/** * @file lv_draw_arc.c * */ /********************* * INCLUDES *********************/ #include "lv_draw_arc.h" #include "../lv_misc/lv_math.h" /********************* * DEFINES *********************/ /********************** * TYPEDEFS **********************/ /********************** * STATIC PROTOTYPES **********************/ static uint16_t fast_atan2(int x, int y); static void ver_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa); static void hor_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa); static bool deg_test_norm(uint16_t deg, uint16_t start, uint16_t end); static bool deg_test_inv(uint16_t deg, uint16_t start, uint16_t end); /********************** * STATIC VARIABLES **********************/ /********************** * MACROS **********************/ /********************** * GLOBAL FUNCTIONS **********************/ /** * Draw an arc. (Can draw pie too with great thickness.) * @param center_x the x coordinate of the center of the arc * @param center_y the y coordinate of the center of the arc * @param radius the radius of the arc * @param mask the arc will be drawn only in this mask * @param start_angle the start angle of the arc (0 deg on the bottom, 90 deg on the right) * @param end_angle the end angle of the arc * @param style style of the arc (`body.thickness`, `body.main_color`, `body.opa` is used) * @param opa_scale scale down all opacities by the factor */ void lv_draw_arc(lv_coord_t center_x, lv_coord_t center_y, uint16_t radius, const lv_area_t * mask, uint16_t start_angle, uint16_t end_angle, const lv_style_t * style, lv_opa_t opa_scale) { lv_coord_t thickness = style->line.width; if(thickness > radius) thickness = radius; lv_coord_t r_out = radius; lv_coord_t r_in = r_out - thickness; int16_t deg_base; int16_t deg; lv_coord_t x_start[4]; lv_coord_t x_end[4]; lv_color_t color = style->line.color; lv_opa_t opa = opa_scale == LV_OPA_COVER ? style->body.opa : (uint16_t)((uint16_t) style->body.opa * opa_scale) >> 8; bool (*deg_test)(uint16_t, uint16_t, uint16_t); if(start_angle <= end_angle) deg_test = deg_test_norm; else deg_test = deg_test_inv; if(deg_test(270, start_angle, end_angle)) hor_line(center_x - r_out + 1, center_y, mask, thickness - 1, color, opa); // Left Middle if(deg_test(90, start_angle, end_angle)) hor_line(center_x + r_in, center_y, mask, thickness - 1, color, opa); // Right Middle if(deg_test(180, start_angle, end_angle)) ver_line(center_x, center_y - r_out + 1, mask, thickness - 1, color, opa); // Top Middle if(deg_test(0, start_angle, end_angle)) ver_line(center_x, center_y + r_in, mask, thickness - 1, color, opa); // Bottom middle uint32_t r_out_sqr = r_out * r_out; uint32_t r_in_sqr = r_in * r_in; int16_t xi; int16_t yi; for(yi = -r_out; yi < 0; yi++) { x_start[0] = LV_COORD_MIN; x_start[1] = LV_COORD_MIN; x_start[2] = LV_COORD_MIN; x_start[3] = LV_COORD_MIN; x_end[0] = LV_COORD_MIN; x_end[1] = LV_COORD_MIN; x_end[2] = LV_COORD_MIN; x_end[3] = LV_COORD_MIN; for(xi = -r_out; xi < 0; xi++) { uint32_t r_act_sqr = xi * xi + yi * yi; if(r_act_sqr > r_out_sqr) continue; deg_base = fast_atan2(xi, yi) - 180; deg = 180 + deg_base; if(deg_test(deg, start_angle, end_angle)) { if(x_start[0] == LV_COORD_MIN) x_start[0] = xi; } else if(x_start[0] != LV_COORD_MIN && x_end[0] == LV_COORD_MIN) { x_end[0] = xi - 1; } deg = 360 - deg_base; if(deg_test(deg, start_angle, end_angle)) { if(x_start[1] == LV_COORD_MIN) x_start[1] = xi; } else if(x_start[1] != LV_COORD_MIN && x_end[1] == LV_COORD_MIN) { x_end[1] = xi - 1; } deg = 180 - deg_base; if(deg_test(deg, start_angle, end_angle)) { if(x_start[2] == LV_COORD_MIN) x_start[2] = xi; } else if(x_start[2] != LV_COORD_MIN && x_end[2] == LV_COORD_MIN) { x_end[2] = xi - 1; } deg = deg_base; if(deg_test(deg, start_angle, end_angle)) { if(x_start[3] == LV_COORD_MIN) x_start[3] = xi; } else if(x_start[3] != LV_COORD_MIN && x_end[3] == LV_COORD_MIN) { x_end[3] = xi - 1; } if(r_act_sqr < r_in_sqr) break; /*No need to continue the iteration in x once we found the inner edge of the arc*/ } if(x_start[0] != LV_COORD_MIN) { if(x_end[0] == LV_COORD_MIN) x_end[0] = xi - 1; hor_line(center_x + x_start[0], center_y + yi, mask, x_end[0] - x_start[0], color, opa); } if(x_start[1] != LV_COORD_MIN) { if(x_end[1] == LV_COORD_MIN) x_end[1] = xi - 1; hor_line(center_x + x_start[1], center_y - yi, mask, x_end[1] - x_start[1], color, opa); } if(x_start[2] != LV_COORD_MIN) { if(x_end[2] == LV_COORD_MIN) x_end[2] = xi - 1; hor_line(center_x - x_end[2], center_y + yi, mask, LV_MATH_ABS(x_end[2] - x_start[2]), color, opa); } if(x_start[3] != LV_COORD_MIN) { if(x_end[3] == LV_COORD_MIN) x_end[3] = xi - 1; hor_line(center_x - x_end[3], center_y - yi, mask, LV_MATH_ABS(x_end[3] - x_start[3]), color, opa); } #if LV_ANTIALIAS /*TODO*/ #endif } } static uint16_t fast_atan2(int x, int y) { // Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com // Converts any XY values including 0 to a degree value that should be // within +/- 1 degree of the accurate value without needing // large slow trig functions like ArcTan() or ArcCos(). // NOTE! at least one of the X or Y values must be non-zero! // This is the full version, for all 4 quadrants and will generate // the angle in integer degrees from 0-360. // Any values of X and Y are usable including negative values provided // they are between -1456 and 1456 so the 16bit multiply does not overflow. unsigned char negflag; unsigned char tempdegree; unsigned char comp; unsigned int degree; // this will hold the result //signed int x; // these hold the XY vector at the start //signed int y; // (and they will be destroyed) unsigned int ux; unsigned int uy; // Save the sign flags then remove signs and get XY as unsigned ints negflag = 0; if(x < 0) { negflag += 0x01; // x flag bit x = (0 - x); // is now + } ux = x; // copy to unsigned var before multiply if(y < 0) { negflag += 0x02; // y flag bit y = (0 - y); // is now + } uy = y; // copy to unsigned var before multiply // 1. Calc the scaled "degrees" if(ux > uy) { degree = (uy * 45) / ux; // degree result will be 0-45 range negflag += 0x10; // octant flag bit } else { degree = (ux * 45) / uy; // degree result will be 0-45 range } // 2. Compensate for the 4 degree error curve comp = 0; tempdegree = degree; // use an unsigned char for speed! if(tempdegree > 22) { // if top half of range if(tempdegree <= 44) comp++; if(tempdegree <= 41) comp++; if(tempdegree <= 37) comp++; if(tempdegree <= 32) comp++; // max is 4 degrees compensated } else { // else is lower half of range if(tempdegree >= 2) comp++; if(tempdegree >= 6) comp++; if(tempdegree >= 10) comp++; if(tempdegree >= 15) comp++; // max is 4 degrees compensated } degree += comp; // degree is now accurate to +/- 1 degree! // Invert degree if it was X>Y octant, makes 0-45 into 90-45 if(negflag & 0x10) degree = (90 - degree); // 3. Degree is now 0-90 range for this quadrant, // need to invert it for whichever quadrant it was in if(negflag & 0x02) { // if -Y if(negflag & 0x01) // if -Y -X degree = (180 + degree); else // else is -Y +X degree = (180 - degree); } else { // else is +Y if(negflag & 0x01) // if +Y -X degree = (360 - degree); } return degree; } /********************** * STATIC FUNCTIONS **********************/ static void ver_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa) { lv_area_t area; lv_area_set(&area, x, y, x, y + len); fill_fp(&area, mask, color, opa); } static void hor_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa) { lv_area_t area; lv_area_set(&area, x, y, x + len, y); fill_fp(&area, mask, color, opa); } static bool deg_test_norm(uint16_t deg, uint16_t start, uint16_t end) { if(deg >= start && deg <= end) return true; else return false; } static bool deg_test_inv(uint16_t deg, uint16_t start, uint16_t end) { if(deg >= start || deg <= end) { return true; } else return false; }