket_rsa_kek_personalized;
|
||||
} else {
|
||||
memcpy(keys->temp_key, keys->eticket_rsa_kek, sizeof(keys->temp_key));
|
||||
keypair_ctr_key = keys->eticket_rsa_kek;
|
||||
}
|
||||
|
||||
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key));
|
||||
se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv);
|
||||
se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
|
||||
|
||||
// Check public exponent is 65537 big endian
|
||||
if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) {
|
||||
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
|
||||
// try legacy kek source
|
||||
_derive_eticket_rsa_kek(keys, 7, keys->temp_key, keys->master_key[0], eticket_rsa_kek_source_legacy);
|
||||
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
|
||||
keypair_ctr_key = keys->temp_key;
|
||||
_derive_eticket_rsa_kek(keys, 7, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option);
|
||||
|
||||
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key));
|
||||
se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv);
|
||||
se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
|
||||
|
||||
if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) {
|
||||
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
|
||||
EPRINTF("Invalid public exponent.");
|
||||
memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair));
|
||||
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
|
||||
return false;
|
||||
} else {
|
||||
memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek));
|
||||
}
|
||||
}
|
||||
|
||||
if (!_test_key_pair(keys->rsa_keypair.public_exponent, keys->rsa_keypair.private_exponent, keys->rsa_keypair.modulus)) {
|
||||
if (!_test_key_pair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) {
|
||||
EPRINTF("Invalid keypair. Check eticket_rsa_kek.");
|
||||
memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair));
|
||||
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
|
||||
return false;
|
||||
}
|
||||
|
||||
se_rsa_key_set(0, keys->rsa_keypair.modulus, sizeof(keys->rsa_keypair.modulus), keys->rsa_keypair.private_exponent, sizeof(keys->rsa_keypair.private_exponent));
|
||||
|
||||
const u32 buf_size = SZ_16K;
|
||||
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL);
|
||||
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->rsa_keypair);
|
||||
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair);
|
||||
|
||||
gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count);
|
||||
|
||||
@ -771,7 +829,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
|
||||
SAVE_KEY(eticket_rsa_kek_source);
|
||||
}
|
||||
SAVE_KEY(eticket_rsa_kekek_source);
|
||||
_save_key("eticket_rsa_keypair", &keys->rsa_keypair, sizeof(keys->rsa_keypair), text_buffer);
|
||||
_save_key("eticket_rsa_keypair", &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), text_buffer);
|
||||
SAVE_KEY(header_kek_source);
|
||||
SAVE_KEY_VAR(header_key, keys->header_key);
|
||||
SAVE_KEY(header_key_source);
|
||||
@ -800,12 +858,6 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
|
||||
SAVE_KEY(package2_key_source);
|
||||
SAVE_KEY(per_console_key_source);
|
||||
SAVE_KEY(retail_specific_aes_key_source);
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
||||
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i];
|
||||
SAVE_KEY_VAR(rsa_oaep_kek_generation_source, keys->temp_key);
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
||||
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i];
|
||||
SAVE_KEY_VAR(rsa_private_kek_generation_source, keys->temp_key);
|
||||
SAVE_KEY(save_mac_kek_source);
|
||||
SAVE_KEY_VAR(save_mac_key, keys->save_mac_key);
|
||||
SAVE_KEY(save_mac_key_source);
|
||||
@ -819,9 +871,13 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
|
||||
SAVE_KEY_VAR(secure_boot_key, keys->sbk);
|
||||
SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek);
|
||||
SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized);
|
||||
SAVE_KEY(ssl_rsa_kek_source_x);
|
||||
SAVE_KEY(ssl_rsa_kek_source_y);
|
||||
_save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer);
|
||||
if (is_dev) {
|
||||
SAVE_KEY_VAR(ssl_rsa_kek_source, ssl_rsa_kek_source_dev);
|
||||
} else {
|
||||
SAVE_KEY(ssl_rsa_kek_source);
|
||||
}
|
||||
SAVE_KEY(ssl_rsa_kekek_source);
|
||||
_save_key("ssl_rsa_keypair", keys->ssl_rsa_keypair, RSA_2048_KEY_SIZE, text_buffer);
|
||||
SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0);
|
||||
SAVE_KEY(titlekek_source);
|
||||
SAVE_KEY_VAR(tsec_key, keys->tsec_key);
|
||||
@ -1013,7 +1069,7 @@ void derive_amiibo_keys() {
|
||||
return;
|
||||
}
|
||||
|
||||
_decrypt_aes_key(8, keys->temp_key, nfc_key_source, keys->master_key[0]);
|
||||
_decrypt_aes_key(8, keys, keys->temp_key, nfc_key_source, 0, 0);
|
||||
|
||||
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
|
||||
static const u8 nfc_iv[AES_128_KEY_SIZE] = {
|
||||
@ -1130,30 +1186,60 @@ static void _save_key_family(const char *name, const void *data, u32 start_key,
|
||||
free(temp_name);
|
||||
}
|
||||
|
||||
// Equivalent to spl::GenerateAesKek. When key_seed is set, the result is as if spl::GenerateAesKey was called immediately after.
|
||||
// The generation and option args are dictated by master_key and kek_seed.
|
||||
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed) {
|
||||
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
|
||||
return;
|
||||
// Equivalent to spl::GenerateAesKek
|
||||
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
|
||||
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
|
||||
u32 seal_key_index = GET_SEAL_KEY_INDEX(option);
|
||||
|
||||
se_aes_key_set(ks, master_key, AES_128_KEY_SIZE);
|
||||
se_aes_unwrap_key(ks, ks, kek_seed);
|
||||
se_aes_unwrap_key(ks, ks, key_source);
|
||||
if (key_seed && _key_exists(key_seed))
|
||||
se_aes_unwrap_key(ks, ks, key_seed);
|
||||
if (generation)
|
||||
generation--;
|
||||
|
||||
u8 static_source[AES_128_KEY_SIZE];
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
||||
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
|
||||
|
||||
if (device_unique) {
|
||||
_get_device_key(ks, keys, keys->temp_key, generation);
|
||||
} else {
|
||||
memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key));
|
||||
}
|
||||
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
|
||||
se_aes_unwrap_key(ks, ks, static_source);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source);
|
||||
}
|
||||
|
||||
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
|
||||
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
|
||||
se_aes_key_set(ks, access_key, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source);
|
||||
}
|
||||
|
||||
// Equivalent to spl::GenerateAesKey
|
||||
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) {
|
||||
void *aes_key = keys->temp_key;
|
||||
_load_aes_key(ks, aes_key, access_key, aes_key_generation_source);
|
||||
se_aes_key_set(ks, aes_key, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size);
|
||||
}
|
||||
|
||||
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
|
||||
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
|
||||
_load_aes_key(ks, out_key, access_key, key_source);
|
||||
}
|
||||
|
||||
// Equivalent to spl::DecryptAesKey.
|
||||
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key) {
|
||||
_generate_kek(ks, aes_key_decryption_source, master_key, aes_kek_generation_source, aes_key_generation_source);
|
||||
se_aes_crypt_block_ecb(ks, 0, dst, key_source);
|
||||
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) {
|
||||
void *access_key = keys->temp_key;
|
||||
_generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option);
|
||||
_generate_aes_key(ks, keys, out_key, AES_128_KEY_SIZE, access_key, key_source);
|
||||
}
|
||||
|
||||
static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) {
|
||||
// Equivalent to smc::GetSecureData
|
||||
static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) {
|
||||
se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE);
|
||||
u8 *d = (u8 *)dst;
|
||||
se_aes_crypt_ctr(6, d + 0x00, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
||||
se_aes_crypt_ctr(6, d + 0x10, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
||||
u8 *d = (u8 *)out_data;
|
||||
se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
||||
se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
||||
|
||||
// Apply tweak
|
||||
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) {
|
||||
@ -1161,9 +1247,10 @@ static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) {
|
||||
}
|
||||
}
|
||||
|
||||
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation) {
|
||||
// Equivalent to spl::GenerateSpecificAesKey
|
||||
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) {
|
||||
if (fuse_read_bootrom_rev() >= 0x7F) {
|
||||
_get_device_key(ks, keys, keys->temp_key, key_generation);
|
||||
_get_device_key(ks, keys, keys->temp_key, generation - 1);
|
||||
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
|
||||
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
|
||||
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek)
|
||||
@ -1172,24 +1259,124 @@ static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void
|
||||
}
|
||||
}
|
||||
|
||||
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision) {
|
||||
if (revision == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
|
||||
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation) {
|
||||
if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
|
||||
memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE);
|
||||
return;
|
||||
}
|
||||
|
||||
if (revision >= KB_FIRMWARE_VERSION_400) {
|
||||
revision -= KB_FIRMWARE_VERSION_400;
|
||||
if (generation >= KB_FIRMWARE_VERSION_400) {
|
||||
generation -= KB_FIRMWARE_VERSION_400;
|
||||
} else {
|
||||
revision = 0;
|
||||
generation = 0;
|
||||
}
|
||||
u32 temp_key[AES_128_KEY_SIZE / 4] = {0};
|
||||
se_aes_key_set(ks, keys->device_key_4x, AES_128_KEY_SIZE);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, temp_key, device_master_key_source_sources[revision]);
|
||||
u32 temp_key_source[AES_128_KEY_SIZE / 4] = {0};
|
||||
_load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]);
|
||||
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation];
|
||||
se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE);
|
||||
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[revision] : device_master_kek_sources_dev[revision];
|
||||
se_aes_unwrap_key(ks, ks, kek_source);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key);
|
||||
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
|
||||
}
|
||||
|
||||
// The following ghash implementation is from Atmosphère's original exosphere implementation
|
||||
|
||||
/* Shifts right a little endian 128-bit value. */
|
||||
static void _shr_128(uint64_t *val) {
|
||||
val[0] >>= 1;
|
||||
val[0] |= (val[1] & 1) << 63;
|
||||
val[1] >>= 1;
|
||||
}
|
||||
|
||||
/* Shifts left a little endian 128-bit value. */
|
||||
static void _shl_128(uint64_t *val) {
|
||||
val[1] <<= 1;
|
||||
val[1] |= (val[0] & (1ull << 63)) >> 63;
|
||||
val[0] <<= 1;
|
||||
}
|
||||
|
||||
/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */
|
||||
static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) {
|
||||
uint8_t x_work[0x10];
|
||||
uint8_t y_work[0x10];
|
||||
uint8_t dst_work[0x10];
|
||||
|
||||
uint64_t *p_x = (uint64_t *)(&x_work[0]);
|
||||
uint64_t *p_y = (uint64_t *)(&y_work[0]);
|
||||
uint64_t *p_dst = (uint64_t *)(&dst_work[0]);
|
||||
|
||||
/* Initialize buffers. */
|
||||
for (unsigned int i = 0; i < 0x10; i++) {
|
||||
x_work[i] = x[0xF-i];
|
||||
y_work[i] = y[0xF-i];
|
||||
dst_work[i] = 0;
|
||||
}
|
||||
|
||||
/* Perform operation for each bit in y. */
|
||||
for (unsigned int round = 0; round < 0x80; round++) {
|
||||
p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7);
|
||||
p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7);
|
||||
_shl_128(p_y);
|
||||
uint8_t xval = 0xE1 * (x_work[0] & 1);
|
||||
_shr_128(p_x);
|
||||
x_work[0xF] ^= xval;
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < 0x10; i++) {
|
||||
dst[i] = dst_work[0xF-i];
|
||||
}
|
||||
}
|
||||
|
||||
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) {
|
||||
uint8_t x[0x10] = {0};
|
||||
uint8_t h[0x10];
|
||||
|
||||
uint64_t *p_x = (uint64_t *)(&x[0]);
|
||||
uint64_t *p_data = (uint64_t *)src;
|
||||
|
||||
/* H = aes_ecb_encrypt(zeroes) */
|
||||
se_aes_crypt_block_ecb(ks, ENCRYPT, h, x);
|
||||
|
||||
u64 total_size = src_size;
|
||||
|
||||
while (src_size >= 0x10) {
|
||||
/* X = (X ^ current_block) * H */
|
||||
p_x[0] ^= p_data[0];
|
||||
p_x[1] ^= p_data[1];
|
||||
_gf128_mul(x, x, h);
|
||||
|
||||
/* Increment p_data by 0x10 bytes. */
|
||||
p_data += 2;
|
||||
src_size -= 0x10;
|
||||
}
|
||||
|
||||
/* Nintendo's code *discards all data in the last block* if unaligned. */
|
||||
/* And treats that block as though it were all-zero. */
|
||||
/* This is a bug, they just forget to XOR with the copy of the last block they save. */
|
||||
if (src_size & 0xF) {
|
||||
_gf128_mul(x, x, h);
|
||||
}
|
||||
|
||||
uint64_t xor_size = total_size << 3;
|
||||
xor_size = __builtin_bswap64(xor_size);
|
||||
|
||||
/* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */
|
||||
if (encrypt) {
|
||||
p_x[0] ^= xor_size;
|
||||
} else {
|
||||
p_x[1] ^= xor_size;
|
||||
}
|
||||
|
||||
_gf128_mul(x, x, h);
|
||||
|
||||
/* If final output block, XOR with encrypted J block. */
|
||||
if (encrypt) {
|
||||
se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block);
|
||||
for (unsigned int i = 0; i < 0x10; i++) {
|
||||
x[i] ^= h[i];
|
||||
}
|
||||
}
|
||||
/* Copy output. */
|
||||
memcpy(dst, x, 0x10);
|
||||
}
|
||||
|
||||
static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) {
|
||||
|
@ -24,6 +24,8 @@
|
||||
#define AES_128_KEY_SIZE 16
|
||||
#define RSA_2048_KEY_SIZE 256
|
||||
|
||||
#define RSA_PUBLIC_EXPONENT 65537
|
||||
|
||||
// only tickets of type Rsa2048Sha256 are expected
|
||||
typedef struct {
|
||||
u32 signature_type; // always 0x10004
|
||||
@ -104,6 +106,29 @@ typedef struct {
|
||||
u8 xor_pad[0x20];
|
||||
} nfc_save_key_t;
|
||||
|
||||
typedef enum {
|
||||
SEAL_KEY_LOAD_AES_KEY = 0,
|
||||
SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA = 1,
|
||||
SEAL_KEY_IMPORT_LOTUS_KEY = 2,
|
||||
SEAL_KEY_IMPORT_ES_DEVICE_KEY = 3,
|
||||
SEAL_KEY_REENCRYPT_DEVICE_UNIQUE_DATA = 4,
|
||||
SEAL_KEY_IMPORT_SSL_KEY = 5,
|
||||
SEAL_KEY_IMPORT_ES_CLIENT_CERT_KEY = 6,
|
||||
} seal_key_t;
|
||||
|
||||
typedef enum {
|
||||
NOT_DEVICE_UNIQUE = 0,
|
||||
IS_DEVICE_UNIQUE = 1,
|
||||
} device_unique_t;
|
||||
|
||||
#define SET_SEAL_KEY_INDEX(x) (((x) & 7) << 5)
|
||||
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
|
||||
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
|
||||
|
||||
#define WRAPPED_RSA_EXT_DATA_SIZE 0x20
|
||||
#define SSL_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE)
|
||||
#define SSL_RSA_EXT_KEYPAIR_SIZE (SSL_RSA_KEYPAIR_SIZE + WRAPPED_RSA_EXT_DATA_SIZE)
|
||||
|
||||
typedef struct {
|
||||
u8 temp_key[AES_128_KEY_SIZE],
|
||||
bis_key[4][AES_128_KEY_SIZE * 2],
|
||||
@ -117,8 +142,9 @@ typedef struct {
|
||||
eticket_rsa_kek[AES_128_KEY_SIZE],
|
||||
eticket_rsa_kek_personalized[AES_128_KEY_SIZE],
|
||||
ssl_rsa_kek[AES_128_KEY_SIZE],
|
||||
ssl_rsa_kek_legacy[AES_128_KEY_SIZE],
|
||||
ssl_rsa_kek_personalized[AES_128_KEY_SIZE],
|
||||
ssl_rsa_key[RSA_2048_KEY_SIZE + 0x20],
|
||||
ssl_rsa_keypair[RSA_2048_KEY_SIZE + 0x20],
|
||||
// keyblob-derived families
|
||||
keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
|
||||
keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
|
||||
@ -133,7 +159,7 @@ typedef struct {
|
||||
tsec_root_key[AES_128_KEY_SIZE];
|
||||
u32 sbk[4];
|
||||
keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1];
|
||||
rsa_keypair_t rsa_keypair;
|
||||
rsa_keypair_t eticket_rsa_keypair;
|
||||
} key_derivation_ctx_t;
|
||||
|
||||
typedef struct {
|
||||
|
Loading…
Reference in New Issue
Block a user