/* * eMMC BIS driver for Nintendo Switch * * Copyright (c) 2019 shchmue * Copyright (c) 2019-2020 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "../storage/nx_emmc.h" #include "nx_emmc_bis.h" #include #include #define MAX_CLUSTER_CACHE_ENTRIES 32768 #define CLUSTER_LOOKUP_EMPTY_ENTRY 0xFFFFFFFF #define SECTORS_PER_CLUSTER 0x20 typedef struct _cluster_cache_t { u32 cluster_num; // index of the cluster in the partition u32 visit_count; // used for debugging/access analysis u8 dirty; // has been modified without writeback flag u8 align[7]; u8 cluster[XTS_CLUSTER_SIZE]; // the cached cluster itself } cluster_cache_t; typedef struct _bis_cache_t { u8 emmc_buffer[XTS_CLUSTER_SIZE]; cluster_cache_t cluster_cache[]; } bis_cache_t; static u8 ks_crypt = 0; static u8 ks_tweak = 0; static u8 cache_filled = 0; static u32 dirty_cluster_count = 0; static u32 cluster_cache_end_index = 0; static emmc_part_t *system_part = NULL; static bis_cache_t *bis_cache = (bis_cache_t *)NX_BIS_CACHE_ADDR; static u32 *cluster_lookup_buf = NULL; static u32 *cluster_lookup = NULL; static bool lock_cluster_cache = false; static void _gf256_mul_x_le(void *block) { u32 *pdata = (u32 *)block; u32 carry = 0; for (u32 i = 0; i < 4; i++) { u32 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 31; } if (carry) pdata[0x0] ^= 0x87; } static int _nx_aes_xts_crypt_sec(u32 tweak_ks, u32 crypt_ks, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u32 sec, void *dst, const void *src, u32 sec_size) { u32 *pdst = (u32 *)dst; u32 *psrc = (u32 *)src; u32 *ptweak = (u32 *)tweak; if (regen_tweak) { for (int i = 0xF; i >= 0; i--) { tweak[i] = sec & 0xFF; sec >>= 8; } if (!se_aes_crypt_block_ecb(tweak_ks, 1, tweak, tweak)) return 0; } // tweak_exp allows us to use a saved tweak to reduce _gf256_mul_x_le calls. for (u32 i = 0; i < (tweak_exp << 5); i++) _gf256_mul_x_le(tweak); u8 orig_tweak[0x10] __attribute__((aligned(4))); memcpy(orig_tweak, tweak, 0x10); // We are assuming a 0x10-aligned sector size in this implementation. for (u32 i = 0; i < (sec_size >> 4); i++) { for (u32 j = 0; j < 4; j++) pdst[j] = psrc[j] ^ ptweak[j]; _gf256_mul_x_le(tweak); psrc += 4; pdst += 4; } if (!se_aes_crypt_ecb(crypt_ks, enc, dst, sec_size, dst, sec_size)) return 0; pdst = (u32 *)dst; ptweak = (u32 *)orig_tweak; for (u32 i = 0; i < (sec_size >> 4); i++) { for (u32 j = 0; j < 4; j++) pdst[j] = pdst[j] ^ ptweak[j]; _gf256_mul_x_le(orig_tweak); pdst += 4; } return 1; } static int nx_emmc_bis_write_block(u32 sector, u32 count, void *buff, bool force_flush) { if (!system_part) return 3; // Not ready. u8 tweak[0x10] __attribute__((aligned(4))); u32 cluster = sector / SECTORS_PER_CLUSTER; u32 aligned_sector = cluster * SECTORS_PER_CLUSTER; u32 sector_index_in_cluster = sector % SECTORS_PER_CLUSTER; u32 cluster_lookup_index = cluster_lookup[cluster]; bool is_cached = cluster_lookup_index != CLUSTER_LOOKUP_EMPTY_ENTRY; // Write to cached cluster. if (is_cached) { if (buff) memcpy(bis_cache->cluster_cache[cluster_lookup_index].cluster + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, buff, count * NX_EMMC_BLOCKSIZE); else buff = bis_cache->cluster_cache[cluster_lookup_index].cluster; bis_cache->cluster_cache[cluster_lookup_index].visit_count++; if (bis_cache->cluster_cache[cluster_lookup_index].dirty == 0) dirty_cluster_count++; bis_cache->cluster_cache[cluster_lookup_index].dirty = 1; if (!force_flush) return 0; // Success. // Reset args to trigger a full cluster flush to emmc. sector_index_in_cluster = 0; sector = aligned_sector; count = SECTORS_PER_CLUSTER; } // Encrypt and write. if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, ENCRYPT, tweak, true, sector_index_in_cluster, cluster, bis_cache->emmc_buffer, buff, count * NX_EMMC_BLOCKSIZE) || !nx_emmc_part_write(&emmc_storage, system_part, sector, count, bis_cache->emmc_buffer) ) return 1; // R/W error. // Mark cache entry not dirty if write succeeds. if (is_cached) { bis_cache->cluster_cache[cluster_lookup_index].dirty = 0; dirty_cluster_count--; } return 0; // Success. } static void _nx_emmc_bis_flush_cluster(cluster_cache_t *cache_entry) { nx_emmc_bis_write_block(cache_entry->cluster_num * SECTORS_PER_CLUSTER, SECTORS_PER_CLUSTER, NULL, true); } static int nx_emmc_bis_read_block(u32 sector, u32 count, void *buff) { if (!system_part) return 3; // Not ready. static u32 prev_cluster = -1; static u32 prev_sector = 0; static u8 tweak[0x10] __attribute__((aligned(4))); u8 cache_tweak[0x10] __attribute__((aligned(4))); u32 tweak_exp = 0; bool regen_tweak = true; u32 cluster = sector / SECTORS_PER_CLUSTER; u32 aligned_sector = cluster * SECTORS_PER_CLUSTER; u32 sector_index_in_cluster = sector % SECTORS_PER_CLUSTER; u32 cluster_lookup_index = cluster_lookup[cluster]; // Read from cached cluster. if (cluster_lookup_index != CLUSTER_LOOKUP_EMPTY_ENTRY) { memcpy(buff, bis_cache->cluster_cache[cluster_lookup_index].cluster + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE); bis_cache->cluster_cache[cluster_lookup_index].visit_count++; prev_sector = sector + count - 1; prev_cluster = cluster; return 0; // Success. } // Cache cluster. if (!lock_cluster_cache) { // Roll the cache index over and flush if full. if (cluster_cache_end_index >= MAX_CLUSTER_CACHE_ENTRIES) { cluster_cache_end_index = 0; cache_filled = 1; } // Check if cache entry was previously in use in case of cache loop. if (cache_filled == 1 && bis_cache->cluster_cache[cluster_cache_end_index].dirty == 1) _nx_emmc_bis_flush_cluster(&bis_cache->cluster_cache[cluster_cache_end_index]); bis_cache->cluster_cache[cluster_cache_end_index].cluster_num = cluster; bis_cache->cluster_cache[cluster_cache_end_index].visit_count = 1; bis_cache->cluster_cache[cluster_cache_end_index].dirty = 0; cluster_lookup[cluster] = cluster_cache_end_index; // Read and decrypt the whole cluster the sector resides in. if (!nx_emmc_part_read(&emmc_storage, system_part, aligned_sector, SECTORS_PER_CLUSTER, bis_cache->emmc_buffer) || !_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, DECRYPT, cache_tweak, true, 0, cluster, bis_cache->emmc_buffer, bis_cache->emmc_buffer, XTS_CLUSTER_SIZE) ) return 1; // R/W error. // Copy to cluster cache. memcpy(bis_cache->cluster_cache[cluster_cache_end_index].cluster, bis_cache->emmc_buffer, XTS_CLUSTER_SIZE); memcpy(buff, bis_cache->emmc_buffer + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE); cluster_cache_end_index++; return 0; // Success. } // If not reading from or writing to cache, do a regular read and decrypt. if (!nx_emmc_part_read(&emmc_storage, system_part, sector, count, bis_cache->emmc_buffer)) return 1; // R/W error. if (prev_cluster != cluster) // Sector in different cluster than last read. { prev_cluster = cluster; tweak_exp = sector_index_in_cluster; } else if (sector > prev_sector) // Sector in same cluster and past last sector. { // Calculates the new tweak using the saved one, reducing expensive _gf256_mul_x_le calls. tweak_exp = sector - prev_sector - 1; regen_tweak = false; } else // Sector in same cluster and before or same as last sector. tweak_exp = sector_index_in_cluster; // Maximum one cluster (1 XTS crypto block 16KB). if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, DECRYPT, tweak, regen_tweak, tweak_exp, prev_cluster, buff, bis_cache->emmc_buffer, count * NX_EMMC_BLOCKSIZE)) return 1; // R/W error. prev_sector = sector + count - 1; return 0; // Success. } int nx_emmc_bis_read(u32 sector, u32 count, void *buff) { int res = 1; u8 *buf = (u8 *)buff; u32 curr_sct = sector; while (count) { u32 sct_cnt = MIN(count, 0x20); res = nx_emmc_bis_read_block(curr_sct, sct_cnt, buf); if (res) return 1; count -= sct_cnt; curr_sct += sct_cnt; buf += NX_EMMC_BLOCKSIZE * sct_cnt; } return res; } int nx_emmc_bis_write(u32 sector, u32 count, void *buff) { int res = 1; u8 *buf = (u8 *)buff; u32 curr_sct = sector; while (count) { u32 sct_cnt = MIN(count, 0x20); res = nx_emmc_bis_write_block(curr_sct, sct_cnt, buf, false); if (res) return 1; count -= sct_cnt; curr_sct += sct_cnt; buf += NX_EMMC_BLOCKSIZE * sct_cnt; } return res; } void nx_emmc_bis_cluster_cache_init() { u32 cluster_lookup_size = (system_part->lba_end - system_part->lba_start + 1) / SECTORS_PER_CLUSTER * sizeof(*cluster_lookup); if (cluster_lookup_buf) free(cluster_lookup_buf); // Check if carveout protected, in case of old hwinit (pre 4.0.0) chainload. *(vu32 *)NX_BIS_LOOKUP_ADDR = 0; if (*(vu32 *)NX_BIS_LOOKUP_ADDR != 0) { cluster_lookup_buf = (u32 *)malloc(cluster_lookup_size + 0x2000); cluster_lookup = (u32 *)ALIGN((u32)cluster_lookup_buf, 0x1000); } else { cluster_lookup_buf = NULL; cluster_lookup = (u32 *)NX_BIS_LOOKUP_ADDR; } // Clear cluster lookup table and reset end index. memset(cluster_lookup, -1, cluster_lookup_size); cluster_cache_end_index = 0; lock_cluster_cache = false; dirty_cluster_count = 0; cache_filled = 0; } void nx_emmc_bis_init(emmc_part_t *part) { system_part = part; nx_emmc_bis_cluster_cache_init(); switch (part->index) { case 0: // PRODINFO. case 1: // PRODINFOF. ks_crypt = 0; ks_tweak = 1; break; case 8: // SAFE. ks_crypt = 2; ks_tweak = 3; break; case 9: // SYSTEM. case 10: // USER. ks_crypt = 4; ks_tweak = 5; break; } } void nx_emmc_bis_finalize() { if (dirty_cluster_count == 0) return; u32 limit = cache_filled == 1 ? MAX_CLUSTER_CACHE_ENTRIES : cluster_cache_end_index; u32 clusters_to_flush = dirty_cluster_count; for (u32 i = 0; i < limit && clusters_to_flush; i++) { if (bis_cache->cluster_cache[i].dirty) { _nx_emmc_bis_flush_cluster(&bis_cache->cluster_cache[i]); clusters_to_flush--; } } } // Set cluster cache lock according to arg. void nx_emmc_bis_cache_lock(bool lock) { lock_cluster_cache = lock; }