using ARMeilleure.Decoders; using ARMeilleure.IntermediateRepresentation; using ARMeilleure.Translation; using System; using static ARMeilleure.Instructions.InstEmitFlowHelper; using static ARMeilleure.Instructions.InstEmitHelper; using static ARMeilleure.Instructions.InstEmitSimdHelper; using static ARMeilleure.Instructions.InstEmitSimdHelper32; using static ARMeilleure.IntermediateRepresentation.OperandHelper; namespace ARMeilleure.Instructions { static partial class InstEmit32 { public static void Vabs_S(ArmEmitterContext context) { EmitScalarUnaryOpF32(context, (op1) => EmitUnaryMathCall(context, MathF.Abs, Math.Abs, op1)); } public static void Vabs_V(ArmEmitterContext context) { OpCode32Simd op = (OpCode32Simd)context.CurrOp; if (op.F) { EmitVectorUnaryOpF32(context, (op1) => EmitUnaryMathCall(context, MathF.Abs, Math.Abs, op1)); } else { EmitVectorUnaryOpSx32(context, (op1) => EmitAbs(context, op1)); } } private static Operand EmitAbs(ArmEmitterContext context, Operand value) { Operand isPositive = context.ICompareGreaterOrEqual(value, Const(value.Type, 0)); return context.ConditionalSelect(isPositive, value, context.Negate(value)); } public static void Vadd_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarBinaryOpF32(context, (op1, op2) => context.Add(op1, op2)); } else { EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, SoftFloat32.FPAdd, SoftFloat64.FPAdd, op1, op2)); } } public static void Vadd_V(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitVectorBinaryOpF32(context, (op1, op2) => context.Add(op1, op2)); } else { EmitVectorBinaryOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPAddFpscr, SoftFloat64.FPAddFpscr, op1, op2)); } } public static void Vadd_I(ArmEmitterContext context) { EmitVectorBinaryOpZx32(context, (op1, op2) => context.Add(op1, op2)); } public static void Vdup(ArmEmitterContext context) { OpCode32SimdDupGP op = (OpCode32SimdDupGP)context.CurrOp; Operand insert = GetIntA32(context, op.Rt); // Zero extend into an I64, then replicate. Saves the most time over elementwise inserts. switch (op.Size) { case 2: insert = context.Multiply(context.ZeroExtend32(OperandType.I64, insert), Const(0x0000000100000001u)); break; case 1: insert = context.Multiply(context.ZeroExtend16(OperandType.I64, insert), Const(0x0001000100010001u)); break; case 0: insert = context.Multiply(context.ZeroExtend8(OperandType.I64, insert), Const(0x0101010101010101u)); break; default: throw new InvalidOperationException("Unknown Vdup Size."); } InsertScalar(context, op.Vd, insert); if (op.Q) { InsertScalar(context, op.Vd + 1, insert); } } public static void Vdup_1(ArmEmitterContext context) { OpCode32SimdDupElem op = (OpCode32SimdDupElem)context.CurrOp; Operand insert = EmitVectorExtractZx32(context, op.Vm >> 1, ((op.Vm & 1) << (3 - op.Size)) + op.Index, op.Size); // Zero extend into an I64, then replicate. Saves the most time over elementwise inserts. switch (op.Size) { case 2: insert = context.Multiply(context.ZeroExtend32(OperandType.I64, insert), Const(0x0000000100000001u)); break; case 1: insert = context.Multiply(context.ZeroExtend16(OperandType.I64, insert), Const(0x0001000100010001u)); break; case 0: insert = context.Multiply(context.ZeroExtend8(OperandType.I64, insert), Const(0x0101010101010101u)); break; default: throw new InvalidOperationException("Unknown Vdup Size."); } InsertScalar(context, op.Vd, insert); if (op.Q) { InsertScalar(context, op.Vd | 1, insert); } } public static void Vext(ArmEmitterContext context) { OpCode32SimdExt op = (OpCode32SimdExt)context.CurrOp; int elems = op.GetBytesCount(); int byteOff = op.Immediate; Operand res = GetVecA32(op.Qd); for (int index = 0; index < elems; index++) { Operand extract; if (byteOff >= elems) { extract = EmitVectorExtractZx32(context, op.Qm, op.Im + (byteOff - elems), op.Size); } else { extract = EmitVectorExtractZx32(context, op.Qn, op.In + byteOff, op.Size); } byteOff++; res = EmitVectorInsert(context, res, extract, op.Id + index, op.Size); } context.Copy(GetVecA32(op.Qd), res); } public static void Vmov_S(ArmEmitterContext context) { EmitScalarUnaryOpF32(context, (op1) => op1); } public static void Vmovn(ArmEmitterContext context) { EmitVectorUnaryNarrowOp32(context, (op1) => op1); } public static void Vneg_S(ArmEmitterContext context) { EmitScalarUnaryOpF32(context, (op1) => context.Negate(op1)); } public static void Vnmul_S(ArmEmitterContext context) { EmitScalarBinaryOpF32(context, (op1, op2) => context.Negate(context.Multiply(op1, op2))); } public static void Vnmla_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return context.Negate(context.Add(op1, context.Multiply(op2, op3))); }); } else { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCall(context, SoftFloat32.FPNegMulAdd, SoftFloat64.FPNegMulAdd, op1, op2, op3); }); } } public static void Vnmls_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return context.Add(context.Negate(op1), context.Multiply(op2, op3)); }); } else { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCall(context, SoftFloat32.FPNegMulSub, SoftFloat64.FPNegMulSub, op1, op2, op3); }); } } public static void Vneg_V(ArmEmitterContext context) { if ((context.CurrOp as OpCode32Simd).F) { EmitVectorUnaryOpF32(context, (op1) => context.Negate(op1)); } else { EmitVectorUnaryOpSx32(context, (op1) => context.Negate(op1)); } } public static void Vdiv_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarBinaryOpF32(context, (op1, op2) => context.Divide(op1, op2)); } else { EmitScalarBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCall(context, SoftFloat32.FPDiv, SoftFloat64.FPDiv, op1, op2); }); } } public static void Vmaxnm_S(ArmEmitterContext context) { EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, SoftFloat32.FPMaxNum, SoftFloat64.FPMaxNum, op1, op2)); } public static void Vmaxnm_V(ArmEmitterContext context) { EmitVectorBinaryOpSx32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMaxNumFpscr, SoftFloat64.FPMaxNumFpscr, op1, op2)); } public static void Vminnm_S(ArmEmitterContext context) { EmitScalarBinaryOpF32(context, (op1, op2) => EmitSoftFloatCall(context, SoftFloat32.FPMinNum, SoftFloat64.FPMinNum, op1, op2)); } public static void Vminnm_V(ArmEmitterContext context) { EmitVectorBinaryOpSx32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMinNumFpscr, SoftFloat64.FPMinNumFpscr, op1, op2)); } public static void Vmax_V(ArmEmitterContext context) { EmitVectorBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMaxFpscr, SoftFloat64.FPMaxFpscr, op1, op2); }); } public static void Vmax_I(ArmEmitterContext context) { OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp; if (op.U) { EmitVectorBinaryOpZx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareGreaterUI(op1, op2), op1, op2)); } else { EmitVectorBinaryOpSx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareGreater(op1, op2), op1, op2)); } } public static void Vmin_V(ArmEmitterContext context) { EmitVectorBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMinFpscr, SoftFloat64.FPMinFpscr, op1, op2); }); } public static void Vmin_I(ArmEmitterContext context) { OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp; if (op.U) { EmitVectorBinaryOpZx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareLessUI(op1, op2), op1, op2)); } else { EmitVectorBinaryOpSx32(context, (op1, op2) => context.ConditionalSelect(context.ICompareLess(op1, op2), op1, op2)); } } public static void Vmul_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarBinaryOpF32(context, (op1, op2) => context.Multiply(op1, op2)); } else { EmitScalarBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCall(context, SoftFloat32.FPMul, SoftFloat64.FPMul, op1, op2); }); } } public static void Vmul_V(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitVectorBinaryOpF32(context, (op1, op2) => context.Multiply(op1, op2)); } else { EmitVectorBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulFpscr, SoftFloat64.FPMulFpscr, op1, op2); }); } } public static void Vmul_I(ArmEmitterContext context) { if ((context.CurrOp as OpCode32SimdReg).U) throw new NotImplementedException("Polynomial mode not implemented"); EmitVectorBinaryOpSx32(context, (op1, op2) => context.Multiply(op1, op2)); } public static void Vmul_1(ArmEmitterContext context) { OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp; if (op.F) { if (Optimizations.FastFP) { EmitVectorByScalarOpF32(context, (op1, op2) => context.Multiply(op1, op2)); } else { EmitVectorByScalarOpF32(context, (op1, op2) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulFpscr, SoftFloat64.FPMulFpscr, op1, op2)); } } else { EmitVectorByScalarOpI32(context, (op1, op2) => context.Multiply(op1, op2), false); } } public static void Vmla_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return context.Add(op1, context.Multiply(op2, op3)); }); } else { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCall(context, SoftFloat32.FPMulAdd, SoftFloat64.FPMulAdd, op1, op2, op3); }); } } public static void Vmla_V(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitVectorTernaryOpF32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3))); } else { EmitVectorTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulAddFpscr, SoftFloat64.FPMulAddFpscr, op1, op2, op3); }); } } public static void Vmla_I(ArmEmitterContext context) { EmitVectorTernaryOpZx32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3))); } public static void Vmla_1(ArmEmitterContext context) { OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp; if (op.F) { if (Optimizations.FastFP) { EmitVectorsByScalarOpF32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3))); } else { EmitVectorsByScalarOpF32(context, (op1, op2, op3) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulAddFpscr, SoftFloat64.FPMulAddFpscr, op1, op2, op3)); } } else { EmitVectorsByScalarOpI32(context, (op1, op2, op3) => context.Add(op1, context.Multiply(op2, op3)), false); } } public static void Vmls_S(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return context.Subtract(op1, context.Multiply(op2, op3)); }); } else { EmitScalarTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCall(context, SoftFloat32.FPMulSub, SoftFloat64.FPMulSub, op1, op2, op3); }); } } public static void Vmls_V(ArmEmitterContext context) { if (Optimizations.FastFP) { EmitVectorTernaryOpF32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3))); } else { EmitVectorTernaryOpF32(context, (op1, op2, op3) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulSubFpscr, SoftFloat64.FPMulSubFpscr, op1, op2, op3); }); } } public static void Vmls_I(ArmEmitterContext context) { EmitVectorTernaryOpZx32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3))); } public static void Vmls_1(ArmEmitterContext context) { OpCode32SimdRegElem op = (OpCode32SimdRegElem)context.CurrOp; if (op.F) { if (Optimizations.FastFP) { EmitVectorsByScalarOpF32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3))); } else { EmitVectorsByScalarOpF32(context, (op1, op2, op3) => EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPMulSubFpscr, SoftFloat64.FPMulSubFpscr, op1, op2, op3)); } } else { EmitVectorsByScalarOpI32(context, (op1, op2, op3) => context.Subtract(op1, context.Multiply(op2, op3)), false); } } public static void Vpadd_V(ArmEmitterContext context) { EmitVectorPairwiseOpF32(context, (op1, op2) => context.Add(op1, op2)); } public static void Vpadd_I(ArmEmitterContext context) { OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp; EmitVectorPairwiseOpI32(context, (op1, op2) => context.Add(op1, op2), !op.U); } public static void Vrev(ArmEmitterContext context) { OpCode32Simd op = (OpCode32Simd)context.CurrOp; EmitVectorUnaryOpZx32(context, (op1) => { switch (op.Opc) { case 0: switch (op.Size) // Swap bytes. { default: return op1; case 1: return InstEmitAluHelper.EmitReverseBytes16_32Op(context, op1); case 2: case 3: return context.ByteSwap(op1); } case 1: switch (op.Size) { default: return op1; case 2: return context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffff0000)), Const(16)), context.ShiftLeft(context.BitwiseAnd(op1, Const(0x0000ffff)), Const(16))); case 3: return context.BitwiseOr( context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffff000000000000ul)), Const(48)), context.ShiftLeft(context.BitwiseAnd(op1, Const(0x000000000000fffful)), Const(48))), context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0x0000ffff00000000ul)), Const(16)), context.ShiftLeft(context.BitwiseAnd(op1, Const(0x00000000ffff0000ul)), Const(16)))); } case 2: // Swap upper and lower halves. return context.BitwiseOr(context.ShiftRightUI(context.BitwiseAnd(op1, Const(0xffffffff00000000ul)), Const(32)), context.ShiftLeft(context.BitwiseAnd(op1, Const(0x00000000fffffffful)), Const(32))); } return op1; }); } public static void Vrecpe(ArmEmitterContext context) { OpCode32SimdSqrte op = (OpCode32SimdSqrte)context.CurrOp; if (op.F) { EmitVectorUnaryOpF32(context, (op1) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPRecipEstimateFpscr, SoftFloat64.FPRecipEstimateFpscr, op1); }); } else { throw new NotImplementedException("Integer Vrecpe not currently implemented."); } } public static void Vrecps(ArmEmitterContext context) { EmitVectorBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCall(context, SoftFloat32.FPRecipStep, SoftFloat64.FPRecipStep, op1, op2); }); } public static void Vrsqrte(ArmEmitterContext context) { OpCode32SimdSqrte op = (OpCode32SimdSqrte)context.CurrOp; if (op.F) { EmitVectorUnaryOpF32(context, (op1) => { return EmitSoftFloatCallDefaultFpscr(context, SoftFloat32.FPRSqrtEstimateFpscr, SoftFloat64.FPRSqrtEstimateFpscr, op1); }); } else { throw new NotImplementedException("Integer Vrsqrte not currently implemented."); } } public static void Vrsqrts(ArmEmitterContext context) { EmitVectorBinaryOpF32(context, (op1, op2) => { return EmitSoftFloatCall(context, SoftFloat32.FPRSqrtStep, SoftFloat64.FPRSqrtStep, op1, op2); }); } public static void Vsel(ArmEmitterContext context) { OpCode32SimdSel op = (OpCode32SimdSel)context.CurrOp; Operand condition = null; switch (op.Cc) { case OpCode32SimdSelMode.Eq: condition = GetCondTrue(context, Condition.Eq); break; case OpCode32SimdSelMode.Ge: condition = GetCondTrue(context, Condition.Ge); break; case OpCode32SimdSelMode.Gt: condition = GetCondTrue(context, Condition.Gt); break; case OpCode32SimdSelMode.Vs: condition = GetCondTrue(context, Condition.Vs); break; } EmitScalarBinaryOpI32(context, (op1, op2) => { return context.ConditionalSelect(condition, op1, op2); }); } public static void Vsqrt_S(ArmEmitterContext context) { EmitScalarUnaryOpF32(context, (op1) => { return EmitSoftFloatCall(context, SoftFloat32.FPSqrt, SoftFloat64.FPSqrt, op1); }); } public static void Vsub_S(ArmEmitterContext context) { EmitScalarBinaryOpF32(context, (op1, op2) => context.Subtract(op1, op2)); } public static void Vsub_V(ArmEmitterContext context) { EmitVectorBinaryOpF32(context, (op1, op2) => context.Subtract(op1, op2)); } public static void Vsub_I(ArmEmitterContext context) { EmitVectorBinaryOpZx32(context, (op1, op2) => context.Subtract(op1, op2)); } } }