// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf using ChocolArm64.State; using NUnit.Framework; using System.Runtime.Intrinsics; namespace Ryujinx.Tests.Cpu { public class CpuTestSimdCrypto : CpuTest { [Test, Description("AESD .16B, .16B")] public void Aesd_V([Values(0u)] uint rd, [Values(1u)] uint rn, [Values(0x7B5B546573745665ul)] ulong valueH, [Values(0x63746F725D53475Dul)] ulong valueL, [Random(2)] ulong roundKeyH, [Random(2)] ulong roundKeyL, [Values(0x8DCAB9BC035006BCul)] ulong resultH, [Values(0x8F57161E00CAFD8Dul)] ulong resultL) { uint opcode = 0x4E285800; // AESD V0.16B, V0.16B opcode |= ((rn & 31) << 5) | ((rd & 31) << 0); Vector128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH); Vector128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH); CpuThreadState threadState = SingleOpcode(opcode, v0: v0, v1: v1); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V0), Is.EqualTo(resultL)); Assert.That(GetVectorE1(threadState.V0), Is.EqualTo(resultH)); }); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V1), Is.EqualTo(roundKeyL)); Assert.That(GetVectorE1(threadState.V1), Is.EqualTo(roundKeyH)); }); CompareAgainstUnicorn(); } [Test, Description("AESE .16B, .16B")] public void Aese_V([Values(0u)] uint rd, [Values(1u)] uint rn, [Values(0x7B5B546573745665ul)] ulong valueH, [Values(0x63746F725D53475Dul)] ulong valueL, [Random(2)] ulong roundKeyH, [Random(2)] ulong roundKeyL, [Values(0x8F92A04DFBED204Dul)] ulong resultH, [Values(0x4C39B1402192A84Cul)] ulong resultL) { uint opcode = 0x4E284800; // AESE V0.16B, V0.16B opcode |= ((rn & 31) << 5) | ((rd & 31) << 0); Vector128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH); Vector128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH); CpuThreadState threadState = SingleOpcode(opcode, v0: v0, v1: v1); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V0), Is.EqualTo(resultL)); Assert.That(GetVectorE1(threadState.V0), Is.EqualTo(resultH)); }); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V1), Is.EqualTo(roundKeyL)); Assert.That(GetVectorE1(threadState.V1), Is.EqualTo(roundKeyH)); }); CompareAgainstUnicorn(); } [Test, Description("AESIMC .16B, .16B")] public void Aesimc_V([Values(0u)] uint rd, [Values(1u, 0u)] uint rn, [Values(0x8DCAB9DC035006BCul)] ulong valueH, [Values(0x8F57161E00CAFD8Dul)] ulong valueL, [Values(0xD635A667928B5EAEul)] ulong resultH, [Values(0xEEC9CC3BC55F5777ul)] ulong resultL) { uint opcode = 0x4E287800; // AESIMC V0.16B, V0.16B opcode |= ((rn & 31) << 5) | ((rd & 31) << 0); Vector128 v = MakeVectorE0E1(valueL, valueH); CpuThreadState threadState = SingleOpcode( opcode, v0: rn == 0u ? v : default(Vector128), v1: rn == 1u ? v : default(Vector128)); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V0), Is.EqualTo(resultL)); Assert.That(GetVectorE1(threadState.V0), Is.EqualTo(resultH)); }); if (rn == 1u) { Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V1), Is.EqualTo(valueL)); Assert.That(GetVectorE1(threadState.V1), Is.EqualTo(valueH)); }); } CompareAgainstUnicorn(); } [Test, Description("AESMC .16B, .16B")] public void Aesmc_V([Values(0u)] uint rd, [Values(1u, 0u)] uint rn, [Values(0x627A6F6644B109C8ul)] ulong valueH, [Values(0x2B18330A81C3B3E5ul)] ulong valueL, [Values(0x7B5B546573745665ul)] ulong resultH, [Values(0x63746F725D53475Dul)] ulong resultL) { uint opcode = 0x4E286800; // AESMC V0.16B, V0.16B opcode |= ((rn & 31) << 5) | ((rd & 31) << 0); Vector128 v = MakeVectorE0E1(valueL, valueH); CpuThreadState threadState = SingleOpcode( opcode, v0: rn == 0u ? v : default(Vector128), v1: rn == 1u ? v : default(Vector128)); Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V0), Is.EqualTo(resultL)); Assert.That(GetVectorE1(threadState.V0), Is.EqualTo(resultH)); }); if (rn == 1u) { Assert.Multiple(() => { Assert.That(GetVectorE0(threadState.V1), Is.EqualTo(valueL)); Assert.That(GetVectorE1(threadState.V1), Is.EqualTo(valueH)); }); } CompareAgainstUnicorn(); } } }