using System; using System.Collections; using System.Collections.Generic; namespace Ryujinx.Graphics.Gpu.Memory { /// /// List of GPU resources with data on guest memory. /// /// Type of the GPU resource class RangeList : IEnumerable where T : IRange { private const int ArrayGrowthSize = 32; private readonly List _items; /// /// Creates a new GPU resources list. /// public RangeList() { _items = new List(); } /// /// Adds a new item to the list. /// /// The item to be added public void Add(T item) { int index = BinarySearch(item.Address); if (index < 0) { index = ~index; } _items.Insert(index, item); } /// /// Removes an item from the list. /// /// The item to be removed /// True if the item was removed, or false if it was not found public bool Remove(T item) { int index = BinarySearch(item.Address); if (index >= 0) { while (index > 0 && _items[index - 1].Address == item.Address) { index--; } while (index < _items.Count) { if (_items[index].Equals(item)) { _items.RemoveAt(index); return true; } if (_items[index].Address > item.Address) { break; } index++; } } return false; } /// /// Gets the first item on the list overlapping in memory with the specified item. /// /// /// Despite the name, this has no ordering guarantees of the returned item. /// It only ensures that the item returned overlaps the specified item. /// /// Item to check for overlaps /// The overlapping item, or the default value for the type if none found public T FindFirstOverlap(T item) { return FindFirstOverlap(item.Address, item.Size); } /// /// Gets the first item on the list overlapping the specified memory range. /// /// /// Despite the name, this has no ordering guarantees of the returned item. /// It only ensures that the item returned overlaps the specified memory range. /// /// Start address of the range /// Size in bytes of the range /// The overlapping item, or the default value for the type if none found public T FindFirstOverlap(ulong address, ulong size) { int index = BinarySearch(address, size); if (index < 0) { return default(T); } return _items[index]; } /// /// Gets all items overlapping with the specified item in memory. /// /// Item to check for overlaps /// Output array where matches will be written. It is automatically resized to fit the results /// The number of overlapping items found public int FindOverlaps(T item, ref T[] output) { return FindOverlaps(item.Address, item.Size, ref output); } /// /// Gets all items on the list overlapping the specified memory range. /// /// Start address of the range /// Size in bytes of the range /// Output array where matches will be written. It is automatically resized to fit the results /// The number of overlapping items found public int FindOverlaps(ulong address, ulong size, ref T[] output) { int outputIndex = 0; ulong endAddress = address + size; lock (_items) { foreach (T item in _items) { if (item.Address >= endAddress) { break; } if (item.OverlapsWith(address, size)) { if (outputIndex == output.Length) { Array.Resize(ref output, outputIndex + ArrayGrowthSize); } output[outputIndex++] = item; } } } return outputIndex; } /// /// Gets all items overlapping with the specified item in memory. /// /// /// This method only returns correct results if none of the items on the list overlaps with /// each other. If that is not the case, this method should not be used. /// This method is faster than the regular method to find all overlaps. /// /// Item to check for overlaps /// Output array where matches will be written. It is automatically resized to fit the results /// The number of overlapping items found public int FindOverlapsNonOverlapping(T item, ref T[] output) { return FindOverlapsNonOverlapping(item.Address, item.Size, ref output); } /// /// Gets all items on the list overlapping the specified memory range. /// /// /// This method only returns correct results if none of the items on the list overlaps with /// each other. If that is not the case, this method should not be used. /// This method is faster than the regular method to find all overlaps. /// /// Start address of the range /// Size in bytes of the range /// Output array where matches will be written. It is automatically resized to fit the results /// The number of overlapping items found public int FindOverlapsNonOverlapping(ulong address, ulong size, ref T[] output) { // This is a bit faster than FindOverlaps, but only works // when none of the items on the list overlaps with each other. int outputIndex = 0; int index = BinarySearch(address, size); if (index >= 0) { while (index > 0 && _items[index - 1].OverlapsWith(address, size)) { index--; } do { if (outputIndex == output.Length) { Array.Resize(ref output, outputIndex + ArrayGrowthSize); } output[outputIndex++] = _items[index++]; } while (index < _items.Count && _items[index].OverlapsWith(address, size)); } return outputIndex; } /// /// Gets all items on the list with the specified memory address. /// /// Address to find /// Output array where matches will be written. It is automatically resized to fit the results /// The number of matches found public int FindOverlaps(ulong address, ref T[] output) { int index = BinarySearch(address); int outputIndex = 0; if (index >= 0) { while (index > 0 && _items[index - 1].Address == address) { index--; } while (index < _items.Count) { T overlap = _items[index++]; if (overlap.Address != address) { break; } if (outputIndex == output.Length) { Array.Resize(ref output, outputIndex + ArrayGrowthSize); } output[outputIndex++] = overlap; } } return outputIndex; } /// /// Performs binary search on the internal list of items. /// /// Address to find /// List index of the item, or complement index of nearest item with lower value on the list private int BinarySearch(ulong address) { int left = 0; int right = _items.Count - 1; while (left <= right) { int range = right - left; int middle = left + (range >> 1); T item = _items[middle]; if (item.Address == address) { return middle; } if (address < item.Address) { right = middle - 1; } else { left = middle + 1; } } return ~left; } /// /// Performs binary search for items overlapping a given memory range. /// /// Start address of the range /// Size in bytes of the range /// List index of the item, or complement index of nearest item with lower value on the list private int BinarySearch(ulong address, ulong size) { int left = 0; int right = _items.Count - 1; while (left <= right) { int range = right - left; int middle = left + (range >> 1); T item = _items[middle]; if (item.OverlapsWith(address, size)) { return middle; } if (address < item.Address) { right = middle - 1; } else { left = middle + 1; } } return ~left; } public IEnumerator GetEnumerator() { return _items.GetEnumerator(); } IEnumerator IEnumerable.GetEnumerator() { return _items.GetEnumerator(); } } }