Ryujinx-ChocolArm64/Instruction/ASoftFallback.cs
LDj3SNuD 9533b338ac Add Fmls_Se, Fmulx_Se/Ve, Smov_S Inst.; Opt. Clz/Clz_V, Cnt_V, Shl_V, S/Ushr_V, S/Usra_V Inst.; Add 11 Tests. Some fixes. (#449)
* Update AOpCodeTable.cs

* Update AInstEmitSimdMove.cs

* Update AInstEmitSimdArithmetic.cs

* Update AInstEmitSimdShift.cs

* Update ASoftFallback.cs

* Update ASoftFloat.cs

* Update AOpCodeSimdRegElemF.cs

* Update CpuTestSimdIns.cs

* Update CpuTestSimdRegElem.cs

* Create CpuTestSimdRegElemF.cs

* Update CpuTestSimd.cs

* Update CpuTestSimdReg.cs

* Superseded Fmul_Se Test. Nit.

* Address PR feedback.

* Address PR feedback.

* Update AInstEmitSimdArithmetic.cs

* Update ASoftFallback.cs

* Update AInstEmitAlu.cs

* Update AInstEmitSimdShift.cs
2018-10-13 23:35:16 -03:00

788 lines
23 KiB
C#

using ChocolArm64.State;
using ChocolArm64.Translation;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace ChocolArm64.Instruction
{
using static AVectorHelper;
static class ASoftFallback
{
public static void EmitCall(AILEmitterCtx Context, string MthdName)
{
Context.EmitCall(typeof(ASoftFallback), MthdName);
}
#region "ShrImm_64"
public static long SignedShrImm_64(long Value, long RoundConst, int Shift)
{
if (RoundConst == 0L)
{
if (Shift <= 63)
{
return Value >> Shift;
}
else /* if (Shift == 64) */
{
if (Value < 0L)
{
return -1L;
}
else
{
return 0L;
}
}
}
else /* if (RoundConst == 1L << (Shift - 1)) */
{
if (Shift <= 63)
{
long Add = Value + RoundConst;
if ((~Value & (Value ^ Add)) < 0L)
{
return (long)((ulong)Add >> Shift);
}
else
{
return Add >> Shift;
}
}
else /* if (Shift == 64) */
{
return 0L;
}
}
}
public static ulong UnsignedShrImm_64(ulong Value, long RoundConst, int Shift)
{
if (RoundConst == 0L)
{
if (Shift <= 63)
{
return Value >> Shift;
}
else /* if (Shift == 64) */
{
return 0UL;
}
}
else /* if (RoundConst == 1L << (Shift - 1)) */
{
ulong Add = Value + (ulong)RoundConst;
if ((Add < Value) && (Add < (ulong)RoundConst))
{
if (Shift <= 63)
{
return (Add >> Shift) | (0x8000000000000000UL >> (Shift - 1));
}
else /* if (Shift == 64) */
{
return 1UL;
}
}
else
{
if (Shift <= 63)
{
return Add >> Shift;
}
else /* if (Shift == 64) */
{
return 0UL;
}
}
}
}
#endregion
#region "Saturating"
public static long SignedSrcSignedDstSatQ(long op, int Size, AThreadState State)
{
int ESize = 8 << Size;
long TMaxValue = (1L << (ESize - 1)) - 1L;
long TMinValue = -(1L << (ESize - 1));
if (op > TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else if (op < TMinValue)
{
SetFpsrQCFlag(State);
return TMinValue;
}
else
{
return op;
}
}
public static ulong SignedSrcUnsignedDstSatQ(long op, int Size, AThreadState State)
{
int ESize = 8 << Size;
ulong TMaxValue = (1UL << ESize) - 1UL;
ulong TMinValue = 0UL;
if (op > (long)TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else if (op < (long)TMinValue)
{
SetFpsrQCFlag(State);
return TMinValue;
}
else
{
return (ulong)op;
}
}
public static long UnsignedSrcSignedDstSatQ(ulong op, int Size, AThreadState State)
{
int ESize = 8 << Size;
long TMaxValue = (1L << (ESize - 1)) - 1L;
if (op > (ulong)TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else
{
return (long)op;
}
}
public static ulong UnsignedSrcUnsignedDstSatQ(ulong op, int Size, AThreadState State)
{
int ESize = 8 << Size;
ulong TMaxValue = (1UL << ESize) - 1UL;
if (op > TMaxValue)
{
SetFpsrQCFlag(State);
return TMaxValue;
}
else
{
return op;
}
}
public static long UnarySignedSatQAbsOrNeg(long op, AThreadState State)
{
if (op == long.MinValue)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return op;
}
}
public static long BinarySignedSatQAdd(long op1, long op2, AThreadState State)
{
long Add = op1 + op2;
if ((~(op1 ^ op2) & (op1 ^ Add)) < 0L)
{
SetFpsrQCFlag(State);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return Add;
}
}
public static ulong BinaryUnsignedSatQAdd(ulong op1, ulong op2, AThreadState State)
{
ulong Add = op1 + op2;
if ((Add < op1) && (Add < op2))
{
SetFpsrQCFlag(State);
return ulong.MaxValue;
}
else
{
return Add;
}
}
public static long BinarySignedSatQSub(long op1, long op2, AThreadState State)
{
long Sub = op1 - op2;
if (((op1 ^ op2) & (op1 ^ Sub)) < 0L)
{
SetFpsrQCFlag(State);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return Sub;
}
}
public static ulong BinaryUnsignedSatQSub(ulong op1, ulong op2, AThreadState State)
{
ulong Sub = op1 - op2;
if (op1 < op2)
{
SetFpsrQCFlag(State);
return ulong.MinValue;
}
else
{
return Sub;
}
}
public static long BinarySignedSatQAcc(ulong op1, long op2, AThreadState State)
{
if (op1 <= (ulong)long.MaxValue)
{
// op1 from ulong.MinValue to (ulong)long.MaxValue
// op2 from long.MinValue to long.MaxValue
long Add = (long)op1 + op2;
if ((~op2 & Add) < 0L)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return Add;
}
}
else if (op2 >= 0L)
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from (long)ulong.MinValue to long.MaxValue
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
// op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// op2 from long.MinValue to (long)ulong.MinValue - 1L
ulong Add = op1 + (ulong)op2;
if (Add > (ulong)long.MaxValue)
{
SetFpsrQCFlag(State);
return long.MaxValue;
}
else
{
return (long)Add;
}
}
}
public static ulong BinaryUnsignedSatQAcc(long op1, ulong op2, AThreadState State)
{
if (op1 >= 0L)
{
// op1 from (long)ulong.MinValue to long.MaxValue
// op2 from ulong.MinValue to ulong.MaxValue
ulong Add = (ulong)op1 + op2;
if ((Add < (ulong)op1) && (Add < op2))
{
SetFpsrQCFlag(State);
return ulong.MaxValue;
}
else
{
return Add;
}
}
else if (op2 > (ulong)long.MaxValue)
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
return (ulong)op1 + op2;
}
else
{
// op1 from long.MinValue to (long)ulong.MinValue - 1L
// op2 from ulong.MinValue to (ulong)long.MaxValue
long Add = op1 + (long)op2;
if (Add < (long)ulong.MinValue)
{
SetFpsrQCFlag(State);
return ulong.MinValue;
}
else
{
return (ulong)Add;
}
}
}
private static void SetFpsrQCFlag(AThreadState State)
{
const int QCFlagBit = 27;
State.Fpsr |= 1 << QCFlagBit;
}
#endregion
#region "Count"
public static ulong CountLeadingSigns(ulong Value, int Size) // Size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
Value ^= Value >> 1;
int HighBit = Size - 2;
for (int Bit = HighBit; Bit >= 0; Bit--)
{
if (((Value >> Bit) & 0b1) != 0)
{
return (ulong)(HighBit - Bit);
}
}
return (ulong)(Size - 1);
}
private static readonly byte[] ClzNibbleTbl = { 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };
public static ulong CountLeadingZeros(ulong Value, int Size) // Size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
if (Value == 0ul)
{
return (ulong)Size;
}
int NibbleIdx = Size;
int PreCount, Count = 0;
do
{
NibbleIdx -= 4;
PreCount = ClzNibbleTbl[(Value >> NibbleIdx) & 0b1111];
Count += PreCount;
}
while (PreCount == 4);
return (ulong)Count;
}
public static ulong CountSetBits8(ulong Value) // "Size" is 8 (SIMD&FP Inst.).
{
if (Value == 0xfful)
{
return 8ul;
}
Value = ((Value >> 1) & 0x55ul) + (Value & 0x55ul);
Value = ((Value >> 2) & 0x33ul) + (Value & 0x33ul);
return (Value >> 4) + (Value & 0x0ful);
}
#endregion
#region "Crc32"
private const uint Crc32RevPoly = 0xedb88320;
private const uint Crc32cRevPoly = 0x82f63b78;
public static uint Crc32b(uint Crc, byte Val) => Crc32 (Crc, Crc32RevPoly, Val);
public static uint Crc32h(uint Crc, ushort Val) => Crc32h(Crc, Crc32RevPoly, Val);
public static uint Crc32w(uint Crc, uint Val) => Crc32w(Crc, Crc32RevPoly, Val);
public static uint Crc32x(uint Crc, ulong Val) => Crc32x(Crc, Crc32RevPoly, Val);
public static uint Crc32cb(uint Crc, byte Val) => Crc32 (Crc, Crc32cRevPoly, Val);
public static uint Crc32ch(uint Crc, ushort Val) => Crc32h(Crc, Crc32cRevPoly, Val);
public static uint Crc32cw(uint Crc, uint Val) => Crc32w(Crc, Crc32cRevPoly, Val);
public static uint Crc32cx(uint Crc, ulong Val) => Crc32x(Crc, Crc32cRevPoly, Val);
private static uint Crc32h(uint Crc, uint Poly, ushort Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8));
return Crc;
}
private static uint Crc32w(uint Crc, uint Poly, uint Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 16));
Crc = Crc32(Crc, Poly, (byte)(Val >> 24));
return Crc;
}
private static uint Crc32x(uint Crc, uint Poly, ulong Val)
{
Crc = Crc32(Crc, Poly, (byte)(Val >> 0 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 8 ));
Crc = Crc32(Crc, Poly, (byte)(Val >> 16));
Crc = Crc32(Crc, Poly, (byte)(Val >> 24));
Crc = Crc32(Crc, Poly, (byte)(Val >> 32));
Crc = Crc32(Crc, Poly, (byte)(Val >> 40));
Crc = Crc32(Crc, Poly, (byte)(Val >> 48));
Crc = Crc32(Crc, Poly, (byte)(Val >> 56));
return Crc;
}
private static uint Crc32(uint Crc, uint Poly, byte Val)
{
Crc ^= Val;
for (int Bit = 7; Bit >= 0; Bit--)
{
uint Mask = (uint)(-(int)(Crc & 1));
Crc = (Crc >> 1) ^ (Poly & Mask);
}
return Crc;
}
#endregion
#region "Aes"
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> Decrypt(Vector128<float> value, Vector128<float> roundKey)
{
if (!Sse.IsSupported)
{
throw new PlatformNotSupportedException();
}
return ACryptoHelper.AESInvSubBytes(ACryptoHelper.AESInvShiftRows(Sse.Xor(value, roundKey)));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> Encrypt(Vector128<float> value, Vector128<float> roundKey)
{
if (!Sse.IsSupported)
{
throw new PlatformNotSupportedException();
}
return ACryptoHelper.AESSubBytes(ACryptoHelper.AESShiftRows(Sse.Xor(value, roundKey)));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> InverseMixColumns(Vector128<float> value)
{
return ACryptoHelper.AESInvMixColumns(value);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> MixColumns(Vector128<float> value)
{
return ACryptoHelper.AESMixColumns(value);
}
#endregion
#region "Sha256"
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> HashLower(Vector128<float> hash_abcd, Vector128<float> hash_efgh, Vector128<float> wk)
{
return SHA256hash(hash_abcd, hash_efgh, wk, true);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> HashUpper(Vector128<float> hash_efgh, Vector128<float> hash_abcd, Vector128<float> wk)
{
return SHA256hash(hash_abcd, hash_efgh, wk, false);
}
public static Vector128<float> SchedulePart1(Vector128<float> w0_3, Vector128<float> w4_7)
{
Vector128<float> result = new Vector128<float>();
for (int e = 0; e <= 3; e++)
{
uint elt = (uint)VectorExtractIntZx(e <= 2 ? w0_3 : w4_7, (byte)(e <= 2 ? e + 1 : 0), 2);
elt = elt.Ror(7) ^ elt.Ror(18) ^ elt.Lsr(3);
elt += (uint)VectorExtractIntZx(w0_3, (byte)e, 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
return result;
}
public static Vector128<float> SchedulePart2(Vector128<float> w0_3, Vector128<float> w8_11, Vector128<float> w12_15)
{
Vector128<float> result = new Vector128<float>();
ulong T1 = VectorExtractIntZx(w12_15, (byte)1, 3);
for (int e = 0; e <= 1; e++)
{
uint elt = T1.ULongPart(e);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += (uint)VectorExtractIntZx(w0_3, (byte)e, 2);
elt += (uint)VectorExtractIntZx(w8_11, (byte)(e + 1), 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
T1 = VectorExtractIntZx(result, (byte)0, 3);
for (int e = 2; e <= 3; e++)
{
uint elt = T1.ULongPart(e - 2);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += (uint)VectorExtractIntZx(w0_3, (byte)e, 2);
elt += (uint)VectorExtractIntZx(e == 2 ? w8_11 : w12_15, (byte)(e == 2 ? 3 : 0), 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
return result;
}
private static Vector128<float> SHA256hash(Vector128<float> X, Vector128<float> Y, Vector128<float> W, bool part1)
{
for (int e = 0; e <= 3; e++)
{
uint chs = SHAchoose((uint)VectorExtractIntZx(Y, (byte)0, 2),
(uint)VectorExtractIntZx(Y, (byte)1, 2),
(uint)VectorExtractIntZx(Y, (byte)2, 2));
uint maj = SHAmajority((uint)VectorExtractIntZx(X, (byte)0, 2),
(uint)VectorExtractIntZx(X, (byte)1, 2),
(uint)VectorExtractIntZx(X, (byte)2, 2));
uint t1 = (uint)VectorExtractIntZx(Y, (byte)3, 2);
t1 += SHAhashSIGMA1((uint)VectorExtractIntZx(Y, (byte)0, 2)) + chs;
t1 += (uint)VectorExtractIntZx(W, (byte)e, 2);
uint t2 = t1 + (uint)VectorExtractIntZx(X, (byte)3, 2);
X = VectorInsertInt((ulong)t2, X, (byte)3, 2);
t2 = t1 + SHAhashSIGMA0((uint)VectorExtractIntZx(X, (byte)0, 2)) + maj;
Y = VectorInsertInt((ulong)t2, Y, (byte)3, 2);
Rol32_256(ref Y, ref X);
}
return part1 ? X : Y;
}
private static void Rol32_256(ref Vector128<float> Y, ref Vector128<float> X)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
uint yE3 = (uint)VectorExtractIntZx(Y, (byte)3, 2);
uint xE3 = (uint)VectorExtractIntZx(X, (byte)3, 2);
Y = Sse.StaticCast<uint, float>(Sse2.ShiftLeftLogical128BitLane(Sse.StaticCast<float, uint>(Y), (byte)4));
X = Sse.StaticCast<uint, float>(Sse2.ShiftLeftLogical128BitLane(Sse.StaticCast<float, uint>(X), (byte)4));
Y = VectorInsertInt((ulong)xE3, Y, (byte)0, 2);
X = VectorInsertInt((ulong)yE3, X, (byte)0, 2);
}
private static uint SHAhashSIGMA0(uint x)
{
return x.Ror(2) ^ x.Ror(13) ^ x.Ror(22);
}
private static uint SHAhashSIGMA1(uint x)
{
return x.Ror(6) ^ x.Ror(11) ^ x.Ror(25);
}
private static uint SHAmajority(uint x, uint y, uint z)
{
return (x & y) | ((x | y) & z);
}
private static uint SHAchoose(uint x, uint y, uint z)
{
return ((y ^ z) & x) ^ z;
}
private static uint Ror(this uint value, int count)
{
return (value >> count) | (value << (32 - count));
}
private static uint Lsr(this uint value, int count)
{
return value >> count;
}
private static uint ULongPart(this ulong value, int part)
{
return part == 0
? (uint)(value & 0xFFFFFFFFUL)
: (uint)(value >> 32);
}
#endregion
#region "Reverse"
public static uint ReverseBits8(uint Value)
{
Value = ((Value & 0xaa) >> 1) | ((Value & 0x55) << 1);
Value = ((Value & 0xcc) >> 2) | ((Value & 0x33) << 2);
return (Value >> 4) | ((Value & 0x0f) << 4);
}
public static uint ReverseBits32(uint Value)
{
Value = ((Value & 0xaaaaaaaa) >> 1) | ((Value & 0x55555555) << 1);
Value = ((Value & 0xcccccccc) >> 2) | ((Value & 0x33333333) << 2);
Value = ((Value & 0xf0f0f0f0) >> 4) | ((Value & 0x0f0f0f0f) << 4);
Value = ((Value & 0xff00ff00) >> 8) | ((Value & 0x00ff00ff) << 8);
return (Value >> 16) | (Value << 16);
}
public static ulong ReverseBits64(ulong Value)
{
Value = ((Value & 0xaaaaaaaaaaaaaaaa) >> 1 ) | ((Value & 0x5555555555555555) << 1 );
Value = ((Value & 0xcccccccccccccccc) >> 2 ) | ((Value & 0x3333333333333333) << 2 );
Value = ((Value & 0xf0f0f0f0f0f0f0f0) >> 4 ) | ((Value & 0x0f0f0f0f0f0f0f0f) << 4 );
Value = ((Value & 0xff00ff00ff00ff00) >> 8 ) | ((Value & 0x00ff00ff00ff00ff) << 8 );
Value = ((Value & 0xffff0000ffff0000) >> 16) | ((Value & 0x0000ffff0000ffff) << 16);
return (Value >> 32) | (Value << 32);
}
public static uint ReverseBytes16_32(uint Value) => (uint)ReverseBytes16_64(Value);
public static uint ReverseBytes32_32(uint Value) => (uint)ReverseBytes32_64(Value);
public static ulong ReverseBytes16_64(ulong Value) => ReverseBytes(Value, RevSize.Rev16);
public static ulong ReverseBytes32_64(ulong Value) => ReverseBytes(Value, RevSize.Rev32);
public static ulong ReverseBytes64(ulong Value) => ReverseBytes(Value, RevSize.Rev64);
private enum RevSize
{
Rev16,
Rev32,
Rev64
}
private static ulong ReverseBytes(ulong Value, RevSize Size)
{
Value = ((Value & 0xff00ff00ff00ff00) >> 8) | ((Value & 0x00ff00ff00ff00ff) << 8);
if (Size == RevSize.Rev16)
{
return Value;
}
Value = ((Value & 0xffff0000ffff0000) >> 16) | ((Value & 0x0000ffff0000ffff) << 16);
if (Size == RevSize.Rev32)
{
return Value;
}
Value = ((Value & 0xffffffff00000000) >> 32) | ((Value & 0x00000000ffffffff) << 32);
if (Size == RevSize.Rev64)
{
return Value;
}
throw new ArgumentException(nameof(Size));
}
#endregion
#region "MultiplyHigh"
public static long SMulHi128(long LHS, long RHS)
{
long Result = (long)UMulHi128((ulong)LHS, (ulong)RHS);
if (LHS < 0) Result -= RHS;
if (RHS < 0) Result -= LHS;
return Result;
}
public static ulong UMulHi128(ulong LHS, ulong RHS)
{
//long multiplication
//multiply 32 bits at a time in 64 bit, the result is what's carried over 64 bits.
ulong LHigh = LHS >> 32;
ulong LLow = LHS & 0xFFFFFFFF;
ulong RHigh = RHS >> 32;
ulong RLow = RHS & 0xFFFFFFFF;
ulong Z2 = LLow * RLow;
ulong T = LHigh * RLow + (Z2 >> 32);
ulong Z1 = T & 0xFFFFFFFF;
ulong Z0 = T >> 32;
Z1 += LLow * RHigh;
return LHigh * RHigh + Z0 + (Z1 >> 32);
}
#endregion
}
}