using ARMeilleure.Decoders; using ARMeilleure.Instructions; using ARMeilleure.IntermediateRepresentation; using ARMeilleure.Memory; using ARMeilleure.State; using System.Collections.Generic; using static ARMeilleure.IntermediateRepresentation.OperandHelper; namespace ARMeilleure.Translation { class ArmEmitterContext : EmitterContext { private Dictionary _labels; private OpCode _optOpLastCompare; private OpCode _optOpLastFlagSet; private Operand _optCmpTempN; private Operand _optCmpTempM; private Block _currBlock; public Block CurrBlock { get { return _currBlock; } set { _currBlock = value; ResetBlockState(); } } public OpCode CurrOp { get; set; } public MemoryManager Memory { get; } public Aarch32Mode Mode { get; } public JumpTable JumpTable { get; } public long BaseAddress { get; } public bool HighCq { get; } public ArmEmitterContext(MemoryManager memory, JumpTable jumpTable, long baseAddress, bool highCq, Aarch32Mode mode) { Memory = memory; JumpTable = jumpTable; BaseAddress = baseAddress; HighCq = highCq; Mode = mode; _labels = new Dictionary(); } public Operand GetLabel(ulong address) { if (!_labels.TryGetValue(address, out Operand label)) { label = Label(); _labels.Add(address, label); } return label; } public void MarkComparison(Operand n, Operand m) { _optOpLastCompare = CurrOp; _optCmpTempN = Copy(n); _optCmpTempM = Copy(m); } public void MarkFlagSet(PState stateFlag) { // Set this only if any of the NZCV flag bits were modified. // This is used to ensure that when emiting a direct IL branch // instruction for compare + branch sequences, we're not expecting // to use comparison values from an old instruction, when in fact // the flags were already overwritten by another instruction further along. if (stateFlag >= PState.VFlag) { _optOpLastFlagSet = CurrOp; } } private void ResetBlockState() { _optOpLastCompare = null; _optOpLastFlagSet = null; } public Operand TryGetComparisonResult(Condition condition) { if (_optOpLastCompare == null || _optOpLastCompare != _optOpLastFlagSet) { return null; } Operand n = _optCmpTempN; Operand m = _optCmpTempM; InstName cmpName = _optOpLastCompare.Instruction.Name; if (cmpName == InstName.Subs) { switch (condition) { case Condition.Eq: return ICompareEqual (n, m); case Condition.Ne: return ICompareNotEqual (n, m); case Condition.GeUn: return ICompareGreaterOrEqualUI(n, m); case Condition.LtUn: return ICompareLessUI (n, m); case Condition.GtUn: return ICompareGreaterUI (n, m); case Condition.LeUn: return ICompareLessOrEqualUI (n, m); case Condition.Ge: return ICompareGreaterOrEqual (n, m); case Condition.Lt: return ICompareLess (n, m); case Condition.Gt: return ICompareGreater (n, m); case Condition.Le: return ICompareLessOrEqual (n, m); } } else if (cmpName == InstName.Adds && _optOpLastCompare is IOpCodeAluImm op) { // There are several limitations that needs to be taken into account for CMN comparisons: // - The unsigned comparisons are not valid, as they depend on the // carry flag value, and they will have different values for addition and // subtraction. For addition, it's carry, and for subtraction, it's borrow. // So, we need to make sure we're not doing a unsigned compare for the CMN case. // - We can only do the optimization for the immediate variants, // because when the second operand value is exactly INT_MIN, we can't // negate the value as theres no positive counterpart. // Such invalid values can't be encoded on the immediate encodings. if (op.RegisterSize == RegisterSize.Int32) { m = Const((int)-op.Immediate); } else { m = Const(-op.Immediate); } switch (condition) { case Condition.Eq: return ICompareEqual (n, m); case Condition.Ne: return ICompareNotEqual (n, m); case Condition.Ge: return ICompareGreaterOrEqual(n, m); case Condition.Lt: return ICompareLess (n, m); case Condition.Gt: return ICompareGreater (n, m); case Condition.Le: return ICompareLessOrEqual (n, m); } } return null; } } }