/* * Copyright (c) 2019 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "keys.h" #include "../gfx/di.h" #include "../gfx/gfx.h" #include "../hos/pkg1.h" #include "../hos/pkg2.h" #include "../hos/sept.h" #include "../libs/fatfs/ff.h" #include "../mem/heap.h" #include "../mem/mc.h" #include "../mem/sdram.h" #include "../sec/se.h" #include "../sec/se_t210.h" #include "../sec/tsec.h" #include "../soc/fuse.h" #include "../soc/smmu.h" #include "../soc/t210.h" #include "../storage/nx_emmc.h" #include "../storage/sdmmc.h" #include "../utils/btn.h" #include "../utils/list.h" #include "../utils/sprintf.h" #include "../utils/util.h" #include "key_sources.inl" #include extern bool sd_mount(); extern void sd_unmount(); extern int sd_save_to_file(void *buf, u32 size, const char *filename); u32 _key_count = 0; sdmmc_storage_t storage; emmc_part_t *system_part; #define TPRINTF(text) \ end_time = get_tmr_ms(); \ gfx_printf(text" done @ %d.%03ds\n", (end_time - start_time) / 1000, (end_time - start_time) % 1000) #define TPRINTFARGS(text, args...) \ end_time = get_tmr_ms(); \ gfx_printf(text" done @ %d.%03ds\n", args, (end_time - start_time) / 1000, (end_time - start_time) % 1000) #define SAVE_KEY(name, src, len) _save_key(name, src, len, text_buffer) #define SAVE_KEY_FAMILY(name, src, count, len) _save_key_family(name, src, count, len, text_buffer) static u8 temp_key[0x10], bis_key[4][0x20] = {0}, device_key[0x10] = {0}, sd_seed[0x10] = {0}, // FS-related keys fs_keys[10][0x20] = {0}, header_key[0x20] = {0}, save_mac_key[0x10] = {0}, // other sysmodule sources es_keys[3][0x10] = {0}, eticket_rsa_kek[0x10] = {0}, ssl_keys[2][0x10] = {0}, ssl_rsa_kek[0x10] = {0}, // keyblob-derived families keyblob[KB_FIRMWARE_VERSION_600+1][0x90] = {0}, keyblob_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, keyblob_mac_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, package1_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, // master key-derived families key_area_key[3][KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_kek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, package2_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, titlekek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}; static const u32 colors[6] = {COLOR_RED, COLOR_ORANGE, COLOR_YELLOW, COLOR_GREEN, COLOR_BLUE, COLOR_VIOLET}; // key functions static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); }; static void _save_key(const char *name, const void *data, const u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf); static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed); // nca functions static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len); static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr); static void _update_ctr(u8 *ctr, u32 ofs); void dump_keys() { display_backlight_brightness(100, 1000); gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n", colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC); u32 start_time = get_tmr_ms(), end_time, retries = 0; tsec_ctxt_t tsec_ctxt; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); // Read package1. u8 *pkg1 = (u8 *)malloc(0x40000); sdmmc_storage_set_mmc_partition(&storage, 1); sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); if (!pkg1_id) { EPRINTF("Unknown pkg1 version."); goto out_wait; } bool found_tsec_fw = false; for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32)) { if (*pos == 0xCF42004D) { tsec_ctxt.fw = (u8 *)pos; found_tsec_fw = true; break; } } if (!found_tsec_fw) { EPRINTF("Failed to locate TSEC firmware."); goto out_wait; } tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR); tsec_ctxt.pkg1 = pkg1; tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size; u32 MAX_KEY = 6; if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) { MAX_KEY = pkg1_id->kb + 1; } if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) { if (!f_stat("sd:/sept/payload.bak", NULL)) { f_unlink("sd:/sept/payload.bin"); f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin"); } if (!(EMC(EMC_SCRATCH0) & EMC_SEPT_RUN)) { // bundle lp0 fw for sept instead of loading it from SD as hekate does sdram_lp0_save_params(sdram_get_params_patched()); FIL fp; if (f_stat("sd:/sept", NULL)) { EPRINTF("On firmware 7.x+ but Sept missing.\nSkipping new key derivation..."); goto get_tsec; } // backup post-reboot payload if (!f_stat("sd:/sept/payload.bin", NULL)) f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak"); // write self to payload.bin to run again when sept finishes f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE); u32 payload_size = *(u32 *)(IPL_LOAD_ADDR + 0x84) - IPL_LOAD_ADDR; f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL); f_close(&fp); gfx_printf("%kFirmware 7.x or higher detected.\n%kRenamed /sept/payload.bin", colors[0], colors[1]); gfx_printf("\n%k to /sept/payload.bak\n%kCopied self to /sept/payload.bin",colors[2], colors[3]); sdmmc_storage_end(&storage); if (!reboot_to_sept((u8 *)tsec_ctxt.fw, tsec_ctxt.size, pkg1_id->kb)) goto out_wait; } else { se_aes_key_read(12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10); } } get_tsec: ; u8 tsec_keys[0x10 * 2] = {0}; if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) { u8 *tsec_paged = (u8 *)page_alloc(3); memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size); tsec_ctxt.fw = tsec_paged; } int res = 0; mc_disable_ahb_redirect(); while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) { memset(tsec_keys, 0x00, 0x20); retries++; if (retries > 15) { res = -1; break; } } free(pkg1); mc_enable_ahb_redirect(); if (res < 0) { EPRINTFARGS("ERROR %x dumping TSEC.\n", res); goto out_wait; } TPRINTFARGS("%kTSEC key(s)... ", colors[0]); // Master key derivation if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) { se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot) se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]); se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks) se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source); } if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) { // derive all lower master keys in case keyblobs are bad if (_key_exists(master_key[pkg1_id->kb])) { for (u32 i = pkg1_id->kb; i > 0; i--) { se_aes_key_set(8, master_key[i], 0x10); se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]); } se_aes_key_set(8, master_key[0], 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]); if (_key_exists(temp_key)) { EPRINTFARGS("Failed to derive master key. kb = %d", pkg1_id->kb); } } else if (_key_exists(master_key[KB_FIRMWARE_VERSION_MAX])) { // handle sept version differences for (u32 kb = KB_FIRMWARE_VERSION_MAX; kb >= KB_FIRMWARE_VERSION_620; kb--) { for (u32 i = kb; i > 0; i--) { se_aes_key_set(8, master_key[i], 0x10); se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]); } se_aes_key_set(8, master_key[0], 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]); if (!_key_exists(temp_key)) { break; } memcpy(master_key[kb-1], master_key[kb], 0x10); memcpy(master_key[kb], zeros, 0x10); } if (_key_exists(temp_key)) { EPRINTF("Failed to derive master key."); } } } u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1); u8 keyblob_mac[0x10] = {0}; u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1), FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)}; se_aes_key_set(8, tsec_keys, 0x10); se_aes_key_set(9, sbk, 0x10); for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++) { se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk) se_aes_key_set(7, keyblob_key[i], 0x10); se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) if (i == 0) se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) // verify keyblob is not corrupt sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block); se_aes_key_set(3, keyblob_mac_key[i], 0x10); se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0); if (memcmp(keyblob_block, keyblob_mac, 0x10)) { EPRINTFARGS("Keyblob %x corrupt.", i); gfx_hexdump(i, keyblob_block, 0x10); gfx_hexdump(i, keyblob_mac, 0x10); continue; } // decrypt keyblobs se_aes_key_set(2, keyblob_key[i], 0x10); se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10); memcpy(package1_key[i], keyblob[i] + 0x80, 0x10); memcpy(master_kek[i], keyblob[i], 0x10); se_aes_key_set(7, master_kek[i], 0x10); se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source); } free(keyblob_block); TPRINTFARGS("%kMaster keys... ", colors[1]); /* key = unwrap(source, wrapped_key): key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key */ // TODO: fix bis key generation for newer unpatched consoles if (_key_exists(device_key)) { se_aes_key_set(8, device_key, 0x10); se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10); // kek = generate_kek(bkeks, devkey, aeskek, aeskey) _generate_kek(8, bis_kek_source, device_key, aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10); memcpy(bis_key[3], bis_key[2], 0x20); } // Dump package2. u8 *pkg2 = NULL; pkg2_kip1_info_t *ki = NULL; sdmmc_storage_set_mmc_partition(&storage, 0); // Parse eMMC GPT. LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); // Find package2 partition. emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main"); if (!pkg2_part) { EPRINTF("Failed to locate Package2."); goto pkg2_done; } // Read in package2 header and get package2 real size. u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE); nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, 1, tmp); u32 *hdr_pkg2_raw = (u32 *)(tmp + 0x100); u32 pkg2_size = hdr_pkg2_raw[0] ^ hdr_pkg2_raw[2] ^ hdr_pkg2_raw[3]; free(tmp); if (pkg2_size > 0x7FC000) { EPRINTF("Invalid Package2 header."); goto pkg2_done; } // Read in package2. u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE); pkg2 = malloc(pkg2_size_aligned); nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, pkg2_size_aligned / NX_EMMC_BLOCKSIZE, pkg2); // Decrypt package2 and parse KIP1 blobs in INI1 section. Try all available key generations in case of pkg1/pkg2 mismatch. pkg2_hdr_t *pkg2_hdr; pkg2_hdr_t hdr; u32 pkg2_kb; for (pkg2_kb = 0; pkg2_kb < MAX_KEY; pkg2_kb++) { se_aes_key_set(8, master_key[pkg2_kb], 0x10); se_aes_unwrap_key(8, 8, package2_key_source); memcpy(&hdr, pkg2 + 0x100, sizeof(pkg2_hdr_t)); se_aes_crypt_ctr(8, &hdr, sizeof(pkg2_hdr_t), &hdr, sizeof(pkg2_hdr_t), &hdr); if (hdr.magic == PKG2_MAGIC) break; } if (pkg2_kb == MAX_KEY) { EPRINTF("Failed to derive Package2 key."); goto pkg2_done; } else if (pkg2_kb != pkg1_id->kb) EPRINTF("Warning: Package1-Package2 mismatch."); pkg2_hdr = pkg2_decrypt(pkg2); if (!pkg2_hdr) { EPRINTF("Failed to decrypt Package2."); goto pkg2_done; } TPRINTFARGS("%kDecrypt pkg2... ", colors[2]); LIST_INIT(kip1_info); bool new_pkg2; pkg2_parse_kips(&kip1_info, pkg2_hdr, &new_pkg2); LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki_tmp, &kip1_info, link) { if(ki_tmp->kip1->tid == 0x0100000000000000ULL) { ki = malloc(sizeof(pkg2_kip1_info_t)); memcpy(ki, ki_tmp, sizeof(pkg2_kip1_info_t)); break; } } LIST_FOREACH_SAFE(iter, &kip1_info) free(CONTAINER_OF(iter, pkg2_kip1_info_t, link)); if (!ki) { EPRINTF("Failed to parse INI1."); goto pkg2_done; } pkg2_decompress_kip(ki, 2 | 4); // we only need .rodata and .data TPRINTFARGS("%kDecompress FS...", colors[3]); u8 hash_index = 0, hash_max = 9, hash_order[10], key_lengths[10] = {0x10, 0x20, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x20, 0x20}; u32 start_offset = 0, hks_offset_from_end = ki->kip1->sections[2].size_decomp, alignment = 1; // the FS keys appear in different orders if (!memcmp(pkg1_id->id, "2016", 4)) { // 1.0.0 doesn't have SD keys at all hash_max = 6; // the first key isn't aligned with the rest memcpy(fs_keys[2], ki->kip1->data + ki->kip1->sections[0].size_comp + 0x1ae0e, 0x10); hash_index = 1; start_offset = 0x1b517; hks_offset_from_end = 0x125bc2; alignment = 0x10; u8 temp[7] = {2, 3, 4, 0, 5, 6, 1}; memcpy(hash_order, temp, 7); } else { // 2.0.0 - 8.0.0 alignment = 0x40; switch (pkg1_id->kb) { case KB_FIRMWARE_VERSION_100_200: start_offset = 0x1d226; alignment = 0x10; hks_offset_from_end -= 0x26fe; break; case KB_FIRMWARE_VERSION_300: start_offset = 0x1ffa6; hks_offset_from_end -= 0x298b; break; case KB_FIRMWARE_VERSION_301: start_offset = 0x20026; hks_offset_from_end -= 0x29ab; break; case KB_FIRMWARE_VERSION_400: start_offset = 0x1c64c; hks_offset_from_end -= 0x37eb; break; case KB_FIRMWARE_VERSION_500: start_offset = 0x1f3b4; hks_offset_from_end -= 0x465b; alignment = 0x20; break; case KB_FIRMWARE_VERSION_600: case KB_FIRMWARE_VERSION_620: start_offset = 0x27350; hks_offset_from_end = 0x17ff5; alignment = 8; break; case KB_FIRMWARE_VERSION_700: case KB_FIRMWARE_VERSION_810: start_offset = 0x29c50; hks_offset_from_end -= 0x6a73; alignment = 8; break; case KB_FIRMWARE_VERSION_900: start_offset = 0x2ec10; hks_offset_from_end -= 0x5573; alignment = 1; // RIP break; } if (pkg1_id->kb <= KB_FIRMWARE_VERSION_500) { u8 temp[10] = {2, 3, 4, 0, 5, 7, 9, 8, 6, 1}; memcpy(hash_order, temp, 10); } else { u8 temp[10] = {6, 5, 7, 2, 3, 4, 0, 9, 8, 1}; memcpy(hash_order, temp, 10); } } u8 temp_hash[0x20]; for (u32 i = ki->kip1->sections[0].size_comp + start_offset; i < ki->size - 0x20; ) { se_calc_sha256(temp_hash, ki->kip1->data + i, key_lengths[hash_order[hash_index]]); if (!memcmp(temp_hash, fs_hashes_sha256[hash_order[hash_index]], 0x20)) { memcpy(fs_keys[hash_order[hash_index]], ki->kip1->data + i, key_lengths[hash_order[hash_index]]); /*if (hash_index == hash_max) { TPRINTFARGS("%d: %x end -%x", hash_index, (*(ki->kip1->data + i)), ki->size - i); } else { TPRINTFARGS("%d: %x rodata +%x", hash_index, (*(ki->kip1->data + i)), i - ki->kip1->sections[0].size_comp); }*/ i += key_lengths[hash_order[hash_index]]; if (hash_index == hash_max - 1) { i = ki->size - hks_offset_from_end; } else if (hash_index == hash_max) { break; } hash_index++; } else { i += alignment; } } pkg2_done: free(pkg2); free(ki); TPRINTFARGS("%kFS keys... ", colors[4]); if (_key_exists(fs_keys[0]) && _key_exists(fs_keys[1]) && _key_exists(master_key[0])) { _generate_kek(8, fs_keys[0], master_key[0], aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_block_ecb(8, 0, header_key + 0x00, fs_keys[1] + 0x00); se_aes_crypt_block_ecb(8, 0, header_key + 0x10, fs_keys[1] + 0x10); } if (_key_exists(fs_keys[5]) && _key_exists(fs_keys[6]) && _key_exists(device_key)) { _generate_kek(8, fs_keys[5], device_key, aes_kek_generation_source, NULL); se_aes_crypt_block_ecb(8, 0, save_mac_key, fs_keys[6]); } if (_key_exists(master_key[MAX_KEY])) { MAX_KEY = KB_FIRMWARE_VERSION_MAX + 1; } for (u32 i = 0; i < MAX_KEY; i++) { if (!_key_exists(master_key[i])) continue; if (_key_exists(fs_keys[2]) && _key_exists(fs_keys[3]) && _key_exists(fs_keys[4])) { for (u32 j = 0; j < 3; j++) { _generate_kek(8, fs_keys[2 + j], master_key[i], aes_kek_generation_source, NULL); se_aes_crypt_block_ecb(8, 0, key_area_key[j][i], aes_key_generation_source); } } se_aes_key_set(8, master_key[i], 0x10); se_aes_crypt_block_ecb(8, 0, package2_key[i], package2_key_source); se_aes_crypt_block_ecb(8, 0, titlekek[i], titlekek_source); } if (!_key_exists(header_key) || !_key_exists(bis_key[2])) { EPRINTF("Missing FS keys. Skipping ES/SSL keys."); goto key_output; } se_aes_key_set(4, header_key + 0x00, 0x10); se_aes_key_set(5, header_key + 0x10, 0x10); se_aes_key_set(8, bis_key[2] + 0x00, 0x10); se_aes_key_set(9, bis_key[2] + 0x10, 0x10); system_part = nx_emmc_part_find(&gpt, "SYSTEM"); if (!system_part) { EPRINTF("Failed to locate System partition."); goto key_output; } __attribute__ ((aligned (16))) FATFS emmc_fs; if (f_mount(&emmc_fs, "emmc:", 1)) { EPRINTF("Mount failed."); goto key_output; } DIR dir; FILINFO fno; FIL fp; // sysmodule NCAs only ever have one section (exefs) so 0x600 is sufficient u8 *dec_header = (u8*)malloc(0x600); char path[100] = "emmc:/Contents/registered"; u32 titles_found = 0, title_limit = 2, read_bytes = 0; if (!memcmp(pkg1_id->id, "2016", 4)) title_limit = 1; u8 *temp_file = NULL; if (f_opendir(&dir, path)) { EPRINTF("Failed to open System:/Contents/registered."); goto dismount; } // prepopulate /Contents/registered in decrypted sector cache while (!f_readdir(&dir, &fno) && fno.fname[0]) {} f_closedir(&dir); if (f_opendir(&dir, path)) { EPRINTF("Failed to open System:/Contents/registered."); goto dismount; } path[25] = '/'; start_offset = 0; while (!f_readdir(&dir, &fno) && fno.fname[0] && titles_found < title_limit) { memcpy(path + 26, fno.fname, 36); path[62] = 0; if (fno.fattrib & AM_DIR) memcpy(path + 62, "/00", 4); if (f_open(&fp, path, FA_READ | FA_OPEN_EXISTING)) continue; if (f_lseek(&fp, 0x200) || f_read(&fp, dec_header, 32, &read_bytes) || read_bytes != 32) { f_close(&fp); continue; } se_aes_xts_crypt(5, 4, 0, 1, dec_header + 0x200, dec_header, 32, 1); // es doesn't contain es key sources on 1.0.0 if (memcmp(pkg1_id->id, "2016", 4) && *(u32*)(dec_header + 0x210) == 0x33 && dec_header[0x205] == 0) { // es (offset 0x210 is lower half of titleid, 0x205 == 0 means it's program nca, not meta) switch (pkg1_id->kb) { case KB_FIRMWARE_VERSION_100_200: start_offset = 0x557b; break; case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: start_offset = 0x552d; break; case KB_FIRMWARE_VERSION_400: start_offset = 0x5382; break; case KB_FIRMWARE_VERSION_500: start_offset = 0x5a63; break; case KB_FIRMWARE_VERSION_600: case KB_FIRMWARE_VERSION_620: start_offset = 0x5674; break; case KB_FIRMWARE_VERSION_700: case KB_FIRMWARE_VERSION_810: start_offset = 0x5563; break; case KB_FIRMWARE_VERSION_900: start_offset = 0x6495; break; } hash_order[2] = 2; if (pkg1_id->kb < KB_FIRMWARE_VERSION_500) { hash_order[0] = 0; hash_order[1] = 1; } else { hash_order[0] = 1; hash_order[1] = 0; } hash_index = 0; // decrypt only what is needed to locate needed keys temp_file = (u8*)_nca_process(5, 4, &fp, start_offset, 0xc0); for (u32 i = 0; i <= 0xb0; ) { se_calc_sha256(temp_hash, temp_file + i, 0x10); if (!memcmp(temp_hash, es_hashes_sha256[hash_order[hash_index]], 0x10)) { memcpy(es_keys[hash_order[hash_index]], temp_file + i, 0x10); hash_index++; if (hash_index == 3) break; i += 0x10; } else { i++; } } free(temp_file); temp_file = NULL; titles_found++; } else if (*(u32*)(dec_header + 0x210) == 0x24 && dec_header[0x205] == 0) { // ssl switch (pkg1_id->kb) { case KB_FIRMWARE_VERSION_100_200: start_offset = 0x3d41a; break; case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: start_offset = 0x3cb81; break; case KB_FIRMWARE_VERSION_400: start_offset = 0x3711c; break; case KB_FIRMWARE_VERSION_500: start_offset = 0x37901; break; case KB_FIRMWARE_VERSION_600: case KB_FIRMWARE_VERSION_620: start_offset = 0x1d5be; break; case KB_FIRMWARE_VERSION_700: case KB_FIRMWARE_VERSION_810: start_offset = 0x1d437; break; case KB_FIRMWARE_VERSION_900: start_offset = 0x1d807; break; } if (!memcmp(pkg1_id->id, "2016", 4)) start_offset = 0x449dc; temp_file = (u8*)_nca_process(5, 4, &fp, start_offset, 0x70); for (u32 i = 0; i <= 0x60; i++) { se_calc_sha256(temp_hash, temp_file + i, 0x10); if (!memcmp(temp_hash, ssl_hashes_sha256[1], 0x10)) { memcpy(ssl_keys[1], temp_file + i, 0x10); // only get ssl_rsa_kek_source_x from SSL on 1.0.0 // we get it from ES on every other firmware // and it's located oddly distant from ssl_rsa_kek_source_y on >= 6.0.0 if (!memcmp(pkg1_id->id, "2016", 4)) { se_calc_sha256(temp_hash, temp_file + i + 0x10, 0x10); if (!memcmp(temp_hash, ssl_hashes_sha256[0], 0x10)) memcpy(es_keys[2], temp_file + i + 0x10, 0x10); } break; } } free(temp_file); temp_file = NULL; titles_found++; } f_close(&fp); } f_closedir(&dir); free(dec_header); if (f_open(&fp, "sd:/Nintendo/Contents/private", FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to locate SD seed. Skipping."); goto dismount; } // get sd seed verification vector if (f_read(&fp, temp_key, 0x10, &read_bytes) || read_bytes != 0x10) { EPRINTF("Unable to locate SD seed. Skipping."); f_close(&fp); goto dismount; } f_close(&fp); if (f_open(&fp, "emmc:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Failed to open ns_appman save.\nSkipping SD seed."); goto dismount; } // locate sd seed u8 read_buf[0x20] = {0}; for (u32 i = 0x8000; i < f_size(&fp); i += 0x4000) { if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20) break; if (!memcmp(temp_key, read_buf, 0x10)) { memcpy(sd_seed, read_buf + 0x10, 0x10); break; } } f_close(&fp); dismount: f_mount(NULL, "emmc:", 1); nx_emmc_gpt_free(&gpt); sdmmc_storage_end(&storage); if (memcmp(pkg1_id->id, "2016", 4)) { TPRINTFARGS("%kES & SSL keys...", colors[5]); } else { TPRINTFARGS("%kSSL keys... ", colors[5]); } // derive eticket_rsa_kek and ssl_rsa_kek if (_key_exists(es_keys[0]) && _key_exists(es_keys[1]) && _key_exists(master_key[0])) { for (u32 i = 0; i < 0x10; i++) temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; _generate_kek(8, es_keys[1], master_key[0], temp_key, NULL); se_aes_crypt_block_ecb(8, 0, eticket_rsa_kek, es_keys[0]); } if (_key_exists(ssl_keys[1]) && _key_exists(es_keys[2]) && _key_exists(master_key[0])) { for (u32 i = 0; i < 0x10; i++) temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; _generate_kek(8, es_keys[2], master_key[0], temp_key, NULL); se_aes_crypt_block_ecb(8, 0, ssl_rsa_kek, ssl_keys[1]); } key_output: ; __attribute__ ((aligned (16))) char text_buffer[0x3000] = {0}; SAVE_KEY("aes_kek_generation_source", aes_kek_generation_source, 0x10); SAVE_KEY("aes_key_generation_source", aes_key_generation_source, 0x10); SAVE_KEY("bis_kek_source", bis_kek_source, 0x10); SAVE_KEY_FAMILY("bis_key", bis_key, 4, 0x20); SAVE_KEY_FAMILY("bis_key_source", bis_key_source, 3, 0x20); SAVE_KEY("device_key", device_key, 0x10); SAVE_KEY("eticket_rsa_kek", eticket_rsa_kek, 0x10); SAVE_KEY("eticket_rsa_kek_source", es_keys[0], 0x10); SAVE_KEY("eticket_rsa_kekek_source", es_keys[1], 0x10); SAVE_KEY("header_kek_source", fs_keys[0], 0x10); SAVE_KEY("header_key", header_key, 0x20); SAVE_KEY("header_key_source", fs_keys[1], 0x20); SAVE_KEY_FAMILY("key_area_key_application", key_area_key[0], MAX_KEY, 0x10); SAVE_KEY("key_area_key_application_source", fs_keys[2], 0x10); SAVE_KEY_FAMILY("key_area_key_ocean", key_area_key[1], MAX_KEY, 0x10); SAVE_KEY("key_area_key_ocean_source", fs_keys[3], 0x10); SAVE_KEY_FAMILY("key_area_key_system", key_area_key[2], MAX_KEY, 0x10); SAVE_KEY("key_area_key_system_source", fs_keys[4], 0x10); SAVE_KEY_FAMILY("keyblob", keyblob, 6, 0x90); SAVE_KEY_FAMILY("keyblob_key", keyblob_key, 6, 0x10); SAVE_KEY_FAMILY("keyblob_key_source", keyblob_key_source, 6, 0x10); SAVE_KEY_FAMILY("keyblob_mac_key", keyblob_mac_key, 6, 0x10); SAVE_KEY("keyblob_mac_key_source", keyblob_mac_key_source, 0x10); SAVE_KEY_FAMILY("master_kek", master_kek, MAX_KEY, 0x10); SAVE_KEY("master_kek_source_06", master_kek_sources[0], 0x10); SAVE_KEY("master_kek_source_07", master_kek_sources[1], 0x10); SAVE_KEY("master_kek_source_08", master_kek_sources[2], 0x10); SAVE_KEY("master_kek_source_09", master_kek_sources[3], 0x10); SAVE_KEY_FAMILY("master_key", master_key, MAX_KEY, 0x10); SAVE_KEY("master_key_source", master_key_source, 0x10); SAVE_KEY_FAMILY("package1_key", package1_key, 6, 0x10); SAVE_KEY_FAMILY("package2_key", package2_key, MAX_KEY, 0x10); SAVE_KEY("package2_key_source", package2_key_source, 0x10); SAVE_KEY("per_console_key_source", per_console_key_source, 0x10); SAVE_KEY("retail_specific_aes_key_source", retail_specific_aes_key_source, 0x10); for (u32 i = 0; i < 0x10; i++) temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; SAVE_KEY("rsa_oaep_kek_generation_source", temp_key, 0x10); for (u32 i = 0; i < 0x10; i++) temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; SAVE_KEY("rsa_private_kek_generation_source", temp_key, 0x10); SAVE_KEY("save_mac_kek_source", fs_keys[5], 0x10); SAVE_KEY("save_mac_key", save_mac_key, 0x10); SAVE_KEY("save_mac_key_source", fs_keys[6], 0x10); SAVE_KEY("sd_card_kek_source", fs_keys[7], 0x10); SAVE_KEY("sd_card_nca_key_source", fs_keys[8], 0x20); SAVE_KEY("sd_card_save_key_source", fs_keys[9], 0x20); SAVE_KEY("sd_seed", sd_seed, 0x10); SAVE_KEY("secure_boot_key", sbk, 0x10); SAVE_KEY("ssl_rsa_kek", ssl_rsa_kek, 0x10); SAVE_KEY("ssl_rsa_kek_source_x", es_keys[2], 0x10); SAVE_KEY("ssl_rsa_kek_source_y", ssl_keys[1], 0x10); SAVE_KEY_FAMILY("titlekek", titlekek, MAX_KEY, 0x10); SAVE_KEY("titlekek_source", titlekek_source, 0x10); SAVE_KEY("tsec_key", tsec_keys, 0x10); if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) SAVE_KEY("tsec_root_key", tsec_keys + 0x10, 0x10); //gfx_con.fntsz = 8; gfx_puts(text_buffer); gfx_con.fntsz = 16; TPRINTFARGS("\n%kFound %d keys.\n%kLockpick totally", colors[0], _key_count, colors[1]); f_mkdir("switch"); char keyfile_path[30] = "sd:/switch/"; if (!(fuse_read_odm(4) & 3)) sprintf(&keyfile_path[11], "prod.keys"); else sprintf(&keyfile_path[11], "dev.keys"); if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { gfx_printf("%kWrote %d bytes to %s\n", colors[2], (u32)fno.fsize, keyfile_path); } else EPRINTF("Failed to save keys to SD."); sd_unmount(); out_wait: gfx_printf("\n%kVOL + -> Reboot to RCM\n%kVOL - -> Reboot normally\n%kPower -> Power off", colors[3], colors[4], colors[5]); u32 btn = btn_wait(); if (btn & BTN_VOL_UP) reboot_rcm(); else if (btn & BTN_VOL_DOWN) reboot_normal(); else power_off(); } static void _save_key(const char *name, const void *data, const u32 len, char *outbuf) { if (!_key_exists(data)) return; u32 pos = strlen(outbuf); pos += sprintf(&outbuf[pos], "%s = ", name); for (u32 i = 0; i < len; i++) pos += sprintf(&outbuf[pos], "%02x", *(u8*)(data + i)); sprintf(&outbuf[pos], "\n"); _key_count++; } static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf) { char temp_name[0x40] = {0}; for (u32 i = 0; i < num_keys; i++) { sprintf(temp_name, "%s_%02x", name, i); _save_key(temp_name, data + i * len, len, outbuf); } } static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) { if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) return; se_aes_key_set(ks, master_key, 0x10); se_aes_unwrap_key(ks, ks, kek_seed); se_aes_unwrap_key(ks, ks, key_source); if (key_seed && _key_exists(key_seed)) se_aes_unwrap_key(ks, ks, key_seed); } static inline u32 _read_le_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 0) ) | (*(u8*)(buffer + offset + 1) << 0x08) | (*(u8*)(buffer + offset + 2) << 0x10) | (*(u8*)(buffer + offset + 3) << 0x18); } static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len) { u32 read_bytes = 0, crypt_offset, read_size, num_files, string_table_size, rodata_offset; u8 *temp_file = (u8*)malloc(0x400), ctr[0x10] = {0}; if (f_lseek(fp, 0x200) || f_read(fp, temp_file, 0x400, &read_bytes) || read_bytes != 0x400) return NULL; se_aes_xts_crypt(hk_ks1, hk_ks2, 0, 1, temp_file, temp_file, 0x200, 2); // both 1.x and 2.x use master_key_00 temp_file[0x20] -= temp_file[0x20] ? 1 : 0; // decrypt key area and load decrypted key area key se_aes_key_set(7, key_area_key[temp_file[7]][temp_file[0x20]], 0x10); se_aes_crypt_block_ecb(7, 0, temp_file + 0x120, temp_file + 0x120); se_aes_key_set(2, temp_file + 0x120, 0x10); for (u32 i = 0; i < 8; i++) ctr[i] = temp_file[0x347 - i]; crypt_offset = _read_le_u32(temp_file, 0x40) * 0x200 + _read_le_u32(temp_file, 0x240); read_size = 0x10; _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr); num_files = _read_le_u32(temp_file, 4); string_table_size = _read_le_u32(temp_file, 8); if (!memcmp(temp_file + 0x10 + num_files * 0x18, "main.npdm", 9)) crypt_offset += _read_le_u32(temp_file, 0x18); crypt_offset += 0x10 + num_files * 0x18 + string_table_size; read_size = 0x40; _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr); rodata_offset = _read_le_u32(temp_file, 0x20); void *buf = malloc(len); _nca_fread_ctr(2, fp, buf, crypt_offset + rodata_offset + key_offset, len, ctr); free(temp_file); return buf; } static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr) { u32 br; if (f_lseek(fp, offset) || f_read(fp, buffer, len, &br) || br != len) return 0; _update_ctr(ctr, offset); if (offset % 0x10) { u8 *temp = (u8*)malloc(ALIGN(br + offset % 0x10, 0x10)); memcpy(temp + offset % 0x10, buffer, br); se_aes_crypt_ctr(ks, temp, ALIGN(br + offset % 0x10, 0x10), temp, ALIGN(br + offset % 0x10, 0x10), ctr); memcpy(buffer, temp + offset % 0x10, br); free(temp); return br; } se_aes_crypt_ctr(ks, buffer, br, buffer, br, ctr); return br; } static void _update_ctr(u8 *ctr, u32 ofs) { ofs >>= 4; for (u32 i = 0; i < 4; i++, ofs >>= 8) ctr[0x10-i-1] = (u8)(ofs & 0xff); }