using ChocolArm64; using ChocolArm64.Memory; using ChocolArm64.State; using NUnit.Framework; using Ryujinx.Tests.Unicorn; using System; using System.Runtime.InteropServices; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86; using System.Threading; namespace Ryujinx.Tests.Cpu { [TestFixture] public class CpuTest { protected long Position { get; private set; } private long Size; private long EntryPoint; private IntPtr RamPointer; private MemoryManager Memory; private CpuThread Thread; private static bool UnicornAvailable; private UnicornAArch64 UnicornEmu; static CpuTest() { UnicornAvailable = UnicornAArch64.IsAvailable(); if (!UnicornAvailable) { Console.WriteLine("WARNING: Could not find Unicorn."); } } [SetUp] public void Setup() { Position = 0x1000; Size = 0x1000; EntryPoint = Position; Translator Translator = new Translator(); RamPointer = Marshal.AllocHGlobal(new IntPtr(Size)); Memory = new MemoryManager(RamPointer); Memory.Map(Position, 0, Size); Thread = new CpuThread(Translator, Memory, EntryPoint); if (UnicornAvailable) { UnicornEmu = new UnicornAArch64(); UnicornEmu.MemoryMap((ulong)Position, (ulong)Size, MemoryPermission.READ | MemoryPermission.EXEC); UnicornEmu.PC = (ulong)EntryPoint; } } [TearDown] public void Teardown() { Marshal.FreeHGlobal(RamPointer); Memory = null; Thread = null; UnicornEmu = null; } protected void Reset() { Teardown(); Setup(); } protected void Opcode(uint Opcode) { Thread.Memory.WriteUInt32(Position, Opcode); if (UnicornAvailable) { UnicornEmu.MemoryWrite32((ulong)Position, Opcode); } Position += 4; } protected void SetThreadState(ulong X0 = 0, ulong X1 = 0, ulong X2 = 0, ulong X3 = 0, ulong X31 = 0, Vector128 V0 = default(Vector128), Vector128 V1 = default(Vector128), Vector128 V2 = default(Vector128), Vector128 V3 = default(Vector128), bool Overflow = false, bool Carry = false, bool Zero = false, bool Negative = false, int Fpcr = 0x0, int Fpsr = 0x0) { Thread.ThreadState.X0 = X0; Thread.ThreadState.X1 = X1; Thread.ThreadState.X2 = X2; Thread.ThreadState.X3 = X3; Thread.ThreadState.X31 = X31; Thread.ThreadState.V0 = V0; Thread.ThreadState.V1 = V1; Thread.ThreadState.V2 = V2; Thread.ThreadState.V3 = V3; Thread.ThreadState.Overflow = Overflow; Thread.ThreadState.Carry = Carry; Thread.ThreadState.Zero = Zero; Thread.ThreadState.Negative = Negative; Thread.ThreadState.Fpcr = Fpcr; Thread.ThreadState.Fpsr = Fpsr; if (UnicornAvailable) { UnicornEmu.X[0] = X0; UnicornEmu.X[1] = X1; UnicornEmu.X[2] = X2; UnicornEmu.X[3] = X3; UnicornEmu.SP = X31; UnicornEmu.Q[0] = V0; UnicornEmu.Q[1] = V1; UnicornEmu.Q[2] = V2; UnicornEmu.Q[3] = V3; UnicornEmu.OverflowFlag = Overflow; UnicornEmu.CarryFlag = Carry; UnicornEmu.ZeroFlag = Zero; UnicornEmu.NegativeFlag = Negative; UnicornEmu.Fpcr = Fpcr; UnicornEmu.Fpsr = Fpsr; } } protected void ExecuteOpcodes() { using (ManualResetEvent Wait = new ManualResetEvent(false)) { Thread.ThreadState.Break += (sender, e) => Thread.StopExecution(); Thread.WorkFinished += (sender, e) => Wait.Set(); Thread.Execute(); Wait.WaitOne(); } if (UnicornAvailable) { UnicornEmu.RunForCount((ulong)(Position - EntryPoint - 8) / 4); } } protected CpuThreadState GetThreadState() => Thread.ThreadState; protected CpuThreadState SingleOpcode(uint Opcode, ulong X0 = 0, ulong X1 = 0, ulong X2 = 0, ulong X3 = 0, ulong X31 = 0, Vector128 V0 = default(Vector128), Vector128 V1 = default(Vector128), Vector128 V2 = default(Vector128), Vector128 V3 = default(Vector128), bool Overflow = false, bool Carry = false, bool Zero = false, bool Negative = false, int Fpcr = 0x0, int Fpsr = 0x0) { this.Opcode(Opcode); this.Opcode(0xD4200000); // BRK #0 this.Opcode(0xD65F03C0); // RET SetThreadState(X0, X1, X2, X3, X31, V0, V1, V2, V3, Overflow, Carry, Zero, Negative, Fpcr, Fpsr); ExecuteOpcodes(); return GetThreadState(); } /// Rounding Mode control field. public enum RMode { /// Round to Nearest (RN) mode. RN, /// Round towards Plus Infinity (RP) mode. RP, /// Round towards Minus Infinity (RM) mode. RM, /// Round towards Zero (RZ) mode. RZ }; /// Floating-point Control Register. protected enum FPCR { /// Rounding Mode control field. RMode = 22, /// Flush-to-zero mode control bit. FZ = 24, /// Default NaN mode control bit. DN = 25, /// Alternative half-precision control bit. AHP = 26 } /// Floating-point Status Register. [Flags] protected enum FPSR { None = 0, /// Invalid Operation cumulative floating-point exception bit. IOC = 1 << 0, /// Divide by Zero cumulative floating-point exception bit. DZC = 1 << 1, /// Overflow cumulative floating-point exception bit. OFC = 1 << 2, /// Underflow cumulative floating-point exception bit. UFC = 1 << 3, /// Inexact cumulative floating-point exception bit. IXC = 1 << 4, /// Input Denormal cumulative floating-point exception bit. IDC = 1 << 7, /// Cumulative saturation bit. QC = 1 << 27 } [Flags] protected enum FpSkips { None = 0, IfNaN_S = 1, IfNaN_D = 2, IfUnderflow = 4, IfOverflow = 8 } protected enum FpTolerances { None, UpToOneUlps_S, UpToOneUlps_D } protected void CompareAgainstUnicorn( FPSR FpsrMask = FPSR.None, FpSkips FpSkips = FpSkips.None, FpTolerances FpTolerances = FpTolerances.None) { if (!UnicornAvailable) { return; } if (FpSkips != FpSkips.None) { ManageFpSkips(FpSkips); } Assert.That(Thread.ThreadState.X0, Is.EqualTo(UnicornEmu.X[0])); Assert.That(Thread.ThreadState.X1, Is.EqualTo(UnicornEmu.X[1])); Assert.That(Thread.ThreadState.X2, Is.EqualTo(UnicornEmu.X[2])); Assert.That(Thread.ThreadState.X3, Is.EqualTo(UnicornEmu.X[3])); Assert.That(Thread.ThreadState.X4, Is.EqualTo(UnicornEmu.X[4])); Assert.That(Thread.ThreadState.X5, Is.EqualTo(UnicornEmu.X[5])); Assert.That(Thread.ThreadState.X6, Is.EqualTo(UnicornEmu.X[6])); Assert.That(Thread.ThreadState.X7, Is.EqualTo(UnicornEmu.X[7])); Assert.That(Thread.ThreadState.X8, Is.EqualTo(UnicornEmu.X[8])); Assert.That(Thread.ThreadState.X9, Is.EqualTo(UnicornEmu.X[9])); Assert.That(Thread.ThreadState.X10, Is.EqualTo(UnicornEmu.X[10])); Assert.That(Thread.ThreadState.X11, Is.EqualTo(UnicornEmu.X[11])); Assert.That(Thread.ThreadState.X12, Is.EqualTo(UnicornEmu.X[12])); Assert.That(Thread.ThreadState.X13, Is.EqualTo(UnicornEmu.X[13])); Assert.That(Thread.ThreadState.X14, Is.EqualTo(UnicornEmu.X[14])); Assert.That(Thread.ThreadState.X15, Is.EqualTo(UnicornEmu.X[15])); Assert.That(Thread.ThreadState.X16, Is.EqualTo(UnicornEmu.X[16])); Assert.That(Thread.ThreadState.X17, Is.EqualTo(UnicornEmu.X[17])); Assert.That(Thread.ThreadState.X18, Is.EqualTo(UnicornEmu.X[18])); Assert.That(Thread.ThreadState.X19, Is.EqualTo(UnicornEmu.X[19])); Assert.That(Thread.ThreadState.X20, Is.EqualTo(UnicornEmu.X[20])); Assert.That(Thread.ThreadState.X21, Is.EqualTo(UnicornEmu.X[21])); Assert.That(Thread.ThreadState.X22, Is.EqualTo(UnicornEmu.X[22])); Assert.That(Thread.ThreadState.X23, Is.EqualTo(UnicornEmu.X[23])); Assert.That(Thread.ThreadState.X24, Is.EqualTo(UnicornEmu.X[24])); Assert.That(Thread.ThreadState.X25, Is.EqualTo(UnicornEmu.X[25])); Assert.That(Thread.ThreadState.X26, Is.EqualTo(UnicornEmu.X[26])); Assert.That(Thread.ThreadState.X27, Is.EqualTo(UnicornEmu.X[27])); Assert.That(Thread.ThreadState.X28, Is.EqualTo(UnicornEmu.X[28])); Assert.That(Thread.ThreadState.X29, Is.EqualTo(UnicornEmu.X[29])); Assert.That(Thread.ThreadState.X30, Is.EqualTo(UnicornEmu.X[30])); Assert.That(Thread.ThreadState.X31, Is.EqualTo(UnicornEmu.SP)); if (FpTolerances == FpTolerances.None) { Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0])); } else { ManageFpTolerances(FpTolerances); } Assert.That(Thread.ThreadState.V1, Is.EqualTo(UnicornEmu.Q[1])); Assert.That(Thread.ThreadState.V2, Is.EqualTo(UnicornEmu.Q[2])); Assert.That(Thread.ThreadState.V3, Is.EqualTo(UnicornEmu.Q[3])); Assert.That(Thread.ThreadState.V4, Is.EqualTo(UnicornEmu.Q[4])); Assert.That(Thread.ThreadState.V5, Is.EqualTo(UnicornEmu.Q[5])); Assert.That(Thread.ThreadState.V6, Is.EqualTo(UnicornEmu.Q[6])); Assert.That(Thread.ThreadState.V7, Is.EqualTo(UnicornEmu.Q[7])); Assert.That(Thread.ThreadState.V8, Is.EqualTo(UnicornEmu.Q[8])); Assert.That(Thread.ThreadState.V9, Is.EqualTo(UnicornEmu.Q[9])); Assert.That(Thread.ThreadState.V10, Is.EqualTo(UnicornEmu.Q[10])); Assert.That(Thread.ThreadState.V11, Is.EqualTo(UnicornEmu.Q[11])); Assert.That(Thread.ThreadState.V12, Is.EqualTo(UnicornEmu.Q[12])); Assert.That(Thread.ThreadState.V13, Is.EqualTo(UnicornEmu.Q[13])); Assert.That(Thread.ThreadState.V14, Is.EqualTo(UnicornEmu.Q[14])); Assert.That(Thread.ThreadState.V15, Is.EqualTo(UnicornEmu.Q[15])); Assert.That(Thread.ThreadState.V16, Is.EqualTo(UnicornEmu.Q[16])); Assert.That(Thread.ThreadState.V17, Is.EqualTo(UnicornEmu.Q[17])); Assert.That(Thread.ThreadState.V18, Is.EqualTo(UnicornEmu.Q[18])); Assert.That(Thread.ThreadState.V19, Is.EqualTo(UnicornEmu.Q[19])); Assert.That(Thread.ThreadState.V20, Is.EqualTo(UnicornEmu.Q[20])); Assert.That(Thread.ThreadState.V21, Is.EqualTo(UnicornEmu.Q[21])); Assert.That(Thread.ThreadState.V22, Is.EqualTo(UnicornEmu.Q[22])); Assert.That(Thread.ThreadState.V23, Is.EqualTo(UnicornEmu.Q[23])); Assert.That(Thread.ThreadState.V24, Is.EqualTo(UnicornEmu.Q[24])); Assert.That(Thread.ThreadState.V25, Is.EqualTo(UnicornEmu.Q[25])); Assert.That(Thread.ThreadState.V26, Is.EqualTo(UnicornEmu.Q[26])); Assert.That(Thread.ThreadState.V27, Is.EqualTo(UnicornEmu.Q[27])); Assert.That(Thread.ThreadState.V28, Is.EqualTo(UnicornEmu.Q[28])); Assert.That(Thread.ThreadState.V29, Is.EqualTo(UnicornEmu.Q[29])); Assert.That(Thread.ThreadState.V30, Is.EqualTo(UnicornEmu.Q[30])); Assert.That(Thread.ThreadState.V31, Is.EqualTo(UnicornEmu.Q[31])); Assert.That(Thread.ThreadState.V31, Is.EqualTo(UnicornEmu.Q[31])); Assert.That(Thread.ThreadState.Fpcr, Is.EqualTo(UnicornEmu.Fpcr)); Assert.That(Thread.ThreadState.Fpsr & (int)FpsrMask, Is.EqualTo(UnicornEmu.Fpsr & (int)FpsrMask)); Assert.That(Thread.ThreadState.Overflow, Is.EqualTo(UnicornEmu.OverflowFlag)); Assert.That(Thread.ThreadState.Carry, Is.EqualTo(UnicornEmu.CarryFlag)); Assert.That(Thread.ThreadState.Zero, Is.EqualTo(UnicornEmu.ZeroFlag)); Assert.That(Thread.ThreadState.Negative, Is.EqualTo(UnicornEmu.NegativeFlag)); } private void ManageFpSkips(FpSkips FpSkips) { if (FpSkips.HasFlag(FpSkips.IfNaN_S)) { if (float.IsNaN(VectorExtractSingle(UnicornEmu.Q[0], (byte)0))) { Assert.Ignore("NaN test."); } } else if (FpSkips.HasFlag(FpSkips.IfNaN_D)) { if (double.IsNaN(VectorExtractDouble(UnicornEmu.Q[0], (byte)0))) { Assert.Ignore("NaN test."); } } if (FpSkips.HasFlag(FpSkips.IfUnderflow)) { if ((UnicornEmu.Fpsr & (int)FPSR.UFC) != 0) { Assert.Ignore("Underflow test."); } } if (FpSkips.HasFlag(FpSkips.IfOverflow)) { if ((UnicornEmu.Fpsr & (int)FPSR.OFC) != 0) { Assert.Ignore("Overflow test."); } } } private void ManageFpTolerances(FpTolerances FpTolerances) { if (!Is.EqualTo(UnicornEmu.Q[0]).ApplyTo(Thread.ThreadState.V0).IsSuccess) { if (FpTolerances == FpTolerances.UpToOneUlps_S) { if (IsNormalOrSubnormal_S(VectorExtractSingle(UnicornEmu.Q[0], (byte)0)) && IsNormalOrSubnormal_S(VectorExtractSingle(Thread.ThreadState.V0, (byte)0))) { Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)0), Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)0)).Within(1).Ulps); Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)1), Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)1)).Within(1).Ulps); Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)2), Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)2)).Within(1).Ulps); Assert.That (VectorExtractSingle(Thread.ThreadState.V0, (byte)3), Is.EqualTo(VectorExtractSingle(UnicornEmu.Q[0], (byte)3)).Within(1).Ulps); Console.WriteLine(FpTolerances); } else { Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0])); } } if (FpTolerances == FpTolerances.UpToOneUlps_D) { if (IsNormalOrSubnormal_D(VectorExtractDouble(UnicornEmu.Q[0], (byte)0)) && IsNormalOrSubnormal_D(VectorExtractDouble(Thread.ThreadState.V0, (byte)0))) { Assert.That (VectorExtractDouble(Thread.ThreadState.V0, (byte)0), Is.EqualTo(VectorExtractDouble(UnicornEmu.Q[0], (byte)0)).Within(1).Ulps); Assert.That (VectorExtractDouble(Thread.ThreadState.V0, (byte)1), Is.EqualTo(VectorExtractDouble(UnicornEmu.Q[0], (byte)1)).Within(1).Ulps); Console.WriteLine(FpTolerances); } else { Assert.That(Thread.ThreadState.V0, Is.EqualTo(UnicornEmu.Q[0])); } } } bool IsNormalOrSubnormal_S(float f) => float.IsNormal(f) || float.IsSubnormal(f); bool IsNormalOrSubnormal_D(double d) => double.IsNormal(d) || double.IsSubnormal(d); } protected static Vector128 MakeVectorE0(double E0) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(0, BitConverter.DoubleToInt64Bits(E0))); } protected static Vector128 MakeVectorE0E1(double E0, double E1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast( Sse2.SetVector128(BitConverter.DoubleToInt64Bits(E1), BitConverter.DoubleToInt64Bits(E0))); } protected static Vector128 MakeVectorE1(double E1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(BitConverter.DoubleToInt64Bits(E1), 0)); } protected static float VectorExtractSingle(Vector128 Vector, byte Index) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } int Value = Sse41.Extract(Sse.StaticCast(Vector), Index); return BitConverter.Int32BitsToSingle(Value); } protected static double VectorExtractDouble(Vector128 Vector, byte Index) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } long Value = Sse41.Extract(Sse.StaticCast(Vector), Index); return BitConverter.Int64BitsToDouble(Value); } protected static Vector128 MakeVectorE0(ulong E0) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(0, E0)); } protected static Vector128 MakeVectorE0E1(ulong E0, ulong E1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(E1, E0)); } protected static Vector128 MakeVectorE1(ulong E1) { if (!Sse2.IsSupported) { throw new PlatformNotSupportedException(); } return Sse.StaticCast(Sse2.SetVector128(E1, 0)); } protected static ulong GetVectorE0(Vector128 Vector) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } return Sse41.Extract(Sse.StaticCast(Vector), (byte)0); } protected static ulong GetVectorE1(Vector128 Vector) { if (!Sse41.IsSupported) { throw new PlatformNotSupportedException(); } return Sse41.Extract(Sse.StaticCast(Vector), (byte)1); } protected static ushort GenNormal_H() { uint Rnd; do Rnd = TestContext.CurrentContext.Random.NextUShort(); while (( Rnd & 0x7C00u) == 0u || (~Rnd & 0x7C00u) == 0u); return (ushort)Rnd; } protected static ushort GenSubnormal_H() { uint Rnd; do Rnd = TestContext.CurrentContext.Random.NextUShort(); while ((Rnd & 0x03FFu) == 0u); return (ushort)(Rnd & 0x83FFu); } protected static uint GenNormal_S() { uint Rnd; do Rnd = TestContext.CurrentContext.Random.NextUInt(); while (( Rnd & 0x7F800000u) == 0u || (~Rnd & 0x7F800000u) == 0u); return Rnd; } protected static uint GenSubnormal_S() { uint Rnd; do Rnd = TestContext.CurrentContext.Random.NextUInt(); while ((Rnd & 0x007FFFFFu) == 0u); return Rnd & 0x807FFFFFu; } protected static ulong GenNormal_D() { ulong Rnd; do Rnd = TestContext.CurrentContext.Random.NextULong(); while (( Rnd & 0x7FF0000000000000ul) == 0ul || (~Rnd & 0x7FF0000000000000ul) == 0ul); return Rnd; } protected static ulong GenSubnormal_D() { ulong Rnd; do Rnd = TestContext.CurrentContext.Random.NextULong(); while ((Rnd & 0x000FFFFFFFFFFFFFul) == 0ul); return Rnd & 0x800FFFFFFFFFFFFFul; } } }