diff --git a/bdk/sec/se.c b/bdk/sec/se.c index 45652dc..02f6f90 100644 --- a/bdk/sec/se.c +++ b/bdk/sec/se.c @@ -721,31 +721,31 @@ out:; // _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size) { - u8 cur_hash[0x20] __attribute__((aligned(4))); - u8 hash_buf[0xe4] __attribute__((aligned(4))); + u8 cur_hash[0x20] __attribute__((aligned(4))); + u8 hash_buf[0xe4] __attribute__((aligned(4))); - u32 hash_buf_size = seed_size + 4; - memcpy(hash_buf, seed, seed_size); - u32 round_num = 0; + u32 hash_buf_size = seed_size + 4; + memcpy(hash_buf, seed, seed_size); + u32 round_num = 0; - u8 *p_out = (u8 *)masked; + u8 *p_out = (u8 *)masked; - while (masked_size) { - u32 cur_size = MIN(masked_size, 0x20); + while (masked_size) { + u32 cur_size = MIN(masked_size, 0x20); - for (u32 i = 0; i < 4; i++) - hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff; - round_num++; + for (u32 i = 0; i < 4; i++) + hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff; + round_num++; - se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size); + se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size); - for (unsigned int i = 0; i < cur_size; i++) { - *p_out ^= cur_hash[i]; - p_out++; - } + for (unsigned int i = 0; i < cur_size; i++) { + *p_out ^= cur_hash[i]; + p_out++; + } - masked_size -= cur_size; - } + masked_size -= cur_size; + } } u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size) diff --git a/source/keys/key_sources.inl b/source/keys/key_sources.inl index fe6d577..bff4f9b 100644 --- a/source/keys/key_sources.inl +++ b/source/keys/key_sources.inl @@ -100,12 +100,15 @@ static const u8 mariko_key_vectors[][0x10] __attribute__((aligned(4))) = { // from Package1 -> Secure_Monitor static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = { 0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9}; -static const u8 aes_seal_key_mask_decrypt_device_unique_data[0x10] __attribute__((aligned(4))) = { - 0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}; -static const u8 aes_seal_key_mask_import_es_device_key[0x10] __attribute__((aligned(4))) = { - 0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}; -static const u8 aes_seal_key_mask_decrypt_ssl_client_cert_key[0x10] __attribute__((aligned(4))) = { - 0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}; +static const u8 seal_key_masks[][0x10] __attribute__((aligned(4))) = { + {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // SealKey_LoadAesKey + {0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}, // SealKey_DecryptDeviceUniqueData + {0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C}, // SealKey_ImportLotusKey + {0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}, // SealKey_ImportEsDeviceKey + {0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31}, // SealKey_ReencryptDeviceUniqueData + {0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}, // SealKey_ImportSslKey + {0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61}, // SealKey_ImportEsClientCertKey +}; static const u8 package2_key_source[0x10] __attribute__((aligned(4))) = { 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7}; static const u8 titlekek_source[0x10] __attribute__((aligned(4))) = { @@ -181,12 +184,14 @@ static const u8 eticket_rsa_kekek_source[0x10] __attribute__((aligned(4))) = { 0X46, 0X6E, 0X57, 0XB7, 0X4A, 0X44, 0X7F, 0X02, 0XF3, 0X21, 0XCD, 0XE5, 0X8F, 0X2F, 0X55, 0X35}; // from SSL -static const u8 ssl_rsa_kek_source_x[0x10] __attribute__((aligned(4))) = { +static const u8 ssl_rsa_kekek_source[0x10] __attribute__((aligned(4))) = { 0X7F, 0X5B, 0XB0, 0X84, 0X7B, 0X25, 0XAA, 0X67, 0XFA, 0XC8, 0X4B, 0XE2, 0X3D, 0X7B, 0X69, 0X03}; -static const u8 ssl_rsa_kek_source_y[0x10] __attribute__((aligned(4))) = { +static const u8 ssl_rsa_kek_source[0x10] __attribute__((aligned(4))) = { 0X9A, 0X38, 0X3B, 0XF4, 0X31, 0XD0, 0XBD, 0X81, 0X32, 0X53, 0X4B, 0XA9, 0X64, 0X39, 0X7D, 0XE3}; -static const u8 ssl_rsa_kek_source_y_dev[0x10] __attribute__((aligned(4))) = { +static const u8 ssl_rsa_kek_source_dev[0x10] __attribute__((aligned(4))) = { 0xD5, 0xD2, 0xFC, 0x00, 0xFD, 0x49, 0xDD, 0xF8, 0xEE, 0x7B, 0xC4, 0x4B, 0xE1, 0x4C, 0xAA, 0x99}; +static const u8 ssl_rsa_kek_source_legacy[0x10] __attribute__((aligned(4))) = { + 0xED, 0x36, 0xB1, 0x32, 0x27, 0x17, 0xD2, 0xB0, 0xBA, 0x1F, 0xC1, 0xBD, 0x4D, 0x38, 0x0F, 0x5E}; static const u8 ssl_client_cert_kek_source[0x10] __attribute__((aligned(4))) = { 0x64, 0xB8, 0x30, 0xDD, 0x0F, 0x3C, 0xB7, 0xFB, 0x4C, 0x16, 0x01, 0x97, 0xEA, 0x9D, 0x12, 0x10}; static const u8 ssl_client_cert_key_source[0x10] __attribute__((aligned(4))) = { diff --git a/source/keys/keys.c b/source/keys/keys.c index 941a801..ceb40f5 100644 --- a/source/keys/keys.c +++ b/source/keys/keys.c @@ -73,10 +73,14 @@ static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) { static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; }; static void _save_key(const char *name, const void *data, u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf); -static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed); -static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key); -static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation); -static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision); +static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option); +static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source); +static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source); +static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source); +static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option); +static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation); +static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation); +static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt); // titlekey functions static bool _test_key_pair(const void *E, const void *D, const void *N); @@ -87,8 +91,7 @@ static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) { for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) { // Relies on the Mariko KEK being properly set in slot 12 se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source) - se_aes_key_set(8, keys->master_kek[i], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) - se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i], master_key_source); + _load_aes_key(8, keys->master_key[i], keys->master_kek[i], master_key_source); } } @@ -116,18 +119,15 @@ static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool // Derive all master keys based on current root key for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) { se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks) - se_aes_key_set(8, keys->master_kek[i + KB_FIRMWARE_VERSION_620], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) - se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i + KB_FIRMWARE_VERSION_620], master_key_source); + _load_aes_key(8, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source); } } // Derive all lower master keys for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { - se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); - se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i - 1], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); + _load_aes_key(8, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); } - se_aes_key_set(8, keys->master_key[0], AES_128_KEY_SIZE); - se_aes_crypt_block_ecb(8, DECRYPT, keys->temp_key, is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); + _load_aes_key(8, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); if (_key_exists(keys->temp_key)) { EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod"); @@ -166,8 +166,7 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) { minerva_periodic_training(); se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk) - se_aes_key_set(7, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); - se_aes_crypt_block_ecb(7, DECRYPT, keys->keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) + _load_aes_key(7, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) if (i == 0) { se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); @@ -191,82 +190,84 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) { memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i])); memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i])); - se_aes_key_set(7, keys->master_kek[i], sizeof(keys->master_kek[i])); if (!_key_exists(keys->master_key[i])) { - se_aes_crypt_block_ecb(7, DECRYPT, keys->master_key[i], master_key_source); + _load_aes_key(7, keys->master_key[i], keys->master_kek[i], master_key_source); } } free(keyblob_block); } static void _derive_bis_keys(key_derivation_ctx_t *keys) { - /* key = unwrap(source, wrapped_key): - key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key - */ minerva_periodic_training(); - u32 key_generation = fuse_read_odm_keygen_rev(); - if (key_generation) - key_generation--; + u32 generation = fuse_read_odm_keygen_rev(); - if (!(_key_exists(keys->device_key) || (key_generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) { + if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) { return; } - _generate_specific_aes_key(8, keys, &keys->bis_key[0], &bis_key_sources[0], key_generation); - // kek = generate_kek(bkeks, devkey, aeskek, aeskey) - _get_device_key(8, keys, keys->temp_key, key_generation); - _generate_kek(8, bis_kek_source, keys->temp_key, aes_kek_generation_source, aes_key_generation_source); - se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[1], AES_128_KEY_SIZE * 2, bis_key_sources[1], AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) - se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[2], AES_128_KEY_SIZE * 2, bis_key_sources[2], AES_128_KEY_SIZE * 2); - memcpy(keys->bis_key[3], keys->bis_key[2], 0x20); + _generate_specific_aes_key(8, keys, &keys->bis_key[0], bis_key_sources[0], generation); + u32 access_key[AES_128_KEY_SIZE / 4] = {0}; + const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE); + _generate_aes_kek(8, keys, access_key, bis_kek_source, generation, option); + _generate_aes_key(8, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]); + _generate_aes_key(8, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]); + memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3])); } static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) { if (_key_exists(keys->master_key[0])) { - _generate_kek(8, header_kek_source, keys->master_key[0], aes_kek_generation_source, aes_key_generation_source); - se_aes_crypt_ecb(8, DECRYPT, keys->header_key, AES_128_KEY_SIZE * 2, header_key_source, AES_128_KEY_SIZE * 2); + const u32 generation = 0; + const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE); + _generate_aes_kek(8, keys, keys->temp_key, header_kek_source, generation, option); + _generate_aes_key(8, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source); } } -static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kek_source) { - u8 kek_seed[AES_128_KEY_SIZE]; - for (u32 i = 0; i < AES_128_KEY_SIZE; i++) - kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i]; - _generate_kek(ks, eticket_rsa_kekek_source, master_key, kek_seed, NULL); - se_aes_crypt_block_ecb(ks, DECRYPT, out_rsa_kek, kek_source); +static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) { + void *access_key = keys->temp_key; + _generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option); + _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source); + } -static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kekek_source, const void *kek_source) { - u8 kek_seed[AES_128_KEY_SIZE]; - for (u32 i = 0; i < AES_128_KEY_SIZE; i++) - kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i]; - _generate_kek(8, kekek_source, master_key, kek_seed, NULL); - se_aes_crypt_block_ecb(8, DECRYPT, out_rsa_kek, kek_source); +static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) { + void *access_key = keys->temp_key; + _generate_aes_kek(ks, keys, access_key, kekek_source, generation, option); + _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source); } static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) { if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) { - _get_device_key(8, keys, keys->temp_key, 0); - _generate_kek(8, save_mac_kek_source, keys->temp_key, aes_kek_generation_source, NULL); - se_aes_crypt_block_ecb(8, DECRYPT, keys->save_mac_key, save_mac_key_source); + void *access_key = keys->temp_key; + const u32 generation = 0; + const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE); + _generate_aes_kek(8, keys, access_key, save_mac_kek_source, generation, option); + _load_aes_key(8, keys->save_mac_key, access_key, save_mac_key_source); } if (_key_exists(keys->master_key[0])) { - _derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, keys->master_key[0], is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source); - _derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, keys->master_key[0], ssl_rsa_kek_source_x, is_dev ? ssl_rsa_kek_source_y_dev : ssl_rsa_kek_source_y); + const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source; + const u32 generation = 0; + u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY); + _derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, eticket_kek_source, generation, option); + + const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source; + option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA); + _derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option); } } static void _derive_per_generation_keys(key_derivation_ctx_t *keys) { - for (u32 i = 0; i < KB_FIRMWARE_VERSION_MAX + 1; i++) { - if (!_key_exists(keys->master_key[i])) + for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) { + if (!_key_exists(keys->master_key[generation])) continue; - for (u32 j = 0; j < 3; j++) { - _generate_kek(8, key_area_key_sources[j], keys->master_key[i], aes_kek_generation_source, NULL); - se_aes_crypt_block_ecb(8, DECRYPT, keys->key_area_key[j][i], aes_key_generation_source); + for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) { + void *access_key = keys->temp_key; + const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE); + _generate_aes_kek(8, keys, access_key, key_area_key_sources[source_type], generation + 1, option); + _load_aes_key(8, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source); } - se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); - se_aes_crypt_block_ecb(8, DECRYPT, keys->package2_key[i], package2_key_source); - se_aes_crypt_block_ecb(8, DECRYPT, keys->titlekek[i], titlekek_source); + _load_aes_key(8, keys->package2_key[generation], keys->master_key[generation], package2_key_source); + _load_aes_key(8, keys->titlekek[generation], keys->master_key[generation], titlekek_source); } } @@ -343,6 +344,10 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title return false; } + if (is_personalized) { + se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent)); + } + const u32 ticket_sig_type_rsa2048_sha256 = 0x10004; offset = 0; @@ -467,6 +472,29 @@ static bool _read_cal0(void *read_buffer) { return true; } +static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) { + const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key); + const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39); + const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key); + const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18); + + if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) { + *out_key = cal0->ext_ssl_key; + *out_key_size = ext_key_size; + *out_iv = cal0->ext_ssl_key_iv; + // settings sysmodule manually zeroes this out below cal version 9 + *out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver; + } else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) { + *out_key = cal0->ssl_key; + *out_key_size = key_size; + *out_iv = cal0->ssl_key_iv; + *out_generation = 0; + } else { + return false; + } + return true; +} + static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) { if (!_read_cal0(titlekey_buffer->read_buffer)) { return false; @@ -477,40 +505,59 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu const void *ssl_device_key = NULL; const void *ssl_iv = NULL; u32 key_size = 0; + void *keypair_ctr_key = NULL; + bool enforce_unique = true; - if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, 0x13E)) { - ssl_device_key = cal0->ext_ssl_key; - ssl_iv = cal0->ext_ssl_key_iv; - key_size = 0x120; - - // settings sysmodule manually zeroes this out below cal version 9 - keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver; - } else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, 0x11E)) { - ssl_device_key = cal0->ssl_key; - ssl_iv = cal0->ssl_key_iv; - key_size = 0x100; - } else { + if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &keypair_generation)) { EPRINTF("Crc16 error reading device key."); return false; } - if (keypair_generation) { - keypair_generation--; - _get_device_key(7, keys, keys->temp_key, keypair_generation); - _derive_ssl_rsa_kek(keys, 7, keys->ssl_rsa_kek_personalized, keys->temp_key, ssl_client_cert_kek_source, ssl_client_cert_key_source); + if (key_size == SSL_RSA_KEYPAIR_SIZE) { + bool all_zero = true; + const u8 *key8 = (const u8 *)ssl_device_key; + for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEYPAIR_SIZE; i++) { + if (key8[i] != 0) { + all_zero = false; + break; + } + } + if (all_zero) { + // keypairs of this form are not encrypted + memcpy(keys->ssl_rsa_keypair, ssl_device_key, RSA_2048_KEY_SIZE); + return true; + } - memcpy(keys->temp_key, keys->ssl_rsa_kek_personalized, sizeof(keys->temp_key)); - } else { - memcpy(keys->temp_key, keys->ssl_rsa_kek, sizeof(keys->temp_key)); + u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA); + keypair_ctr_key = keys->ssl_rsa_kek_legacy; + _derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, keypair_generation, option); + enforce_unique = false; } - se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); - se_aes_crypt_ctr(6, &keys->ssl_rsa_key, sizeof(keys->ssl_rsa_key), ssl_device_key, sizeof(keys->ssl_rsa_key), ssl_iv); + if (keypair_generation) { + u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE; + keypair_ctr_key = keys->ssl_rsa_kek_personalized; + _derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, keypair_generation, option); + } else { + keypair_ctr_key = keys->ssl_rsa_kek; + } - if (key_size == 0x120) { - if (_key_exists(keys->ssl_rsa_key + 0x100)) { - EPRINTF("Invalid SSL key."); - memset(&keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key)); + u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10; + se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(6, keys->ssl_rsa_keypair, ctr_size, ssl_device_key, ctr_size, ssl_iv); + + if (enforce_unique) { + u32 j_block[AES_128_KEY_SIZE / 4] = {0}; + se_aes_key_set(7, keypair_ctr_key, AES_128_KEY_SIZE); + _ghash(7, j_block, ssl_iv, 0x10, NULL, false); + + u32 calc_mac[AES_128_KEY_SIZE / 4] = {0}; + _ghash(7, calc_mac, keys->ssl_rsa_keypair, ctr_size, j_block, true); + + const u8 *key8 = (const u8 *)ssl_device_key; + if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) { + EPRINTF("SSL keypair has invalid GMac."); + memset(keys->ssl_rsa_keypair, 0, sizeof(keys->ssl_rsa_keypair)); return false; } } @@ -518,6 +565,27 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu return true; } +static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_key, const void **out_iv, u32 *out_generation) { + const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key); + const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38); + const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key); + const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21); + + if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) { + *out_key = cal0->ext_ecc_rsa2048_eticket_key; + *out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv; + // settings sysmodule manually zeroes this out below cal version 9 + *out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver; + } else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) { + *out_key = cal0->rsa2048_eticket_key; + *out_iv = cal0->rsa2048_eticket_key_iv; + *out_generation = 0; + } else { + return false; + } + return true; +} + static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { if (!_key_exists(keys->eticket_rsa_kek)) { return false; @@ -533,61 +601,51 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit u32 keypair_generation = 0; const void *eticket_device_key = NULL; const void *eticket_iv = NULL; + void *keypair_ctr_key = NULL; - if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, 0x24E)) { - eticket_device_key = cal0->ext_ecc_rsa2048_eticket_key; - eticket_iv = cal0->ext_ecc_rsa2048_eticket_key_iv; - - // settings sysmodule manually zeroes this out below cal version 9 - keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver; - } else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, 0x22E)) { - eticket_device_key = cal0->rsa2048_eticket_key; - eticket_iv = cal0->rsa2048_eticket_key_iv; - } else { + if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &keypair_generation)) { EPRINTF("Crc16 error reading device key."); return false; } if (keypair_generation) { - keypair_generation--; - _get_device_key(7, keys, keys->temp_key, keypair_generation); - _derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, keys->temp_key, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source); - memcpy(keys->temp_key, keys->eticket_rsa_kek_personalized, sizeof(keys->temp_key)); + u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE; + _derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, keypair_generation, option); + keypair_ctr_key = keys->eticket_rsa_kek_personalized; } else { - memcpy(keys->temp_key, keys->eticket_rsa_kek, sizeof(keys->temp_key)); + keypair_ctr_key = keys->eticket_rsa_kek; } - se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); - se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv); + se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); - // Check public exponent is 65537 big endian - if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) { + if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) { // try legacy kek source - _derive_eticket_rsa_kek(keys, 7, keys->temp_key, keys->master_key[0], eticket_rsa_kek_source_legacy); + u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY); + keypair_ctr_key = keys->temp_key; + _derive_eticket_rsa_kek(keys, 7, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option); - se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); - se_aes_crypt_ctr(6, &keys->rsa_keypair, sizeof(keys->rsa_keypair), eticket_device_key, sizeof(keys->rsa_keypair), eticket_iv); + se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); - if (_read_be_u32(keys->rsa_keypair.public_exponent, 0) != 65537) { + if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) { EPRINTF("Invalid public exponent."); - memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair)); + memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair)); return false; } else { memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek)); } } - if (!_test_key_pair(keys->rsa_keypair.public_exponent, keys->rsa_keypair.private_exponent, keys->rsa_keypair.modulus)) { + if (!_test_key_pair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) { EPRINTF("Invalid keypair. Check eticket_rsa_kek."); - memset(&keys->rsa_keypair, 0, sizeof(keys->rsa_keypair)); + memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair)); return false; } - se_rsa_key_set(0, keys->rsa_keypair.modulus, sizeof(keys->rsa_keypair.modulus), keys->rsa_keypair.private_exponent, sizeof(keys->rsa_keypair.private_exponent)); - const u32 buf_size = SZ_16K; _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL); - _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->rsa_keypair); + _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair); gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count); @@ -771,7 +829,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl SAVE_KEY(eticket_rsa_kek_source); } SAVE_KEY(eticket_rsa_kekek_source); - _save_key("eticket_rsa_keypair", &keys->rsa_keypair, sizeof(keys->rsa_keypair), text_buffer); + _save_key("eticket_rsa_keypair", &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), text_buffer); SAVE_KEY(header_kek_source); SAVE_KEY_VAR(header_key, keys->header_key); SAVE_KEY(header_key_source); @@ -800,12 +858,6 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl SAVE_KEY(package2_key_source); SAVE_KEY(per_console_key_source); SAVE_KEY(retail_specific_aes_key_source); - for (u32 i = 0; i < AES_128_KEY_SIZE; i++) - keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i]; - SAVE_KEY_VAR(rsa_oaep_kek_generation_source, keys->temp_key); - for (u32 i = 0; i < AES_128_KEY_SIZE; i++) - keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i]; - SAVE_KEY_VAR(rsa_private_kek_generation_source, keys->temp_key); SAVE_KEY(save_mac_kek_source); SAVE_KEY_VAR(save_mac_key, keys->save_mac_key); SAVE_KEY(save_mac_key_source); @@ -819,9 +871,13 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl SAVE_KEY_VAR(secure_boot_key, keys->sbk); SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek); SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized); - SAVE_KEY(ssl_rsa_kek_source_x); - SAVE_KEY(ssl_rsa_kek_source_y); - _save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer); + if (is_dev) { + SAVE_KEY_VAR(ssl_rsa_kek_source, ssl_rsa_kek_source_dev); + } else { + SAVE_KEY(ssl_rsa_kek_source); + } + SAVE_KEY(ssl_rsa_kekek_source); + _save_key("ssl_rsa_keypair", keys->ssl_rsa_keypair, RSA_2048_KEY_SIZE, text_buffer); SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0); SAVE_KEY(titlekek_source); SAVE_KEY_VAR(tsec_key, keys->tsec_key); @@ -1013,7 +1069,7 @@ void derive_amiibo_keys() { return; } - _decrypt_aes_key(8, keys->temp_key, nfc_key_source, keys->master_key[0]); + _decrypt_aes_key(8, keys, keys->temp_key, nfc_key_source, 0, 0); nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob; static const u8 nfc_iv[AES_128_KEY_SIZE] = { @@ -1130,30 +1186,60 @@ static void _save_key_family(const char *name, const void *data, u32 start_key, free(temp_name); } -// Equivalent to spl::GenerateAesKek. When key_seed is set, the result is as if spl::GenerateAesKey was called immediately after. -// The generation and option args are dictated by master_key and kek_seed. -static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed) { - if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) - return; +// Equivalent to spl::GenerateAesKek +static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) { + bool device_unique = GET_IS_DEVICE_UNIQUE(option); + u32 seal_key_index = GET_SEAL_KEY_INDEX(option); - se_aes_key_set(ks, master_key, AES_128_KEY_SIZE); - se_aes_unwrap_key(ks, ks, kek_seed); - se_aes_unwrap_key(ks, ks, key_source); - if (key_seed && _key_exists(key_seed)) - se_aes_unwrap_key(ks, ks, key_seed); + if (generation) + generation--; + + u8 static_source[AES_128_KEY_SIZE]; + for (u32 i = 0; i < AES_128_KEY_SIZE; i++) + static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i]; + + if (device_unique) { + _get_device_key(ks, keys, keys->temp_key, generation); + } else { + memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key)); + } + se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE); + se_aes_unwrap_key(ks, ks, static_source); + se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source); +} + +// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key +static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) { + se_aes_key_set(ks, access_key, AES_128_KEY_SIZE); + se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source); +} + +// Equivalent to spl::GenerateAesKey +static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) { + void *aes_key = keys->temp_key; + _load_aes_key(ks, aes_key, access_key, aes_key_generation_source); + se_aes_key_set(ks, aes_key, AES_128_KEY_SIZE); + se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size); +} + +// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing +static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) { + _load_aes_key(ks, out_key, access_key, key_source); } // Equivalent to spl::DecryptAesKey. -static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key) { - _generate_kek(ks, aes_key_decryption_source, master_key, aes_kek_generation_source, aes_key_generation_source); - se_aes_crypt_block_ecb(ks, 0, dst, key_source); +static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) { + void *access_key = keys->temp_key; + _generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option); + _generate_aes_key(ks, keys, out_key, AES_128_KEY_SIZE, access_key, key_source); } -static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) { +// Equivalent to smc::GetSecureData +static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) { se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE); - u8 *d = (u8 *)dst; - se_aes_crypt_ctr(6, d + 0x00, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); - se_aes_crypt_ctr(6, d + 0x10, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); + u8 *d = (u8 *)out_data; + se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); + se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); // Apply tweak for (u32 i = 0; i < AES_128_KEY_SIZE; i++) { @@ -1161,9 +1247,10 @@ static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) { } } -static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation) { +// Equivalent to spl::GenerateSpecificAesKey +static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) { if (fuse_read_bootrom_rev() >= 0x7F) { - _get_device_key(ks, keys, keys->temp_key, key_generation); + _get_device_key(ks, keys, keys->temp_key, generation - 1); se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE); se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) @@ -1172,24 +1259,124 @@ static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void } } -static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision) { - if (revision == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) { +static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation) { + if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) { memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE); return; } - if (revision >= KB_FIRMWARE_VERSION_400) { - revision -= KB_FIRMWARE_VERSION_400; + if (generation >= KB_FIRMWARE_VERSION_400) { + generation -= KB_FIRMWARE_VERSION_400; } else { - revision = 0; + generation = 0; } - u32 temp_key[AES_128_KEY_SIZE / 4] = {0}; - se_aes_key_set(ks, keys->device_key_4x, AES_128_KEY_SIZE); - se_aes_crypt_block_ecb(ks, DECRYPT, temp_key, device_master_key_source_sources[revision]); + u32 temp_key_source[AES_128_KEY_SIZE / 4] = {0}; + _load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]); + const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation]; se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE); - const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[revision] : device_master_kek_sources_dev[revision]; se_aes_unwrap_key(ks, ks, kek_source); - se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key); + se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source); +} + +// The following ghash implementation is from Atmosphère's original exosphere implementation + +/* Shifts right a little endian 128-bit value. */ +static void _shr_128(uint64_t *val) { + val[0] >>= 1; + val[0] |= (val[1] & 1) << 63; + val[1] >>= 1; +} + +/* Shifts left a little endian 128-bit value. */ +static void _shl_128(uint64_t *val) { + val[1] <<= 1; + val[1] |= (val[0] & (1ull << 63)) >> 63; + val[0] <<= 1; +} + +/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */ +static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) { + uint8_t x_work[0x10]; + uint8_t y_work[0x10]; + uint8_t dst_work[0x10]; + + uint64_t *p_x = (uint64_t *)(&x_work[0]); + uint64_t *p_y = (uint64_t *)(&y_work[0]); + uint64_t *p_dst = (uint64_t *)(&dst_work[0]); + + /* Initialize buffers. */ + for (unsigned int i = 0; i < 0x10; i++) { + x_work[i] = x[0xF-i]; + y_work[i] = y[0xF-i]; + dst_work[i] = 0; + } + + /* Perform operation for each bit in y. */ + for (unsigned int round = 0; round < 0x80; round++) { + p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7); + p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7); + _shl_128(p_y); + uint8_t xval = 0xE1 * (x_work[0] & 1); + _shr_128(p_x); + x_work[0xF] ^= xval; + } + + for (unsigned int i = 0; i < 0x10; i++) { + dst[i] = dst_work[0xF-i]; + } +} + +static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) { + uint8_t x[0x10] = {0}; + uint8_t h[0x10]; + + uint64_t *p_x = (uint64_t *)(&x[0]); + uint64_t *p_data = (uint64_t *)src; + + /* H = aes_ecb_encrypt(zeroes) */ + se_aes_crypt_block_ecb(ks, ENCRYPT, h, x); + + u64 total_size = src_size; + + while (src_size >= 0x10) { + /* X = (X ^ current_block) * H */ + p_x[0] ^= p_data[0]; + p_x[1] ^= p_data[1]; + _gf128_mul(x, x, h); + + /* Increment p_data by 0x10 bytes. */ + p_data += 2; + src_size -= 0x10; + } + + /* Nintendo's code *discards all data in the last block* if unaligned. */ + /* And treats that block as though it were all-zero. */ + /* This is a bug, they just forget to XOR with the copy of the last block they save. */ + if (src_size & 0xF) { + _gf128_mul(x, x, h); + } + + uint64_t xor_size = total_size << 3; + xor_size = __builtin_bswap64(xor_size); + + /* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */ + if (encrypt) { + p_x[0] ^= xor_size; + } else { + p_x[1] ^= xor_size; + } + + _gf128_mul(x, x, h); + + /* If final output block, XOR with encrypted J block. */ + if (encrypt) { + se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block); + for (unsigned int i = 0; i < 0x10; i++) { + x[i] ^= h[i]; + } + } + /* Copy output. */ + memcpy(dst, x, 0x10); } static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) { diff --git a/source/keys/keys.h b/source/keys/keys.h index c0440d8..cc67c4a 100644 --- a/source/keys/keys.h +++ b/source/keys/keys.h @@ -24,6 +24,8 @@ #define AES_128_KEY_SIZE 16 #define RSA_2048_KEY_SIZE 256 +#define RSA_PUBLIC_EXPONENT 65537 + // only tickets of type Rsa2048Sha256 are expected typedef struct { u32 signature_type; // always 0x10004 @@ -104,6 +106,29 @@ typedef struct { u8 xor_pad[0x20]; } nfc_save_key_t; +typedef enum { + SEAL_KEY_LOAD_AES_KEY = 0, + SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA = 1, + SEAL_KEY_IMPORT_LOTUS_KEY = 2, + SEAL_KEY_IMPORT_ES_DEVICE_KEY = 3, + SEAL_KEY_REENCRYPT_DEVICE_UNIQUE_DATA = 4, + SEAL_KEY_IMPORT_SSL_KEY = 5, + SEAL_KEY_IMPORT_ES_CLIENT_CERT_KEY = 6, +} seal_key_t; + +typedef enum { + NOT_DEVICE_UNIQUE = 0, + IS_DEVICE_UNIQUE = 1, +} device_unique_t; + +#define SET_SEAL_KEY_INDEX(x) (((x) & 7) << 5) +#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7) +#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1) + +#define WRAPPED_RSA_EXT_DATA_SIZE 0x20 +#define SSL_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE) +#define SSL_RSA_EXT_KEYPAIR_SIZE (SSL_RSA_KEYPAIR_SIZE + WRAPPED_RSA_EXT_DATA_SIZE) + typedef struct { u8 temp_key[AES_128_KEY_SIZE], bis_key[4][AES_128_KEY_SIZE * 2], @@ -117,8 +142,9 @@ typedef struct { eticket_rsa_kek[AES_128_KEY_SIZE], eticket_rsa_kek_personalized[AES_128_KEY_SIZE], ssl_rsa_kek[AES_128_KEY_SIZE], + ssl_rsa_kek_legacy[AES_128_KEY_SIZE], ssl_rsa_kek_personalized[AES_128_KEY_SIZE], - ssl_rsa_key[RSA_2048_KEY_SIZE + 0x20], + ssl_rsa_keypair[RSA_2048_KEY_SIZE + 0x20], // keyblob-derived families keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE], keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE], @@ -133,7 +159,7 @@ typedef struct { tsec_root_key[AES_128_KEY_SIZE]; u32 sbk[4]; keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1]; - rsa_keypair_t rsa_keypair; + rsa_keypair_t eticket_rsa_keypair; } key_derivation_ctx_t; typedef struct {