This commit is contained in:
Polprzewodnikowy 2021-08-23 21:40:37 +02:00
parent 676bf07d91
commit 87fddd912e
56 changed files with 673 additions and 26026 deletions

View File

@ -56,6 +56,7 @@ set_global_assignment -name SIGNALTAP_FILE stp.stp
set_global_assignment -name SYSTEMVERILOG_FILE btldr/btldr.sv
set_global_assignment -name SYSTEMVERILOG_FILE picorv32/picorv32.v
set_global_assignment -name SYSTEMVERILOG_FILE rtl/cpu/cpu_bus.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/cpu/cpu_cfg.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/cpu/cpu_dma.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/cpu/cpu_gpio.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/cpu/cpu_i2c.sv
@ -68,6 +69,7 @@ set_global_assignment -name SYSTEMVERILOG_FILE rtl/memory/memory_flash.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/memory/memory_sdram.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_bootloader.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_bus.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_cfg.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_pi.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_sdram.sv
set_global_assignment -name SYSTEMVERILOG_FILE rtl/n64/n64_soc.sv
@ -302,254 +304,6 @@ set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
# ------------------------
set_global_assignment -name QIP_FILE rtl/intel/gpio/intel_gpio_ddro.qip
set_global_assignment -name SLD_NODE_CREATOR_ID 110 -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_ENTITY_NAME sld_signaltap -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_clk -to "system:system_inst|intel_pll:intel_pll_inst|altpll:altpll_component|clk[0]" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_RAM_BLOCK_TYPE=AUTO" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_NODE_INFO=805334528" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_POWER_UP_TRIGGER=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_ATTRIBUTE_MEM_MODE=OFF" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_STATE_FLOW_USE_GENERATED=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_STATE_BITS=11" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_BUFFER_FULL_STOP=1" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_CURRENT_RESOURCE_WIDTH=1" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_INCREMENTAL_ROUTING=1" -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[0] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[1] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[2] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[3] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[6] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[7] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[10] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[13] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[14] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[15] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[16] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[17] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[19] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[25] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[26] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[27] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[28] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[30] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_TRIGGER_LEVEL=1" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_TRIGGER_IN_ENABLED=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_TRIGGER_PIPELINE=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_RAM_PIPELINE=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_COUNTER_PIPELINE=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_ADVANCED_TRIGGER_ENTITY=basic,1," -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_TRIGGER_LEVEL_PIPELINE=1" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_ENABLE_ADVANCED_TRIGGER=0" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_STORAGE_QUALIFIER_INVERSION_MASK_LENGTH=0" -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[4] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[8] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[9] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[12] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[18] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[20] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[22] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[24] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[29] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[31] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[5] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[11] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[21] -to auto_signaltap_0|vcc -section_id auto_signaltap_0
set_instance_assignment -name POST_FIT_CONNECT_TO_SLD_NODE_ENTITY_PORT crc[23] -to auto_signaltap_0|gnd -section_id auto_signaltap_0
set_global_assignment -name SOURCE_FILE sfp.spf
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_SEGMENT_SIZE=1024" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_SAMPLE_DEPTH=1024" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[0] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.ack" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[1] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[2] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[3] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[4] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[5] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[6] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[7] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[8] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[16]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[9] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[17]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[10] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[18]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[11] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[19]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[12] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[13] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[20]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[14] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[21]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[15] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[22]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[16] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[23]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[17] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[24]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[18] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[25]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[19] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[26]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[20] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[27]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[21] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[28]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[22] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[29]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[23] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[24] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[30]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[25] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[31]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[26] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[27] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[28] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[29] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[30] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[31] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[32] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[33] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.id[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[34] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.id[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[35] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.request" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[36] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_empty" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[37] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[38] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[39] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[40] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[41] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[42] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[43] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[44] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[45] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_read" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[46] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[47] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[48] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[49] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[50] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[51] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[52] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[53] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[54] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[55] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[56] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[57] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[58] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[59] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[60] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[61] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[62] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.write" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[63] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[64] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[65] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[66] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[67] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[68] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[69] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[70] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[16]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[71] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[17]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[72] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[18]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[73] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[19]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[74] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[75] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[20]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[76] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[21]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[77] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[22]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[78] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[23]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[79] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[24]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[80] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[25]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[81] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[26]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[82] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[27]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[83] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[84] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[85] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[86] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[87] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[88] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[89] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[90] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[91] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_FETCH" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[92] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_IDLE" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_trigger_in[93] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_TRANSFER" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[0] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.ack" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[1] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[2] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[3] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[4] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[5] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[6] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[7] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[8] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[16]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[9] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[17]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[10] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[18]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[11] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[19]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[12] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[13] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[20]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[14] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[21]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[15] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[22]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[16] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[23]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[17] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[24]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[18] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[25]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[19] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[26]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[20] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[27]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[21] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[28]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[22] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[29]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[23] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[24] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[30]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[25] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[31]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[26] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[27] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[28] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[29] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[30] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[31] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[32] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.address[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[33] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.id[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[34] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.id[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[35] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.request" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[36] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_empty" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[37] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[38] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[39] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[40] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[41] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[42] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[43] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[44] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_rdata[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[45] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.rx_read" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[46] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[47] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[48] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[49] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[50] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[51] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[52] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[53] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[54] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[55] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[56] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[57] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[58] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[59] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[60] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[61] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.wdata[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[62] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|dma.write" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[63] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[0]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[64] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[10]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[65] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[11]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[66] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[12]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[67] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[13]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[68] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[14]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[69] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[15]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[70] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[16]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[71] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[17]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[72] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[18]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[73] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[19]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[74] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[1]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[75] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[20]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[76] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[21]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[77] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[22]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[78] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[23]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[79] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[24]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[80] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[25]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[81] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[26]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[82] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[27]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[83] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[2]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[84] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[3]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[85] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[4]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[86] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[5]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[87] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[6]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[88] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[7]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[89] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[8]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[90] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|length[9]" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[91] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_FETCH" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[92] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_IDLE" -section_id auto_signaltap_0
set_instance_assignment -name CONNECT_TO_SLD_NODE_ENTITY_PORT acq_data_in[93] -to "cpu_soc:cpu_soc_inst|cpu_dma:cpu_dma_inst|state.S_TRANSFER" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_DATA_BITS=94" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_TRIGGER_BITS=94" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_STORAGE_QUALIFIER_BITS=128" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_INVERSION_MASK=000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" -section_id auto_signaltap_0
set_global_assignment -name SLD_NODE_PARAMETER_ASSIGNMENT "SLD_INVERSION_MASK_LENGTH=306" -section_id auto_signaltap_0
set_global_assignment -name SLD_FILE db/stp_auto_stripped.stp
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top

View File

@ -1,21 +1,39 @@
#include "btldr.h"
int reset_handler (void) {
#ifdef BOOT_UART
io8_t pointer = &RAM;
#else
#ifdef BOOT_N64
io32_t pointer = &RAM;
#endif
#endif
uint32_t length = 0;
while (!(USB_SR & USB_SR_TXE));
USB_DR = '>';
#ifdef BOOT_UART
for (int i = 0; i < 4; i++) {
while (!(USB_SR & USB_SR_RXNE));
length |= (USB_DR << (i * 8));
while (!(UART_SR & UART_SR_RXNE));
length |= (UART_DR << (i * 8));
}
#else
#ifdef BOOT_N64
while (!(CFG_SCR & CFG_SCR_BOOTSTRAP_PENDING));
length = CFG_BOOTSTRAP;
#endif
#endif
while (1) {
while (!(USB_SR & USB_SR_RXNE));
*pointer++ = USB_DR;
if ((uint32_t)pointer == length) {
#ifdef BOOT_UART
while (!(UART_SR & UART_SR_RXNE));
*pointer++ = UART_DR;
#else
#ifdef BOOT_N64
while (!(CFG_SCR & CFG_SCR_BOOTSTRAP_PENDING));
*pointer++ = CFG_BOOTSTRAP;
#endif
#endif
if (((uint32_t) pointer) == length) {
CFG_SCR |= CFG_SCR_CPU_BOOTSTRAPPED;
__asm__("call 0");
}
}

View File

@ -5,15 +5,31 @@
#include <stdint.h>
typedef volatile uint8_t * io8_t;
typedef volatile uint32_t * io32_t;
#define BOOT_UART
// #define BOOT_N64
#define RAM (*((io8_t) 0x00000000))
#define USB_SR (*((io8_t) 0x50000000))
#define USB_DR (*((io8_t) 0x50000004))
typedef volatile uint8_t * io8_t;
typedef volatile uint32_t * io32_t;
#define USB_SR_RXNE (1 << 0)
#define USB_SR_TXE (1 << 1)
#ifdef BOOT_UART
#define RAM (*((io8_t) 0x00000000))
#else
#ifdef BOOT_N64
#define RAM (*((io32_t) 0x00000000))
#endif
#endif
#define UART_SR (*((io8_t) 0x50000000))
#define UART_DR (*((io8_t) 0x50000004))
#define UART_SR_RXNE (1 << 0)
#define UART_SR_TXE (1 << 1)
#define CFG_SCR (*((io32_t) 0x70000000))
#define CFG_BOOTSTRAP (*((io32_t) 0x7000001C))
#define CFG_SCR_CPU_BOOTSTRAPPED (1 << 31)
#define CFG_SCR_BOOTSTRAP_PENDING (1 << 29)
#endif

View File

@ -14,38 +14,37 @@ module cpu_bootloader (
bus.rdata = 32'd0;
if (bus.ack) begin
case (bus.address[6:2])
0: bus.rdata = 32'h50000737;
1: bus.rdata = 32'h00074783;
2: bus.rdata = 32'h0027f793;
3: bus.rdata = 32'hfe078ce3;
4: bus.rdata = 32'h03e00793;
5: bus.rdata = 32'h00f70223;
6: bus.rdata = 32'h50000637;
7: bus.rdata = 32'h00000793;
8: bus.rdata = 32'h00000713;
9: bus.rdata = 32'h02000593;
10: bus.rdata = 32'h00064683;
11: bus.rdata = 32'h0016f693;
12: bus.rdata = 32'hfe068ce3;
13: bus.rdata = 32'h00464683;
14: bus.rdata = 32'h00f696b3;
15: bus.rdata = 32'h00878793;
16: bus.rdata = 32'h00d76733;
17: bus.rdata = 32'hfeb792e3;
18: bus.rdata = 32'h00000793;
19: bus.rdata = 32'h500005b7;
20: bus.rdata = 32'h0005c683;
21: bus.rdata = 32'h0016f693;
22: bus.rdata = 32'hfe068ce3;
23: bus.rdata = 32'h0045c683;
24: bus.rdata = 32'h00178613;
25: bus.rdata = 32'h0ff6f693;
26: bus.rdata = 32'h00d78023;
27: bus.rdata = 32'h00e61663;
28: bus.rdata = 32'hf0000097;
29: bus.rdata = 32'hf90080e7;
30: bus.rdata = 32'h00060793;
31: bus.rdata = 32'hfd5ff06f;
0: bus.rdata = 32'h00000793;
1: bus.rdata = 32'h00000713;
2: bus.rdata = 32'h50000637;
3: bus.rdata = 32'h02000593;
4: bus.rdata = 32'h00064683;
5: bus.rdata = 32'h0016f693;
6: bus.rdata = 32'hfe068ce3;
7: bus.rdata = 32'h00464683;
8: bus.rdata = 32'h00f696b3;
9: bus.rdata = 32'h00878793;
10: bus.rdata = 32'h00d76733;
11: bus.rdata = 32'hfeb792e3;
12: bus.rdata = 32'h00000793;
13: bus.rdata = 32'h50000537;
14: bus.rdata = 32'h70000637;
15: bus.rdata = 32'h80000837;
16: bus.rdata = 32'h00054683;
17: bus.rdata = 32'h0016f693;
18: bus.rdata = 32'hfe068ce3;
19: bus.rdata = 32'h00454683;
20: bus.rdata = 32'h00178593;
21: bus.rdata = 32'h0ff6f693;
22: bus.rdata = 32'h00d78023;
23: bus.rdata = 32'h00e59c63;
24: bus.rdata = 32'h00062783;
25: bus.rdata = 32'h0107e7b3;
26: bus.rdata = 32'h00f62023;
27: bus.rdata = 32'hf0000097;
28: bus.rdata = 32'hf94080e7;
29: bus.rdata = 32'h00058793;
30: bus.rdata = 32'hfc9ff06f;
default: bus.rdata = 32'd0;
endcase
end

View File

@ -20,12 +20,12 @@ cntrllr.elf: cntrllr.ld main.c rtc.c startup.S
@$(CROSS)gcc $(FLAGS) -Tcntrllr.ld main.c rtc.c startup.S -o cntrllr.elf
cntrllr.bin: cntrllr.elf
@$(CROSS)objcopy -O binary --gap-fill 0xFF --pad-to 0x4004 cntrllr.elf cntrllr.bin
@$(CROSS)objcopy -O binary cntrllr.elf cntrllr.bin
print_size:
@echo 'Size of target .elf file:'
@$(CROSS)size -B cntrllr.elf
@echo $(shell $(CROSS)size -B cntrllr.elf | awk 'NR==2 { printf "\nTotal memory used: %.2f%%\n",(100/(16*1024))*($$4-4) }')
@echo $(shell $(CROSS)size -B cntrllr.elf | awk 'NR==2 { printf "\nTotal memory used: %.2f%%\n",(100/(16*1024))*($$4) }')
clean:
@rm -f cntrllr.bin cntrllr.elf

BIN
fw/cntrllr/cntrllr.bin.bak Normal file

Binary file not shown.

View File

@ -10,12 +10,7 @@ ENTRY(reset_handler)
SECTIONS
{
.metadata :
{
KEEP(*(.rodata.metadata));
}
.ram ORIGIN(ram) :
.ram :
{
. = ALIGN(4);
*(.text.startup);
@ -25,5 +20,6 @@ SECTIONS
*(.bss .bss.* .sbss .sbss.*);
. = ALIGN(4);
*(.data .data.* .sdata .stada.*);
. = ALIGN(4);
} > ram AT > ram
}

View File

@ -70,75 +70,94 @@ __NAKED__ int main (void) {
DMA_SCR = DMA_SCR_STOP;
USB_SCR = USB_SCR_FLUSH_TX | USB_SCR_FLUSH_TX;
print("CPU START\r\n");
while (1) {
arg1 = 0;
arg2 = 0;
print("Loop start\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
data = USB_DR;
if (i < 3 && data != CMD[i]) {
i = 0;
print("Wrong data ");
print_02hex(data);
print("\r\n");
} else {
cmd = data;
if (USB_SCR & USB_SCR_RXNE) {
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
data = USB_DR;
if (i < 3 && data != CMD[i]) {
i = 0;
print("Wrong data ");
print_02hex(data);
print("\r\n");
} else {
cmd = data;
}
}
}
print("Received CMD");
tmp[0] = cmd;
print(tmp);
print("\r\n");
print("Received CMD");
tmp[0] = cmd;
print(tmp);
print("\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
arg1 = (arg1 << 8) | USB_DR;
}
print("Received ARG_1 0x");
for (int i = 0; i < 4; i++) {
print_02hex((uint8_t) (arg1 >> ((3 - i) * 8)));
}
print("\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
arg2 = (arg2 << 8) | USB_DR;
}
print("Received ARG_2 0x");
for (int i = 0; i < 4; i++) {
print_02hex((uint8_t) (arg2 >> ((3 - i) * 8)));
}
print("\r\n");
DMA_MADDR = arg1;
DMA_ID_LEN = arg2;
DMA_SCR = (cmd == CMD_W ? DMA_SCR_DIR : 0) | DMA_SCR_START;
print("Started DMA\r\n");
while (DMA_SCR & DMA_SCR_BUSY);
print("Finished DMA\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_TXE));
if (i < 3) {
USB_DR = CMP[i];
} else {
USB_DR = cmd;
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
arg1 = (arg1 << 8) | USB_DR;
}
}
print("Sent response CMP");
tmp[0] = cmd;
print(tmp);
print("\r\n\r\n");
print("Received ARG_1 0x");
for (int i = 0; i < 4; i++) {
print_02hex((uint8_t) (arg1 >> ((3 - i) * 8)));
}
print("\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_RXNE));
arg2 = (arg2 << 8) | USB_DR;
}
print("Received ARG_2 0x");
for (int i = 0; i < 4; i++) {
print_02hex((uint8_t) (arg2 >> ((3 - i) * 8)));
}
print("\r\n");
DMA_MADDR = arg1;
DMA_ID_LEN = arg2;
DMA_SCR = (cmd == CMD_W ? DMA_SCR_DIR : 0) | DMA_SCR_START;
print("Started DMA\r\n");
while (DMA_SCR & DMA_SCR_BUSY);
print("Finished DMA\r\n");
for (int i = 0; i < 4; i++) {
while (!(USB_SCR & USB_SCR_TXE));
if (i < 3) {
USB_DR = CMP[i];
} else {
USB_DR = cmd;
}
}
print("Sent response CMP");
tmp[0] = cmd;
print(tmp);
print("\r\n\r\n");
} else if (CFG_SCR & CFG_SCR_CPU_BUSY) {
uint8_t cmd = CFG_COMMAND;
arg1 = CFG_ARG_1;
arg2 = CFG_ARG_2;
print("Received N64 CMD");
tmp[0] = cmd;
print(tmp);
print("\r\n");
if (cmd == 'S') {
if (arg1) {
CFG_SCR |= CFG_SCR_SDRAM_SWITCH;
} else {
CFG_SCR &= ~CFG_SCR_SDRAM_SWITCH;
}
}
CFG_RESPONSE = 0;
}
}
}

View File

@ -1,7 +1,3 @@
.section .rodata.metadata
metadata:
.word __ram_size
.section .text.startup
.global reset_handler
reset_handler:

View File

@ -27,6 +27,13 @@ typedef volatile uint32_t * io32_t;
#define DMA_MADDR (*((io32_t) 0x60000004))
#define DMA_ID_LEN (*((io32_t) 0x60000008))
#define SDRAM (*((io32_t) 0x68000000))
#define CFG_SCR (*((io32_t) 0x70000000))
#define CFG_DD_OFFSET (*((io32_t) 0x70000004))
#define CFG_SAVE_OFFSET (*((io32_t) 0x70000008))
#define CFG_COMMAND (*((io8_t) 0x7000000C))
#define CFG_ARG_1 (*((io32_t) 0x70000010))
#define CFG_ARG_2 (*((io32_t) 0x70000014))
#define CFG_RESPONSE (*((io32_t) 0x70000018))
#define I2C_SR_START (1 << 0)
#define I2C_SR_STOP (1 << 1)
@ -51,5 +58,8 @@ typedef volatile uint32_t * io32_t;
#define DMA_ID_USB (0)
#define DMA_ID_SD (1)
#define CFG_SCR_CPU_BUSY (1 << 30)
#define CFG_SCR_SDRAM_SWITCH (1 << 0)
#endif

121
fw/rtl/cpu/cpu_cfg.sv Normal file
View File

@ -0,0 +1,121 @@
module cpu_cfg (
if_system.sys sys,
if_cpu_bus bus,
if_config.cpu cfg
);
typedef enum bit [2:0] {
R_SCR,
R_DD_OFFSET,
R_SAVE_OFFSET,
R_COMMAND,
R_ARG_1,
R_ARG_2,
R_RESPONSE,
R_BOOTSTRAP
} e_reg_id;
logic bootstrap_pending;
always_ff @(posedge sys.clk) begin
bus.ack <= 1'b0;
if (bus.request) begin
bus.ack <= 1'b1;
end
end
always_comb begin
bus.rdata = 32'd0;
if (bus.ack) begin
case (bus.address[4:2])
R_SCR: bus.rdata = {
cfg.cpu_bootstrapped,
cfg.cpu_busy,
bootstrap_pending,
24'd0,
cfg.flashram_enabled,
cfg.sram_enabled,
cfg.dd_enabled,
cfg.sdram_writable,
cfg.sdram_switch
};
R_DD_OFFSET: bus.rdata = {6'd0, cfg.dd_offset};
R_SAVE_OFFSET: bus.rdata = {6'd0, cfg.save_offset};
R_COMMAND: bus.rdata = {24'd0, cfg.command};
R_ARG_1: bus.rdata = cfg.arg[0];
R_ARG_2: bus.rdata = cfg.arg[1];
R_RESPONSE: bus.rdata = cfg.response;
R_BOOTSTRAP: bus.rdata = cfg.arg[0];
endcase
end
end
always_ff @(posedge sys.clk) begin
if (sys.reset) begin
cfg.cpu_bootstrapped <= 1'b0;
cfg.cpu_busy <= 1'b0;
cfg.sdram_switch <= 1'b0;
cfg.sdram_writable <= 1'b0;
cfg.dd_enabled <= 1'b0;
cfg.sram_enabled <= 1'b0;
cfg.flashram_enabled <= 1'b0;
cfg.dd_offset <= 26'h3BE_0000;
cfg.save_offset <= 26'h3FE_0000;
bootstrap_pending <= 1'b0;
end else begin
if (sys.n64_soft_reset) begin
cfg.sdram_switch <= 1'b0;
end
if (cfg.request) begin
cfg.cpu_busy <= 1'b1;
end
if (cfg.boot_write) begin
bootstrap_pending <= 1'b1;
end
if (bus.request) begin
case (bus.address[4:2])
R_SCR: begin
if (bus.wmask[3]) begin
cfg.cpu_bootstrapped <= bus.wdata[31];
end
if (bus.wmask[0]) begin
{
cfg.flashram_enabled,
cfg.sram_enabled,
cfg.dd_enabled,
cfg.sdram_writable,
cfg.sdram_switch
} <= bus.wdata[4:0];
end
end
R_DD_OFFSET: begin
if (&bus.wmask) begin
cfg.dd_offset <= bus.wdata[25:0];
end
end
R_SAVE_OFFSET: begin
if (&bus.wmask) begin
cfg.save_offset <= bus.wdata[25:0];
end
end
R_RESPONSE: begin
if (&bus.wmask) begin
cfg.cpu_busy <= 1'b0;
cfg.response <= bus.wdata;
end
end
R_BOOTSTRAP: begin
if (!(|bus.wmask)) begin
bootstrap_pending <= 1'b0;
end
end
endcase
end
end
end
endmodule

View File

@ -55,7 +55,7 @@ interface if_dma ();
tx_full = 1'b0;
for (integer i = 0; i < NUM_DEVICES; i++) begin
rx_rdata = rx_rdata | device_rx_rdata[i];//(device_rx_rdata[i] & {8{id == i[1:0]});
rx_rdata = rx_rdata | (id == i[1:0] ? device_rx_rdata[i] : 8'd0);
rx_empty = rx_empty | (device_rx_empty[i] && id == i[1:0]);
tx_full = tx_full | (device_tx_full[i] && id == i[1:0]);
end
@ -104,6 +104,7 @@ module cpu_dma (
logic direction;
logic [27:0] length;
logic [15:0] rdata_buffer;
logic byte_counter;
always_comb begin
bus.rdata = 32'd0;
@ -116,8 +117,6 @@ module cpu_dma (
end
end
logic byte_counter;
always_ff @(posedge sys.clk) begin
bus.ack <= 1'b0;
if (bus.request) begin

View File

@ -1,6 +1,6 @@
module cpu_soc (
if_system.sys sys,
if_config cfg,
if_config.cpu cfg,
if_dma dma,
input [7:0] gpio_i,
@ -84,4 +84,10 @@ module cpu_soc (
.dma(dma)
);
cpu_cfg cpu_cfg_inst (
.sys(sys),
.bus(bus.at[sc64::ID_CPU_CFG].device),
.cfg(cfg)
);
endmodule

View File

@ -71,8 +71,8 @@
<parameter name="SECTOR_ACCESS_MODE">Read only,Read only,Hidden,Read only,Read only</parameter>
<parameter name="autoInitializationFileName">$${FILENAME}_onchip_flash_0</parameter>
<parameter name="initFlashContent" value="true" />
<parameter name="initializationFileName">C:/Dev/SummerCollection/sw/bootloader/what/build/SummerLoader64.hex</parameter>
<parameter name="initializationFileNameForSim">C:/Dev/SummerCollection/sw/bootloader/what/build/SummerLoader64.hex</parameter>
<parameter name="initializationFileName">C:/Dev/SummerCollection/sw/bootloader/build/SummerLoader64.hex</parameter>
<parameter name="initializationFileNameForSim">C:/Dev/SummerCollection/sw/bootloader/build/SummerLoader64.hex</parameter>
<parameter name="useNonDefaultInitFile" value="true" />
</module>
<interconnectRequirement for="$system" name="qsys_mm.clockCrossingAdapter" value="HANDSHAKE" />

View File

@ -0,0 +1,111 @@
/*
WARNING: Do NOT edit the input and output ports in this file in a text
editor if you plan to continue editing the block that represents it in
the Block Editor! File corruption is VERY likely to occur.
*/
/*
Copyright (C) 2020 Intel Corporation. All rights reserved.
Your use of Intel Corporation's design tools, logic functions
and other software and tools, and any partner logic
functions, and any output files from any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Intel Program License
Subscription Agreement, the Intel Quartus Prime License Agreement,
the Intel FPGA IP License Agreement, or other applicable license
agreement, including, without limitation, that your use is for
the sole purpose of programming logic devices manufactured by
Intel and sold by Intel or its authorized distributors. Please
refer to the applicable agreement for further details, at
https://fpgasoftware.intel.com/eula.
*/
(header "symbol" (version "1.1"))
(symbol
(rect 0 0 368 264)
(text "intel_flash" (rect 154 -1 192 11)(font "Arial" (font_size 10)))
(text "inst" (rect 8 248 20 260)(font "Arial" ))
(port
(pt 0 72)
(input)
(text "clock" (rect 0 0 20 12)(font "Arial" (font_size 8)))
(text "clock" (rect 4 61 34 72)(font "Arial" (font_size 8)))
(line (pt 0 72)(pt 144 72)(line_width 1))
)
(port
(pt 0 112)
(input)
(text "avmm_data_addr[15..0]" (rect 0 0 96 12)(font "Arial" (font_size 8)))
(text "avmm_data_addr[15..0]" (rect 4 101 130 112)(font "Arial" (font_size 8)))
(line (pt 0 112)(pt 144 112)(line_width 3))
)
(port
(pt 0 128)
(input)
(text "avmm_data_read" (rect 0 0 73 12)(font "Arial" (font_size 8)))
(text "avmm_data_read" (rect 4 117 88 128)(font "Arial" (font_size 8)))
(line (pt 0 128)(pt 144 128)(line_width 1))
)
(port
(pt 0 192)
(input)
(text "avmm_data_burstcount[1..0]" (rect 0 0 115 12)(font "Arial" (font_size 8)))
(text "avmm_data_burstcount[1..0]" (rect 4 181 160 192)(font "Arial" (font_size 8)))
(line (pt 0 192)(pt 144 192)(line_width 3))
)
(port
(pt 0 232)
(input)
(text "reset_n" (rect 0 0 30 12)(font "Arial" (font_size 8)))
(text "reset_n" (rect 4 221 46 232)(font "Arial" (font_size 8)))
(line (pt 0 232)(pt 144 232)(line_width 1))
)
(port
(pt 0 144)
(output)
(text "avmm_data_readdata[31..0]" (rect 0 0 113 12)(font "Arial" (font_size 8)))
(text "avmm_data_readdata[31..0]" (rect 4 133 154 144)(font "Arial" (font_size 8)))
(line (pt 0 144)(pt 144 144)(line_width 3))
)
(port
(pt 0 160)
(output)
(text "avmm_data_waitrequest" (rect 0 0 99 12)(font "Arial" (font_size 8)))
(text "avmm_data_waitrequest" (rect 4 149 130 160)(font "Arial" (font_size 8)))
(line (pt 0 160)(pt 144 160)(line_width 1))
)
(port
(pt 0 176)
(output)
(text "avmm_data_readdatavalid" (rect 0 0 107 12)(font "Arial" (font_size 8)))
(text "avmm_data_readdatavalid" (rect 4 165 142 176)(font "Arial" (font_size 8)))
(line (pt 0 176)(pt 144 176)(line_width 1))
)
(drawing
(text "clk" (rect 129 43 276 99)(font "Arial" (color 128 0 0)(font_size 9)))
(text "clk" (rect 149 67 316 144)(font "Arial" (color 0 0 0)))
(text "data" (rect 120 83 264 179)(font "Arial" (color 128 0 0)(font_size 9)))
(text "address" (rect 149 107 340 224)(font "Arial" (color 0 0 0)))
(text "read" (rect 149 123 322 256)(font "Arial" (color 0 0 0)))
(text "readdata" (rect 149 139 346 288)(font "Arial" (color 0 0 0)))
(text "waitrequest" (rect 149 155 364 320)(font "Arial" (color 0 0 0)))
(text "readdatavalid" (rect 149 171 376 352)(font "Arial" (color 0 0 0)))
(text "burstcount" (rect 149 187 358 384)(font "Arial" (color 0 0 0)))
(text "nreset" (rect 108 203 252 419)(font "Arial" (color 128 0 0)(font_size 9)))
(text "reset_n" (rect 149 227 340 464)(font "Arial" (color 0 0 0)))
(text " system " (rect 333 248 714 506)(font "Arial" ))
(line (pt 144 32)(pt 224 32)(line_width 1))
(line (pt 224 32)(pt 224 248)(line_width 1))
(line (pt 144 248)(pt 224 248)(line_width 1))
(line (pt 144 32)(pt 144 248)(line_width 1))
(line (pt 145 52)(pt 145 76)(line_width 1))
(line (pt 146 52)(pt 146 76)(line_width 1))
(line (pt 145 92)(pt 145 196)(line_width 1))
(line (pt 146 92)(pt 146 196)(line_width 1))
(line (pt 145 212)(pt 145 236)(line_width 1))
(line (pt 146 212)(pt 146 236)(line_width 1))
(line (pt 0 0)(pt 368 0)(line_width 1))
(line (pt 368 0)(pt 368 264)(line_width 1))
(line (pt 0 264)(pt 368 264)(line_width 1))
(line (pt 0 0)(pt 0 264)(line_width 1))
)
)

View File

@ -0,0 +1,13 @@
component intel_flash is
port (
clock : in std_logic := 'X'; -- clk
avmm_data_addr : in std_logic_vector(15 downto 0) := (others => 'X'); -- address
avmm_data_read : in std_logic := 'X'; -- read
avmm_data_readdata : out std_logic_vector(31 downto 0); -- readdata
avmm_data_waitrequest : out std_logic; -- waitrequest
avmm_data_readdatavalid : out std_logic; -- readdatavalid
avmm_data_burstcount : in std_logic_vector(1 downto 0) := (others => 'X'); -- burstcount
reset_n : in std_logic := 'X' -- reset_n
);
end component intel_flash;

View File

@ -0,0 +1,17 @@
<?xml version="1.0" encoding="UTF-8"?>
<pinplan
variation_name="onchip_flash_0"
megafunction_name="ALTERA_ONCHIP_FLASH"
intended_family="MAX 10"
specifies="all_ports">
<global>
<pin name="clock" direction="input" scope="external" />
<pin name="reset_n" direction="input" scope="external" />
<pin name="avmm_data_addr[15..0]" direction="input" scope="external" />
<pin name="avmm_data_read" direction="input" scope="external" />
<pin name="avmm_data_readdata[31..0]" direction="output" scope="external" />
<pin name="avmm_data_waitrequest" direction="output" scope="external" />
<pin name="avmm_data_readdatavalid" direction="output" scope="external" />
<pin name="avmm_data_burstcount[1..0]" direction="input" scope="external" />
</global>
</pinplan>

View File

@ -0,0 +1,20 @@
module intel_flash (
clock,
avmm_data_addr,
avmm_data_read,
avmm_data_readdata,
avmm_data_waitrequest,
avmm_data_readdatavalid,
avmm_data_burstcount,
reset_n);
input clock;
input [15:0] avmm_data_addr;
input avmm_data_read;
output [31:0] avmm_data_readdata;
output avmm_data_waitrequest;
output avmm_data_readdatavalid;
input [1:0] avmm_data_burstcount;
input reset_n;
endmodule

View File

@ -0,0 +1,11 @@
intel_flash u0 (
.clock (<connected-to-clock>), // clk.clk
.avmm_data_addr (<connected-to-avmm_data_addr>), // data.address
.avmm_data_read (<connected-to-avmm_data_read>), // .read
.avmm_data_readdata (<connected-to-avmm_data_readdata>), // .readdata
.avmm_data_waitrequest (<connected-to-avmm_data_waitrequest>), // .waitrequest
.avmm_data_readdatavalid (<connected-to-avmm_data_readdatavalid>), // .readdatavalid
.avmm_data_burstcount (<connected-to-avmm_data_burstcount>), // .burstcount
.reset_n (<connected-to-reset_n>) // nreset.reset_n
);

View File

@ -0,0 +1,25 @@
component intel_flash is
port (
clock : in std_logic := 'X'; -- clk
avmm_data_addr : in std_logic_vector(15 downto 0) := (others => 'X'); -- address
avmm_data_read : in std_logic := 'X'; -- read
avmm_data_readdata : out std_logic_vector(31 downto 0); -- readdata
avmm_data_waitrequest : out std_logic; -- waitrequest
avmm_data_readdatavalid : out std_logic; -- readdatavalid
avmm_data_burstcount : in std_logic_vector(1 downto 0) := (others => 'X'); -- burstcount
reset_n : in std_logic := 'X' -- reset_n
);
end component intel_flash;
u0 : component intel_flash
port map (
clock => CONNECTED_TO_clock, -- clk.clk
avmm_data_addr => CONNECTED_TO_avmm_data_addr, -- data.address
avmm_data_read => CONNECTED_TO_avmm_data_read, -- .read
avmm_data_readdata => CONNECTED_TO_avmm_data_readdata, -- .readdata
avmm_data_waitrequest => CONNECTED_TO_avmm_data_waitrequest, -- .waitrequest
avmm_data_readdatavalid => CONNECTED_TO_avmm_data_readdatavalid, -- .readdatavalid
avmm_data_burstcount => CONNECTED_TO_avmm_data_burstcount, -- .burstcount
reset_n => CONNECTED_TO_reset_n -- nreset.reset_n
);

75
fw/rtl/n64/n64_cfg.sv Normal file
View File

@ -0,0 +1,75 @@
module n64_cfg (
if_system sys,
if_n64_bus bus,
if_config.n64 cfg
);
typedef enum bit [0:0] {
S_IDLE,
S_WAIT
} e_state;
e_state state;
always_comb begin
bus.rdata = 16'd0;
if (bus.ack) begin
case (bus.address[4:1])
0: bus.rdata = {cfg.cpu_bootstrapped, cfg.cpu_busy, 14'd0};
// ...
3: bus.rdata = {8'd0, cfg.command};
4: bus.rdata = cfg.arg[0][31:16];
5: bus.rdata = cfg.arg[0][15:0];
6: bus.rdata = cfg.arg[1][31:16];
7: bus.rdata = cfg.arg[1][15:0];
8: bus.rdata = cfg.response[31:16];
9: bus.rdata = cfg.response[15:0];
10: bus.rdata = cfg.arg[0][31:16];
11: bus.rdata = cfg.arg[0][15:0];
endcase
end
end
always_ff @(posedge sys.clk) begin
bus.ack <= 1'b0;
cfg.request <= 1'b0;
cfg.boot_write <= 1'b0;
if (sys.reset) begin
state <= S_IDLE;
end else begin
case (state)
S_IDLE: begin
if (bus.request) begin
state <= S_WAIT;
if (bus.write) begin
case (bus.address[4:1])
// ...
3: begin
cfg.command <= bus.wdata[7:0];
cfg.request <= 1'b1;
end
4: cfg.arg[0][31:16] <= bus.wdata;
5: cfg.arg[0][15:0] <= bus.wdata;
6: cfg.arg[1][31:16] <= bus.wdata;
7: cfg.arg[1][15:0] <= bus.wdata;
// ...
10: cfg.arg[0][31:16] <= bus.wdata;
11: begin
cfg.arg[0][15:0] <= bus.wdata;
cfg.boot_write <= 1'b1;
end
endcase
end
end
end
S_WAIT: begin
bus.ack <= 1'b1;
state <= S_IDLE;
end
endcase
end
end
endmodule

View File

@ -154,7 +154,7 @@ module n64_pi (
end
if (n64_pi_ad_input == 16'h1FFF) begin
n64_pi_address_valid <= 1'b1;
next_id <= sc64::ID_N64_CPU;
next_id <= sc64::ID_N64_CFG;
end
end
end

View File

@ -61,7 +61,7 @@ module n64_sdram (
always_comb begin
bus.ack = bus_or_dma == T_BUS && mem_ack;
bus.rdata = mem_rdata;
bus.rdata = bus.ack ? mem_rdata : 16'd0;
dma.ack = bus_or_dma == T_DMA && mem_ack;
dma.rdata = mem_rdata;

View File

@ -54,4 +54,10 @@ module n64_soc (
.bus(bus.at[sc64::ID_N64_BOOTLOADER].device)
);
n64_cfg n64_cfg_inst (
.sys(sys),
.bus(bus.at[sc64::ID_N64_CFG].device),
.cfg(cfg)
);
endmodule

View File

@ -1,5 +1,12 @@
interface if_config ();
logic cpu_bootstrapped;
logic cpu_busy;
logic request;
logic [7:0] command;
logic [31:0] arg [0:1];
logic [31:0] response;
logic boot_write;
logic sdram_switch;
logic sdram_writable;
logic dd_enabled;
@ -9,17 +16,6 @@ interface if_config ();
logic [25:0] dd_offset;
logic [25:0] save_offset;
always_comb begin
sdram_switch = 1'b1;
sdram_writable = 1'b0;
dd_enabled = 1'b1;
sram_enabled = 1'b1;
flashram_enabled = 1'b1;
flashram_read_mode = 1'b1;
dd_offset = 26'h3BE_0000;
save_offset = 26'h3FE_0000;
end
modport pi (
input sdram_switch,
input sdram_writable,
@ -31,4 +27,35 @@ interface if_config ();
input save_offset
);
modport flashram (
output flashram_read_mode
);
modport n64 (
input cpu_bootstrapped,
input cpu_busy,
output request,
output command,
output arg,
input response,
output boot_write
);
modport cpu (
output cpu_bootstrapped,
output cpu_busy,
input request,
input command,
input arg,
output response,
input boot_write,
output sdram_switch,
output sdram_writable,
output dd_enabled,
output sram_enabled,
output flashram_enabled,
output dd_offset,
output save_offset
);
endinterface

View File

@ -5,7 +5,7 @@ package sc64;
ID_N64_BOOTLOADER,
ID_N64_FLASHRAM,
ID_N64_DDREGS,
ID_N64_CPU,
ID_N64_CFG,
__ID_N64_END
} e_n64_id;
@ -17,6 +17,7 @@ package sc64;
ID_CPU_USB,
ID_CPU_UART,
ID_CPU_DMA,
ID_CPU_CFG,
__ID_CPU_END
} e_cpu_id;
@ -30,6 +31,6 @@ package sc64;
parameter int UART_BAUD_RATE = 32'd1_000_000;
parameter bit DEBUG_ENABLED = 1'b1;
parameter bit DEBUG_ENABLED = 1'b0;
endpackage

File diff suppressed because one or more lines are too long

View File

@ -24,7 +24,7 @@ BUILD_DIR = build
SRC_DIRS = $(SOURCE_DIR) $(sort $(dir $(wildcard $(SOURCE_DIR)/*/.)))
INC_DIRS = $(addprefix -I, . $(SRC_DIRS)) -I./libsc64/inc
SRC_FILES = $(wildcard $(patsubst %, %/*.c, . $(SRC_DIRS)))
IMG_FILES = $(wildcard $(patsubst %, %/*.png, . $(SRC_DIRS)))
# IMG_FILES = $(wildcard $(patsubst %, %/*.png, . $(SRC_DIRS)))
OBJ_FILES = $(addprefix $(BUILD_DIR)/, $(notdir $(IMG_FILES:.png=.o) $(SRC_FILES:.c=.o)))
VPATH = $(SRC_DIRS)
@ -32,7 +32,8 @@ VPATH = $(SRC_DIRS)
COMMONFLAGS = -march=vr4300 -mtune=vr4300
ASFLAGS = $(COMMONFLAGS)
CFLAGS = $(COMMONFLAGS) -std=gnu11 -Os -Wall -I$(ROOTDIR)/mips64-elf/include $(INC_DIRS) -ffunction-sections -fdata-sections -Wl,--gc-sections
LINK_FLAGS = -L$(ROOTDIR)/mips64-elf/lib -ldragon -lc -lm -ldragonsys -Tn64.ld -L./libsc64/lib -lsc64_libdragon
LINK_FLAGS = -L$(ROOTDIR)/mips64-elf/lib -ldragon -lc -lm -ldragonsys -Tn64.ld
#-L./libsc64/lib -lsc64_libdragon
N64_FLAGS = -l $(ROM_SIZE) -h $(HEADER_PATH)/$(HEADER_NAME) -o $(BUILD_DIR)/$(PROG_NAME).z64
N64_FLAGS_PADDED = -l 1028k -h $(HEADER_PATH)/$(HEADER_NAME) -o $(BUILD_DIR)/$(PROG_NAME)_padded.z64
@ -55,11 +56,11 @@ $(BUILD_DIR)/$(PROG_NAME).elf: $(OBJ_FILES)
$(BUILD_DIR)/%.o: %.c
$(COMPILE.c) $(OUTPUT_OPTION) $<
$(BUILD_DIR)/%.sprite: $(IMG_FILES)
$(MKSPRITE) 32 $< $@
# $(BUILD_DIR)/%.sprite: $(IMG_FILES)
# $(MKSPRITE) 32 $< $@
$(BUILD_DIR)/%.o: $(BUILD_DIR)/%.sprite
$(OBJCOPY) -I binary -O elf32-bigmips -B mips:4000 --rename-section .data=.rodata $< $@
# $(BUILD_DIR)/%.o: $(BUILD_DIR)/%.sprite
# $(OBJCOPY) -I binary -O elf32-bigmips -B mips:4000 --rename-section .data=.rodata $< $@
make_output_dir:
$(shell mkdir ./$(BUILD_DIR) 2> /dev/null)

View File

@ -1,3 +0,0 @@
# SummerLoader64
A N64 bootloader for SummerCart64. This project is mainly based on work by **`jago85`** contained in [Brutzelkarte_Bootloader repository](https://github.com/jago85/Brutzelkarte_Bootloader) with some modifications that made code a little bit more readable.

View File

@ -1,9 +1,8 @@
#!/bin/bash
#--mount type=bind,src=`realpath "$(pwd)/../libsc64"`,target="/src/libsc64" \
build_in_docker() {
docker run -t \
--mount type=bind,src=`realpath $(pwd)`,target="/src" \
--mount type=bind,src=`realpath "$(pwd)/../libsc64"`,target="/src/libsc64" \
$1 /bin/bash -c "cd /src && make clean && make -f $2 all"
}

View File

@ -1,12 +0,0 @@
#ifndef ASSETS_H__
#define ASSETS_H__
#include <libdragon.h>
extern sprite_t _binary_build_sc64_logo_sprite_start[];
extern sprite_t _binary_build_sc64_logo_sprite_end[];
#endif

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.9 KiB

View File

@ -23,7 +23,7 @@ static const struct crc32_to_cic_seed {
static cart_header_t global_cart_header __attribute__((aligned(16)));
cart_header_t *boot_load_cart_header(bool ddipl) {
cart_header_t *boot_load_cart_header(void) {
cart_header_t *cart_header_pointer = &global_cart_header;
platform_pi_dma_read(cart_header_pointer, CART_BASE, sizeof(cart_header_t));
@ -73,10 +73,9 @@ tv_type_t boot_get_tv_type(cart_header_t *cart_header) {
}
}
void boot(cart_header_t *cart_header, uint16_t cic_seed, tv_type_t tv_type, uint32_t ddipl_override) {
void boot(cart_header_t *cart_header, uint16_t cic_seed, tv_type_t tv_type) {
uint32_t is_x105_boot = (cic_seed == crc32_to_cic_seed[5].cic_seed);
uint32_t is_ddipl_boot = (
ddipl_override ||
(cic_seed == crc32_to_cic_seed[7].cic_seed) ||
(cic_seed == crc32_to_cic_seed[8].cic_seed) ||
(cic_seed == crc32_to_cic_seed[9].cic_seed)

View File

@ -54,10 +54,10 @@ typedef struct os_boot_config_s os_boot_config_t;
#define BOOT_SEED_OS_VERSION(x) (((x) & 0x00000100) >> 8)
cart_header_t *boot_load_cart_header(bool ddipl);
cart_header_t *boot_load_cart_header(void);
uint16_t boot_get_cic_seed(cart_header_t *cart_header);
tv_type_t boot_get_tv_type(cart_header_t *cart_header);
void boot(cart_header_t *cart_header, uint16_t cic_seed, tv_type_t tv_type, uint32_t ddipl_override);
void boot(cart_header_t *cart_header, uint16_t cic_seed, tv_type_t tv_type);
#endif

View File

@ -1,346 +0,0 @@
----------------------------------------------------------------------------
Revision history of FatFs module
----------------------------------------------------------------------------
R0.00 (February 26, 2006)
Prototype.
R0.01 (April 29, 2006)
The first release.
R0.02 (June 01, 2006)
Added FAT12 support.
Removed unbuffered mode.
Fixed a problem on small (<32M) partition.
R0.02a (June 10, 2006)
Added a configuration option (_FS_MINIMUM).
R0.03 (September 22, 2006)
Added f_rename().
Changed option _FS_MINIMUM to _FS_MINIMIZE.
R0.03a (December 11, 2006)
Improved cluster scan algorithm to write files fast.
Fixed f_mkdir() creates incorrect directory on FAT32.
R0.04 (February 04, 2007)
Added f_mkfs().
Supported multiple drive system.
Changed some interfaces for multiple drive system.
Changed f_mountdrv() to f_mount().
R0.04a (April 01, 2007)
Supported multiple partitions on a physical drive.
Added a capability of extending file size to f_lseek().
Added minimization level 3.
Fixed an endian sensitive code in f_mkfs().
R0.04b (May 05, 2007)
Added a configuration option _USE_NTFLAG.
Added FSINFO support.
Fixed DBCS name can result FR_INVALID_NAME.
Fixed short seek (<= csize) collapses the file object.
R0.05 (August 25, 2007)
Changed arguments of f_read(), f_write() and f_mkfs().
Fixed f_mkfs() on FAT32 creates incorrect FSINFO.
Fixed f_mkdir() on FAT32 creates incorrect directory.
R0.05a (February 03, 2008)
Added f_truncate() and f_utime().
Fixed off by one error at FAT sub-type determination.
Fixed btr in f_read() can be mistruncated.
Fixed cached sector is not flushed when create and close without write.
R0.06 (April 01, 2008)
Added fputc(), fputs(), fprintf() and fgets().
Improved performance of f_lseek() on moving to the same or following cluster.
R0.07 (April 01, 2009)
Merged Tiny-FatFs as a configuration option. (_FS_TINY)
Added long file name feature. (_USE_LFN)
Added multiple code page feature. (_CODE_PAGE)
Added re-entrancy for multitask operation. (_FS_REENTRANT)
Added auto cluster size selection to f_mkfs().
Added rewind option to f_readdir().
Changed result code of critical errors.
Renamed string functions to avoid name collision.
R0.07a (April 14, 2009)
Septemberarated out OS dependent code on reentrant cfg.
Added multiple sector size feature.
R0.07c (June 21, 2009)
Fixed f_unlink() can return FR_OK on error.
Fixed wrong cache control in f_lseek().
Added relative path feature.
Added f_chdir() and f_chdrive().
Added proper case conversion to extended character.
R0.07e (November 03, 2009)
Septemberarated out configuration options from ff.h to ffconf.h.
Fixed f_unlink() fails to remove a sub-directory on _FS_RPATH.
Fixed name matching error on the 13 character boundary.
Added a configuration option, _LFN_UNICODE.
Changed f_readdir() to return the SFN with always upper case on non-LFN cfg.
R0.08 (May 15, 2010)
Added a memory configuration option. (_USE_LFN = 3)
Added file lock feature. (_FS_SHARE)
Added fast seek feature. (_USE_FASTSEEK)
Changed some types on the API, XCHAR->TCHAR.
Changed .fname in the FILINFO structure on Unicode cfg.
String functions support UTF-8 encoding files on Unicode cfg.
R0.08a (August 16, 2010)
Added f_getcwd(). (_FS_RPATH = 2)
Added sector erase feature. (_USE_ERASE)
Moved file lock semaphore table from fs object to the bss.
Fixed f_mkfs() creates wrong FAT32 volume.
R0.08b (January 15, 2011)
Fast seek feature is also applied to f_read() and f_write().
f_lseek() reports required table size on creating CLMP.
Extended format syntax of f_printf().
Ignores duplicated directory separators in given path name.
R0.09 (September 06, 2011)
f_mkfs() supports multiple partition to complete the multiple partition feature.
Added f_fdisk().
R0.09a (August 27, 2012)
Changed f_open() and f_opendir() reject null object pointer to avoid crash.
Changed option name _FS_SHARE to _FS_LOCK.
Fixed assertion failure due to OS/2 EA on FAT12/16 volume.
R0.09b (January 24, 2013)
Added f_setlabel() and f_getlabel().
R0.10 (October 02, 2013)
Added selection of character encoding on the file. (_STRF_ENCODE)
Added f_closedir().
Added forced full FAT scan for f_getfree(). (_FS_NOFSINFO)
Added forced mount feature with changes of f_mount().
Improved behavior of volume auto detection.
Improved write throughput of f_puts() and f_printf().
Changed argument of f_chdrive(), f_mkfs(), disk_read() and disk_write().
Fixed f_write() can be truncated when the file size is close to 4GB.
Fixed f_open(), f_mkdir() and f_setlabel() can return incorrect value on error.
R0.10a (January 15, 2014)
Added arbitrary strings as drive number in the path name. (_STR_VOLUME_ID)
Added a configuration option of minimum sector size. (_MIN_SS)
2nd argument of f_rename() can have a drive number and it will be ignored.
Fixed f_mount() with forced mount fails when drive number is >= 1. (appeared at R0.10)
Fixed f_close() invalidates the file object without volume lock.
Fixed f_closedir() returns but the volume lock is left acquired. (appeared at R0.10)
Fixed creation of an entry with LFN fails on too many SFN collisions. (appeared at R0.07)
R0.10b (May 19, 2014)
Fixed a hard error in the disk I/O layer can collapse the directory entry.
Fixed LFN entry is not deleted when delete/rename an object with lossy converted SFN. (appeared at R0.07)
R0.10c (November 09, 2014)
Added a configuration option for the platforms without RTC. (_FS_NORTC)
Changed option name _USE_ERASE to _USE_TRIM.
Fixed volume label created by Mac OS X cannot be retrieved with f_getlabel(). (appeared at R0.09b)
Fixed a potential problem of FAT access that can appear on disk error.
Fixed null pointer dereference on attempting to delete the root direcotry. (appeared at R0.08)
R0.11 (February 09, 2015)
Added f_findfirst(), f_findnext() and f_findclose(). (_USE_FIND)
Fixed f_unlink() does not remove cluster chain of the file. (appeared at R0.10c)
Fixed _FS_NORTC option does not work properly. (appeared at R0.10c)
R0.11a (September 05, 2015)
Fixed wrong media change can lead a deadlock at thread-safe configuration.
Added code page 771, 860, 861, 863, 864, 865 and 869. (_CODE_PAGE)
Removed some code pages actually not exist on the standard systems. (_CODE_PAGE)
Fixed errors in the case conversion teble of code page 437 and 850 (ff.c).
Fixed errors in the case conversion teble of Unicode (cc*.c).
R0.12 (April 12, 2016)
Added support for exFAT file system. (_FS_EXFAT)
Added f_expand(). (_USE_EXPAND)
Changed some members in FINFO structure and behavior of f_readdir().
Added an option _USE_CHMOD.
Removed an option _WORD_ACCESS.
Fixed errors in the case conversion table of Unicode (cc*.c).
R0.12a (July 10, 2016)
Added support for creating exFAT volume with some changes of f_mkfs().
Added a file open method FA_OPEN_APPEND. An f_lseek() following f_open() is no longer needed.
f_forward() is available regardless of _FS_TINY.
Fixed f_mkfs() creates wrong volume. (appeared at R0.12)
Fixed wrong memory read in create_name(). (appeared at R0.12)
Fixed compilation fails at some configurations, _USE_FASTSEEK and _USE_FORWARD.
R0.12b (September 04, 2016)
Made f_rename() be able to rename objects with the same name but case.
Fixed an error in the case conversion teble of code page 866. (ff.c)
Fixed writing data is truncated at the file offset 4GiB on the exFAT volume. (appeared at R0.12)
Fixed creating a file in the root directory of exFAT volume can fail. (appeared at R0.12)
Fixed f_mkfs() creating exFAT volume with too small cluster size can collapse unallocated memory. (appeared at R0.12)
Fixed wrong object name can be returned when read directory at Unicode cfg. (appeared at R0.12)
Fixed large file allocation/removing on the exFAT volume collapses allocation bitmap. (appeared at R0.12)
Fixed some internal errors in f_expand() and f_lseek(). (appeared at R0.12)
R0.12c (March 04, 2017)
Improved write throughput at the fragmented file on the exFAT volume.
Made memory usage for exFAT be able to be reduced as decreasing _MAX_LFN.
Fixed successive f_getfree() can return wrong count on the FAT12/16 volume. (appeared at R0.12)
Fixed configuration option _VOLUMES cannot be set 10. (appeared at R0.10c)
R0.13 (May 21, 2017)
Changed heading character of configuration keywords "_" to "FF_".
Removed ASCII-only configuration, FF_CODE_PAGE = 1. Use FF_CODE_PAGE = 437 instead.
Added f_setcp(), run-time code page configuration. (FF_CODE_PAGE = 0)
Improved cluster allocation time on stretch a deep buried cluster chain.
Improved processing time of f_mkdir() with large cluster size by using FF_USE_LFN = 3.
Improved NoFatChain flag of the fragmented file to be set after it is truncated and got contiguous.
Fixed archive attribute is left not set when a file on the exFAT volume is renamed. (appeared at R0.12)
Fixed exFAT FAT entry can be collapsed when write or lseek operation to the existing file is done. (appeared at R0.12c)
Fixed creating a file can fail when a new cluster allocation to the exFAT directory occures. (appeared at R0.12c)
R0.13a (October 14, 2017)
Added support for UTF-8 encoding on the API. (FF_LFN_UNICODE = 2)
Added options for file name output buffer. (FF_LFN_BUF, FF_SFN_BUF).
Added dynamic memory allocation option for working buffer of f_mkfs() and f_fdisk().
Fixed f_fdisk() and f_mkfs() create the partition table with wrong CHS parameters. (appeared at R0.09)
Fixed f_unlink() can cause lost clusters at fragmented file on the exFAT volume. (appeared at R0.12c)
Fixed f_setlabel() rejects some valid characters for exFAT volume. (appeared at R0.12)
R0.13b (April 07, 2018)
Added support for UTF-32 encoding on the API. (FF_LFN_UNICODE = 3)
Added support for Unix style volume ID. (FF_STR_VOLUME_ID = 2)
Fixed accesing any object on the exFAT root directory beyond the cluster boundary can fail. (appeared at R0.12c)
Fixed f_setlabel() does not reject some invalid characters. (appeared at R0.09b)
R0.13c (October 14, 2018)
Supported stdint.h for C99 and later. (integer.h was included in ff.h)
Fixed reading a directory gets infinite loop when the last directory entry is not empty. (appeared at R0.12)
Fixed creating a sub-directory in the fragmented sub-directory on the exFAT volume collapses FAT chain of the parent directory. (appeared at R0.12)
Fixed f_getcwd() cause output buffer overrun when the buffer has a valid drive number. (appeared at R0.13b)
R0.14 (October 14, 2019)
Added support for 64-bit LBA and GUID partition table (FF_LBA64 = 1)
Changed some API functions, f_mkfs() and f_fdisk().
Fixed f_open() function cannot find the file with file name in length of FF_MAX_LFN characters.
Fixed f_readdir() function cannot retrieve long file names in length of FF_MAX_LFN - 1 characters.
Fixed f_readdir() function returns file names with wrong case conversion. (appeared at R0.12)
Fixed f_mkfs() function can fail to create exFAT volume in the second partition. (appeared at R0.12)
R0.14a (December 5, 2020)
Limited number of recursive calls in f_findnext().
Fixed old floppy disks formatted with MS-DOS 2.x and 3.x cannot be mounted.
Fixed some compiler warnings.

View File

@ -1,21 +0,0 @@
FatFs Module Source Files R0.14a
FILES
00readme.txt This file.
00history.txt Revision history.
ff.c FatFs module.
ffconf.h Configuration file of FatFs module.
ff.h Common include file for FatFs and application module.
diskio.h Common include file for FatFs and disk I/O module.
diskio.c An example of glue function to attach existing disk I/O module to FatFs.
ffunicode.c Optional Unicode utility functions.
ffsystem.c An example of optional O/S related functions.
Low level disk I/O module is not included in this archive because the FatFs
module is only a generic file system layer and it does not depend on any specific
storage device. You need to provide a low level disk I/O module written to
control the storage device that attached to the target system.

View File

@ -1,93 +0,0 @@
#include "ff.h"
#include "diskio.h"
#include "sc64_sd.h"
DSTATUS disk_status(BYTE pdrv) {
if (pdrv > 0) {
return STA_NOINIT;
}
return sc64_sd_status_get() ? 0 : STA_NOINIT;
}
DSTATUS disk_initialize(BYTE pdrv) {
if (pdrv > 0) {
return STA_NOINIT;
}
if (!sc64_sd_status_get()) {
if (sc64_sd_init()) {
return 0;
}
} else {
return 0;
}
return STA_NOINIT;
}
DRESULT disk_read(BYTE pdrv, BYTE *buff, LBA_t sector, UINT count) {
sc64_sd_err_t error;
if (pdrv > 0) {
return RES_PARERR;
}
error = sc64_sd_sectors_read(sector, count, buff);
if (error != E_OK) {
switch (error) {
case E_NO_INIT:
return RES_NOTRDY;
case E_PAR_ERROR:
return RES_PARERR;
default:
return RES_ERROR;
}
}
return RES_OK;
}
#if !FF_FS_READONLY
DRESULT disk_write(BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count) {
sc64_sd_err_t error;
if (pdrv > 0) {
return RES_PARERR;
}
error = sc64_sd_sectors_write(sector, count, (uint8_t *) buff);
if (error != E_OK) {
switch (error) {
case E_NO_INIT:
return RES_NOTRDY;
case E_PAR_ERROR:
return RES_PARERR;
default:
return RES_ERROR;
}
}
return RES_OK;
}
#endif
DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void *buff) {
switch (cmd) {
case CTRL_SYNC: {
sc64_sd_err_t error = sc64_sd_dat_busy_wait();
if (error != E_OK) {
return RES_ERROR;
}
break;
}
}
return RES_OK;
}

View File

@ -1,77 +0,0 @@
/*-----------------------------------------------------------------------/
/ Low level disk interface modlue include file (C)ChaN, 2019 /
/-----------------------------------------------------------------------*/
#ifndef _DISKIO_DEFINED
#define _DISKIO_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
/* Status of Disk Functions */
typedef BYTE DSTATUS;
/* Results of Disk Functions */
typedef enum {
RES_OK = 0, /* 0: Successful */
RES_ERROR, /* 1: R/W Error */
RES_WRPRT, /* 2: Write Protected */
RES_NOTRDY, /* 3: Not Ready */
RES_PARERR /* 4: Invalid Parameter */
} DRESULT;
/*---------------------------------------*/
/* Prototypes for disk control functions */
DSTATUS disk_initialize (BYTE pdrv);
DSTATUS disk_status (BYTE pdrv);
DRESULT disk_read (BYTE pdrv, BYTE* buff, LBA_t sector, UINT count);
DRESULT disk_write (BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count);
DRESULT disk_ioctl (BYTE pdrv, BYTE cmd, void* buff);
/* Disk Status Bits (DSTATUS) */
#define STA_NOINIT 0x01 /* Drive not initialized */
#define STA_NODISK 0x02 /* No medium in the drive */
#define STA_PROTECT 0x04 /* Write protected */
/* Command code for disk_ioctrl fucntion */
/* Generic command (Used by FatFs) */
#define CTRL_SYNC 0 /* Complete pending write process (needed at FF_FS_READONLY == 0) */
#define GET_SECTOR_COUNT 1 /* Get media size (needed at FF_USE_MKFS == 1) */
#define GET_SECTOR_SIZE 2 /* Get sector size (needed at FF_MAX_SS != FF_MIN_SS) */
#define GET_BLOCK_SIZE 3 /* Get erase block size (needed at FF_USE_MKFS == 1) */
#define CTRL_TRIM 4 /* Inform device that the data on the block of sectors is no longer used (needed at FF_USE_TRIM == 1) */
/* Generic command (Not used by FatFs) */
#define CTRL_POWER 5 /* Get/Set power status */
#define CTRL_LOCK 6 /* Lock/Unlock media removal */
#define CTRL_EJECT 7 /* Eject media */
#define CTRL_FORMAT 8 /* Create physical format on the media */
/* MMC/SDC specific ioctl command */
#define MMC_GET_TYPE 10 /* Get card type */
#define MMC_GET_CSD 11 /* Get CSD */
#define MMC_GET_CID 12 /* Get CID */
#define MMC_GET_OCR 13 /* Get OCR */
#define MMC_GET_SDSTAT 14 /* Get SD status */
#define ISDIO_READ 55 /* Read data form SD iSDIO register */
#define ISDIO_WRITE 56 /* Write data to SD iSDIO register */
#define ISDIO_MRITE 57 /* Masked write data to SD iSDIO register */
/* ATA/CF specific ioctl command */
#define ATA_GET_REV 20 /* Get F/W revision */
#define ATA_GET_MODEL 21 /* Get model name */
#define ATA_GET_SN 22 /* Get serial number */
#ifdef __cplusplus
}
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,424 +0,0 @@
/*----------------------------------------------------------------------------/
/ FatFs - Generic FAT Filesystem module R0.14a /
/-----------------------------------------------------------------------------/
/
/ Copyright (C) 2020, ChaN, all right reserved.
/
/ FatFs module is an open source software. Redistribution and use of FatFs in
/ source and binary forms, with or without modification, are permitted provided
/ that the following condition is met:
/ 1. Redistributions of source code must retain the above copyright notice,
/ this condition and the following disclaimer.
/
/ This software is provided by the copyright holder and contributors "AS IS"
/ and any warranties related to this software are DISCLAIMED.
/ The copyright owner or contributors be NOT LIABLE for any damages caused
/ by use of this software.
/
/----------------------------------------------------------------------------*/
#ifndef FF_DEFINED
#define FF_DEFINED 80196 /* Revision ID */
#ifdef __cplusplus
extern "C" {
#endif
#include "ffconf.h" /* FatFs configuration options */
#if FF_DEFINED != FFCONF_DEF
#error Wrong configuration file (ffconf.h).
#endif
/* Integer types used for FatFs API */
#if defined(_WIN32) /* Main development platform */
#define FF_INTDEF 2
#include <windows.h>
typedef unsigned __int64 QWORD;
#elif (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__cplusplus) /* C99 or later */
#define FF_INTDEF 2
#include <stdint.h>
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef uint16_t WORD; /* 16-bit unsigned integer */
typedef uint32_t DWORD; /* 32-bit unsigned integer */
typedef uint64_t QWORD; /* 64-bit unsigned integer */
typedef WORD WCHAR; /* UTF-16 character type */
#else /* Earlier than C99 */
#define FF_INTDEF 1
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef unsigned short WORD; /* 16-bit unsigned integer */
typedef unsigned long DWORD; /* 32-bit unsigned integer */
typedef WORD WCHAR; /* UTF-16 character type */
#endif
/* Definitions of volume management */
#if FF_MULTI_PARTITION /* Multiple partition configuration */
typedef struct {
BYTE pd; /* Physical drive number */
BYTE pt; /* Partition: 0:Auto detect, 1-4:Forced partition) */
} PARTITION;
extern PARTITION VolToPart[]; /* Volume - Partition mapping table */
#endif
#if FF_STR_VOLUME_ID
#ifndef FF_VOLUME_STRS
extern const char* VolumeStr[FF_VOLUMES]; /* User defied volume ID */
#endif
#endif
/* Type of path name strings on FatFs API */
#ifndef _INC_TCHAR
#define _INC_TCHAR
#if FF_USE_LFN && FF_LFN_UNICODE == 1 /* Unicode in UTF-16 encoding */
typedef WCHAR TCHAR;
#define _T(x) L ## x
#define _TEXT(x) L ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 2 /* Unicode in UTF-8 encoding */
typedef char TCHAR;
#define _T(x) u8 ## x
#define _TEXT(x) u8 ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 3 /* Unicode in UTF-32 encoding */
typedef DWORD TCHAR;
#define _T(x) U ## x
#define _TEXT(x) U ## x
#elif FF_USE_LFN && (FF_LFN_UNICODE < 0 || FF_LFN_UNICODE > 3)
#error Wrong FF_LFN_UNICODE setting
#else /* ANSI/OEM code in SBCS/DBCS */
typedef char TCHAR;
#define _T(x) x
#define _TEXT(x) x
#endif
#endif
/* Type of file size and LBA variables */
#if FF_FS_EXFAT
#if FF_INTDEF != 2
#error exFAT feature wants C99 or later
#endif
typedef QWORD FSIZE_t;
#if FF_LBA64
typedef QWORD LBA_t;
#else
typedef DWORD LBA_t;
#endif
#else
#if FF_LBA64
#error exFAT needs to be enabled when enable 64-bit LBA
#endif
typedef DWORD FSIZE_t;
typedef DWORD LBA_t;
#endif
/* Filesystem object structure (FATFS) */
typedef struct {
BYTE fs_type; /* Filesystem type (0:not mounted) */
BYTE pdrv; /* Associated physical drive */
BYTE n_fats; /* Number of FATs (1 or 2) */
BYTE wflag; /* win[] flag (b0:dirty) */
BYTE fsi_flag; /* FSINFO flags (b7:disabled, b0:dirty) */
WORD id; /* Volume mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
WORD csize; /* Cluster size [sectors] */
#if FF_MAX_SS != FF_MIN_SS
WORD ssize; /* Sector size (512, 1024, 2048 or 4096) */
#endif
#if FF_USE_LFN
WCHAR* lfnbuf; /* LFN working buffer */
#endif
#if FF_FS_EXFAT
BYTE* dirbuf; /* Directory entry block scratchpad buffer for exFAT */
#endif
#if FF_FS_REENTRANT
FF_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !FF_FS_READONLY
DWORD last_clst; /* Last allocated cluster */
DWORD free_clst; /* Number of free clusters */
#endif
#if FF_FS_RPATH
DWORD cdir; /* Current directory start cluster (0:root) */
#if FF_FS_EXFAT
DWORD cdc_scl; /* Containing directory start cluster (invalid when cdir is 0) */
DWORD cdc_size; /* b31-b8:Size of containing directory, b7-b0: Chain status */
DWORD cdc_ofs; /* Offset in the containing directory (invalid when cdir is 0) */
#endif
#endif
DWORD n_fatent; /* Number of FAT entries (number of clusters + 2) */
DWORD fsize; /* Size of an FAT [sectors] */
LBA_t volbase; /* Volume base sector */
LBA_t fatbase; /* FAT base sector */
LBA_t dirbase; /* Root directory base sector/cluster */
LBA_t database; /* Data base sector */
#if FF_FS_EXFAT
LBA_t bitbase; /* Allocation bitmap base sector */
#endif
LBA_t winsect; /* Current sector appearing in the win[] */
BYTE win[FF_MAX_SS] __attribute__((aligned(16))); /* Disk access window for Directory, FAT (and file data at tiny cfg) */
} FATFS;
/* Object ID and allocation information (FFOBJID) */
typedef struct {
FATFS* fs; /* Pointer to the hosting volume of this object */
WORD id; /* Hosting volume mount ID */
BYTE attr; /* Object attribute */
BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */
DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */
FSIZE_t objsize; /* Object size (valid when sclust != 0) */
#if FF_FS_EXFAT
DWORD n_cont; /* Size of first fragment - 1 (valid when stat == 3) */
DWORD n_frag; /* Size of last fragment needs to be written to FAT (valid when not zero) */
DWORD c_scl; /* Containing directory start cluster (valid when sclust != 0) */
DWORD c_size; /* b31-b8:Size of containing directory, b7-b0: Chain status (valid when c_scl != 0) */
DWORD c_ofs; /* Offset in the containing directory (valid when file object and sclust != 0) */
#endif
#if FF_FS_LOCK
UINT lockid; /* File lock ID origin from 1 (index of file semaphore table Files[]) */
#endif
} FFOBJID;
/* File object structure (FIL) */
typedef struct {
FFOBJID obj; /* Object identifier (must be the 1st member to detect invalid object pointer) */
BYTE flag; /* File status flags */
BYTE err; /* Abort flag (error code) */
FSIZE_t fptr; /* File read/write pointer (Zeroed on file open) */
DWORD clust; /* Current cluster of fpter (invalid when fptr is 0) */
LBA_t sect; /* Sector number appearing in buf[] (0:invalid) */
#if !FF_FS_READONLY
LBA_t dir_sect; /* Sector number containing the directory entry (not used at exFAT) */
BYTE* dir_ptr; /* Pointer to the directory entry in the win[] (not used at exFAT) */
#endif
#if FF_USE_FASTSEEK
DWORD* cltbl; /* Pointer to the cluster link map table (nulled on open, set by application) */
#endif
#if !FF_FS_TINY
BYTE buf[FF_MAX_SS] __attribute__((aligned(16))); /* File private data read/write window */
#endif
} FIL;
/* Directory object structure (DIR) */
typedef struct {
FFOBJID obj; /* Object identifier */
DWORD dptr; /* Current read/write offset */
DWORD clust; /* Current cluster */
LBA_t sect; /* Current sector (0:Read operation has terminated) */
BYTE* dir; /* Pointer to the directory item in the win[] */
BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */
#if FF_USE_LFN
DWORD blk_ofs; /* Offset of current entry block being processed (0xFFFFFFFF:Invalid) */
#endif
#if FF_USE_FIND
const TCHAR* pat; /* Pointer to the name matching pattern */
#endif
} DIR;
/* File information structure (FILINFO) */
typedef struct {
FSIZE_t fsize; /* File size */
WORD fdate; /* Modified date */
WORD ftime; /* Modified time */
BYTE fattrib; /* File attribute */
#if FF_USE_LFN
TCHAR altname[FF_SFN_BUF + 1];/* Altenative file name */
TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
TCHAR fname[12 + 1]; /* File name */
#endif
} FILINFO;
/* Format parameter structure (MKFS_PARM) */
typedef struct {
BYTE fmt; /* Format option (FM_FAT, FM_FAT32, FM_EXFAT and FM_SFD) */
BYTE n_fat; /* Number of FATs */
UINT align; /* Data area alignment (sector) */
UINT n_root; /* Number of root directory entries */
DWORD au_size; /* Cluster size (byte) */
} MKFS_PARM;
/* File function return code (FRESULT) */
typedef enum {
FR_OK = 0, /* (0) Succeeded */
FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */
FR_INT_ERR, /* (2) Assertion failed */
FR_NOT_READY, /* (3) The physical drive cannot work */
FR_NO_FILE, /* (4) Could not find the file */
FR_NO_PATH, /* (5) Could not find the path */
FR_INVALID_NAME, /* (6) The path name format is invalid */
FR_DENIED, /* (7) Access denied due to prohibited access or directory full */
FR_EXIST, /* (8) Access denied due to prohibited access */
FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */
FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */
FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */
FR_NOT_ENABLED, /* (12) The volume has no work area */
FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any problem */
FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */
FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */
FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */
FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > FF_FS_LOCK */
FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
} FRESULT;
/*--------------------------------------------------------------*/
/* FatFs module application interface */
FRESULT f_open (FIL* fp, const TCHAR* path, BYTE mode); /* Open or create a file */
FRESULT f_close (FIL* fp); /* Close an open file object */
FRESULT f_read (FIL* fp, void* buff, UINT btr, UINT* br); /* Read data from the file */
FRESULT f_write (FIL* fp, const void* buff, UINT btw, UINT* bw); /* Write data to the file */
FRESULT f_lseek (FIL* fp, FSIZE_t ofs); /* Move file pointer of the file object */
FRESULT f_truncate (FIL* fp); /* Truncate the file */
FRESULT f_sync (FIL* fp); /* Flush cached data of the writing file */
FRESULT f_opendir (DIR* dp, const TCHAR* path); /* Open a directory */
FRESULT f_closedir (DIR* dp); /* Close an open directory */
FRESULT f_readdir (DIR* dp, FILINFO* fno); /* Read a directory item */
FRESULT f_findfirst (DIR* dp, FILINFO* fno, const TCHAR* path, const TCHAR* pattern); /* Find first file */
FRESULT f_findnext (DIR* dp, FILINFO* fno); /* Find next file */
FRESULT f_mkdir (const TCHAR* path); /* Create a sub directory */
FRESULT f_unlink (const TCHAR* path); /* Delete an existing file or directory */
FRESULT f_rename (const TCHAR* path_old, const TCHAR* path_new); /* Rename/Move a file or directory */
FRESULT f_stat (const TCHAR* path, FILINFO* fno); /* Get file status */
FRESULT f_chmod (const TCHAR* path, BYTE attr, BYTE mask); /* Change attribute of a file/dir */
FRESULT f_utime (const TCHAR* path, const FILINFO* fno); /* Change timestamp of a file/dir */
FRESULT f_chdir (const TCHAR* path); /* Change current directory */
FRESULT f_chdrive (const TCHAR* path); /* Change current drive */
FRESULT f_getcwd (TCHAR* buff, UINT len); /* Get current directory */
FRESULT f_getfree (const TCHAR* path, DWORD* nclst, FATFS** fatfs); /* Get number of free clusters on the drive */
FRESULT f_getlabel (const TCHAR* path, TCHAR* label, DWORD* vsn); /* Get volume label */
FRESULT f_setlabel (const TCHAR* label); /* Set volume label */
FRESULT f_forward (FIL* fp, UINT(*func)(const BYTE*,UINT), UINT btf, UINT* bf); /* Forward data to the stream */
FRESULT f_expand (FIL* fp, FSIZE_t fsz, BYTE opt); /* Allocate a contiguous block to the file */
FRESULT f_mount (FATFS* fs, const TCHAR* path, BYTE opt); /* Mount/Unmount a logical drive */
FRESULT f_mkfs (const TCHAR* path, const MKFS_PARM* opt, void* work, UINT len); /* Create a FAT volume */
FRESULT f_fdisk (BYTE pdrv, const LBA_t ptbl[], void* work); /* Divide a physical drive into some partitions */
FRESULT f_setcp (WORD cp); /* Set current code page */
int f_putc (TCHAR c, FIL* fp); /* Put a character to the file */
int f_puts (const TCHAR* str, FIL* cp); /* Put a string to the file */
int f_printf (FIL* fp, const TCHAR* str, ...); /* Put a formatted string to the file */
TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the file */
#define f_eof(fp) ((int)((fp)->fptr == (fp)->obj.objsize))
#define f_error(fp) ((fp)->err)
#define f_tell(fp) ((fp)->fptr)
#define f_size(fp) ((fp)->obj.objsize)
#define f_rewind(fp) f_lseek((fp), 0)
#define f_rewinddir(dp) f_readdir((dp), 0)
#define f_rmdir(path) f_unlink(path)
#define f_unmount(path) f_mount(0, path, 0)
/*--------------------------------------------------------------*/
/* Additional user defined functions */
/* RTC function */
#if !FF_FS_READONLY && !FF_FS_NORTC
DWORD get_fattime (void);
#endif
/* LFN support functions */
#if FF_USE_LFN >= 1 /* Code conversion (defined in unicode.c) */
WCHAR ff_oem2uni (WCHAR oem, WORD cp); /* OEM code to Unicode conversion */
WCHAR ff_uni2oem (DWORD uni, WORD cp); /* Unicode to OEM code conversion */
DWORD ff_wtoupper (DWORD uni); /* Unicode upper-case conversion */
#endif
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
void* ff_memalloc (UINT msize); /* Allocate memory block */
void ff_memfree (void* mblock); /* Free memory block */
#endif
/* Sync functions */
#if FF_FS_REENTRANT
int ff_cre_syncobj (BYTE vol, FF_SYNC_t* sobj); /* Create a sync object */
int ff_req_grant (FF_SYNC_t sobj); /* Lock sync object */
void ff_rel_grant (FF_SYNC_t sobj); /* Unlock sync object */
int ff_del_syncobj (FF_SYNC_t sobj); /* Delete a sync object */
#endif
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* File access mode and open method flags (3rd argument of f_open) */
#define FA_READ 0x01
#define FA_WRITE 0x02
#define FA_OPEN_EXISTING 0x00
#define FA_CREATE_NEW 0x04
#define FA_CREATE_ALWAYS 0x08
#define FA_OPEN_ALWAYS 0x10
#define FA_OPEN_APPEND 0x30
/* Fast seek controls (2nd argument of f_lseek) */
#define CREATE_LINKMAP ((FSIZE_t)0 - 1)
/* Format options (2nd argument of f_mkfs) */
#define FM_FAT 0x01
#define FM_FAT32 0x02
#define FM_EXFAT 0x04
#define FM_ANY 0x07
#define FM_SFD 0x08
/* Filesystem type (FATFS.fs_type) */
#define FS_FAT12 1
#define FS_FAT16 2
#define FS_FAT32 3
#define FS_EXFAT 4
/* File attribute bits for directory entry (FILINFO.fattrib) */
#define AM_RDO 0x01 /* Read only */
#define AM_HID 0x02 /* Hidden */
#define AM_SYS 0x04 /* System */
#define AM_DIR 0x10 /* Directory */
#define AM_ARC 0x20 /* Archive */
#include "ff_extensions.h"
#ifdef __cplusplus
}
#endif
#endif /* FF_DEFINED */

View File

@ -1,82 +0,0 @@
FRESULT fe_load(const TCHAR *path, UINT max_length, transfer_function_t transfer_function) {
FRESULT fresult;
FATFS *fs;
FIL fil;
UINT bytes_to_read;
FIL *fp = &fil;
UINT cluster_sector;
DWORD cluster;
LBA_t starting_sector;
UINT sector_count;
UINT bytes_processed;
if ((fresult = f_open(fp, path, FA_READ)) != FR_OK) {
return fresult;
}
fresult = validate(&fp->obj, &fs);
if (fresult != FR_OK || (fresult = (FRESULT) fp->err) != FR_OK) {
LEAVE_FF(fs, fresult);
}
bytes_to_read = (fp->obj.objsize > max_length) ? max_length : fp->obj.objsize;
bytes_to_read += ((bytes_to_read % SS(fs)) != 0) ? (SS(fs) - (bytes_to_read % SS(fs))) : 0;
while (bytes_to_read) {
cluster_sector = (UINT) (fp->fptr / SS(fs) & (fs->csize - 1));
if (cluster_sector == 0) {
if (fp->fptr == 0) {
cluster = fp->obj.sclust;
} else {
#if FF_USE_FASTSEEK
if (fp->cltbl) {
cluster = clmt_clust(fp, fp->fptr);
} else
#endif
{
cluster = get_fat(&fp->obj, fp->clust);
}
}
if (cluster < 2) {
LEAVE_FF(fs, FR_INT_ERR);
}
if (cluster == 0xFFFFFFFF) {
LEAVE_FF(fs, FR_DISK_ERR);
}
fp->clust = cluster;
}
starting_sector = clst2sect(fs, fp->clust);
if (starting_sector == 0) {
LEAVE_FF(fs, FR_INT_ERR);
}
starting_sector += cluster_sector;
sector_count = bytes_to_read / SS(fs);
if (cluster_sector + sector_count > fs->csize) {
sector_count = fs->csize - cluster_sector;
}
if (transfer_function(fs->pdrv, fp->fptr, starting_sector, sector_count) != RES_OK) {
LEAVE_FF(fs, FR_DISK_ERR);
}
fp->sect = starting_sector;
bytes_processed = sector_count * SS(fs);
fp->fptr += bytes_processed;
bytes_to_read -= bytes_processed;
}
LEAVE_FF(fs, FR_OK);
}

View File

@ -1,14 +0,0 @@
#ifndef FF_EXTENSIONS_H__
#define FF_EXTENSIONS_H__
#include "diskio.h"
typedef DRESULT (*transfer_function_t)(BYTE, FSIZE_t, LBA_t, UINT);
FRESULT fe_load(const TCHAR *path, UINT max_length, transfer_function_t transfer_function);
#endif

View File

@ -1,298 +0,0 @@
/*---------------------------------------------------------------------------/
/ FatFs Functional Configurations
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 80196 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 3
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_STRFUNC 2
/* This option switches string functions, f_gets(), f_putc(), f_puts() and f_printf().
/
/ 0: Disable string functions.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion. */
#define FF_USE_FIND 0
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 0
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 0
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE 437
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#define FF_USE_LFN 2
#define FF_MAX_LFN 255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */
#define FF_LFN_UNICODE 0
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_STRF_ENCODE 3
/* When FF_LFN_UNICODE >= 1 with LFN enabled, string I/O functions, f_gets(),
/ f_putc(), f_puts and f_printf() convert the character encoding in it.
/ This option selects assumption of character encoding ON THE FILE to be
/ read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 1
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table needs to be defined as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ funciton will be available. */
#define FF_MIN_SS 512
#define FF_MAX_SS 512
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk. But a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_LBA64 1
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */
#define FF_MIN_GPT 0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY 0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 1
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 1
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2020
/* The option FF_FS_NORTC switches timestamp functiton. If the system does not have
/ any RTC function or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable
/ the timestamp function. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
#define FF_FS_LOCK 0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
/* #include <somertos.h> // O/S definitions */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
#define FF_SYNC_t HANDLE
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this function.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT and FF_SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of time tick.
/ The FF_SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
/*--- End of configuration options ---*/

View File

@ -1,170 +0,0 @@
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/*------------------------------------------------------------------------*/
#include "ff.h"
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
/*------------------------------------------------------------------------*/
/* Allocate a memory block */
/*------------------------------------------------------------------------*/
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null if not enough core) */
UINT msize /* Number of bytes to allocate */
)
{
return malloc(msize); /* Allocate a new memory block with POSIX API */
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do if null) */
)
{
free(mblock); /* Free the memory block with POSIX API */
}
#endif
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
//const osMutexDef_t Mutex[FF_VOLUMES]; /* Table of CMSIS-RTOS mutex */
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t* sobj /* Pointer to return the created sync object */
)
{
/* Win32 */
*sobj = CreateMutex(NULL, FALSE, NULL);
return (int)(*sobj != INVALID_HANDLE_VALUE);
/* uITRON */
// T_CSEM csem = {TA_TPRI,1,1};
// *sobj = acre_sem(&csem);
// return (int)(*sobj > 0);
/* uC/OS-II */
// OS_ERR err;
// *sobj = OSMutexCreate(0, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// *sobj = xSemaphoreCreateMutex();
// return (int)(*sobj != NULL);
/* CMSIS-RTOS */
// *sobj = osMutexCreate(&Mutex[vol]);
// return (int)(*sobj != NULL);
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
/* Win32 */
return (int)CloseHandle(sobj);
/* uITRON */
// return (int)(del_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// vSemaphoreDelete(sobj);
// return 1;
/* CMSIS-RTOS */
// return (int)(osMutexDelete(sobj) == osOK);
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
/* Win32 */
return (int)(WaitForSingleObject(sobj, FF_FS_TIMEOUT) == WAIT_OBJECT_0);
/* uITRON */
// return (int)(wai_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexPend(sobj, FF_FS_TIMEOUT, &err));
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// return (int)(xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE);
/* CMSIS-RTOS */
// return (int)(osMutexWait(sobj, FF_FS_TIMEOUT) == osOK);
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
/* Win32 */
ReleaseMutex(sobj);
/* uITRON */
// sig_sem(sobj);
/* uC/OS-II */
// OSMutexPost(sobj);
/* FreeRTOS */
// xSemaphoreGive(sobj);
/* CMSIS-RTOS */
// osMutexRelease(sobj);
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,127 +0,0 @@
#include <libdragon.h>
#include "platform.h"
#include "assets/assets.h"
#include "loader.h"
#define X_OFFSET (24)
#define Y_OFFSET (16)
#define Y_PADDING (12)
#define LAST_CHAR(s) (sizeof(s) - 1)
#define EDIT_CHAR(s, n) s[(n) >= 0 ? 0 : LAST_CHAR((s)) + (n)]
#define NTOA(n) ('0' + ((n) % 10))
static bool loader_initialized = false;
static char version_string[] = "SC64 Bootloader ver. X.X";
static char error_number_string[] = "ERROR X";
static const char *error_strings[] = {
"No error :O",
"SummerCart64 not detected",
"SD Card not detected",
"No filesystem (FAT or exFAT)\nfound on SD Card",
"Unable to locate menu file",
"Error while reading data from\nSD Card",
"Unknown error",
};
static int x_offset = X_OFFSET;
static int y_offset = Y_OFFSET;
static display_context_t loader_get_display(bool lock) {
display_context_t display;
do {
display = display_lock();
} while (!display && lock);
x_offset = X_OFFSET;
y_offset = Y_OFFSET;
return display;
}
static void loader_draw_version_and_logo(display_context_t display) {
EDIT_CHAR(version_string, -3) = NTOA(BOOTLOADER_VERSION_MAJOR);
EDIT_CHAR(version_string, -1) = NTOA(BOOTLOADER_VERSION_MINOR);
graphics_draw_text(display, x_offset, y_offset, version_string);
y_offset += Y_PADDING;
sprite_t *logo = _binary_build_sc64_logo_sprite_start;
int center_x = (320 / 2) - (logo->width / 2);
int center_y = (240 / 2) - (logo->height / 2);
graphics_draw_sprite(display, center_x, center_y, logo);
}
static void loader_init(void) {
init_interrupts();
audio_init(44100, 2);
audio_write_silence();
display_init(RESOLUTION_320x240, DEPTH_32_BPP, 2, GAMMA_NONE, ANTIALIAS_OFF);
loader_initialized = true;
}
void loader_cleanup(void) {
audio_close();
display_close();
disable_interrupts();
loader_initialized = false;
}
void loader_display_logo(void) {
if (!loader_initialized) {
loader_init();
}
display_context_t display;
display = loader_get_display(true);
graphics_fill_screen(display, 0);
loader_draw_version_and_logo(display);
display_show(display);
}
void loader_display_error_and_halt(menu_load_error_t error, const char *message) {
if (!loader_initialized) {
loader_init();
}
display_context_t display;
display = loader_get_display(true);
graphics_fill_screen(display, 0);
loader_draw_version_and_logo(display);
EDIT_CHAR(error_number_string, -1) = NTOA(error);
graphics_draw_text(display, x_offset, y_offset, error_number_string);
y_offset += Y_PADDING;
int error_string_index = error >= E_MENU_END ? (E_MENU_END - 1) : error;
const char *error_string = error_strings[error_string_index];
graphics_draw_text(display, x_offset, y_offset, error_string);
y_offset += Y_PADDING * 2;
graphics_draw_text(display, x_offset, y_offset, message);
display_show(display);
while (1);
}

View File

@ -1,13 +0,0 @@
#ifndef LOADER_H__
#define LOADER_H__
#include "errors.h"
void loader_cleanup(void);
void loader_display_logo(void);
void loader_display_error_and_halt(menu_load_error_t error, const char *message);
#endif

View File

@ -1,157 +1,45 @@
#include "boot/boot.h"
#include "loader/loader.h"
#include "sc64/sc64.h"
#include "sc64/sc64_sd_fs.h"
typedef struct sc64_cart_registers {
__IO reg_t SCR;
__IO reg_t COMMAND;
__IO reg_t ARG[2];
__IO reg_t RESPONSE;
__IO reg_t BOOTSTRAP;
} sc64_cfg_registers_t;
#define DEFAULT_MENU_FILE_PATH "SC64/MENU.z64\0";
#define SC64_CFG_BASE (0x1FFF0000)
#define SC64_CFG ((__IO sc64_cfg_registers_t *) SC64_CFG_BASE)
static const char *CONFIG_FILE_PATH = "SC64/config.txt";
static menu_load_error_t convert_error(sc64_sd_fs_error_t sd_fs_error) {
switch (sd_fs_error) {
case SC64_SD_FS_NO_CARD:
return E_MENU_ERROR_NO_CARD;
case SC64_SD_FS_NO_FILESYSTEM:
return E_MENU_ERROR_NO_FILESYSTEM;
case SC64_SD_FS_NO_FILE:
return E_MENU_ERROR_NO_FILE;
case SC64_SD_FS_READ_ERROR:
return E_MENU_ERROR_READ_ERROR;
case SC64_SD_FS_OTHER_ERROR:
return E_MENU_ERROR_OTHER_ERROR;
default:
return E_MENU_OK;
}
}
#define SC64_CFG_SCR_CPU_BOOTSTRAPPED (1 << 31)
#define SC64_CFG_SCR_CPU_BUSY (1 << 30)
#define CMD_SDRAM_SWITCH 'S'
int main(void) {
while (1);
// OS_BOOT_CONFIG->tv_type = TV_NTSC;
OS_BOOT_CONFIG->tv_type = TV_NTSC;
// if (sc64_get_version() != SC64_CART_VERSION_A) {
// loader_display_error_and_halt(E_MENU_ERROR_NOT_SC64, "");
// }
uint32_t scr = 0;
// sc64_enable_rom_switch();
do {
scr = platform_pi_io_read(&SC64_CFG->SCR);
} while (!(scr & SC64_CFG_SCR_CPU_BOOTSTRAPPED));
// uint32_t boot_mode = sc64_get_boot_mode();
do {
scr = platform_pi_io_read(&SC64_CFG->SCR);
} while (scr & SC64_CFG_SCR_CPU_BUSY);
// bool skip_menu = (boot_mode & SC64_CART_BOOT_SKIP_MENU);
// bool cic_seed_override = (boot_mode & SC64_CART_BOOT_CIC_SEED_OVERRIDE);
// bool tv_type_override = (boot_mode & SC64_CART_BOOT_TV_TYPE_OVERRIDE);
// bool ddipl_override = (boot_mode & SC64_CART_BOOT_DDIPL_OVERRIDE);
// bool rom_loaded = (boot_mode & SC64_CART_BOOT_ROM_LOADED);
// tv_type_t tv_type = ((boot_mode & SC64_CART_BOOT_TV_TYPE_MASK) >> SC64_CART_BOOT_TV_TYPE_BIT);
// uint16_t cic_seed = ((boot_mode & SC64_CART_BOOT_CIC_SEED_MASK) >> SC64_CART_BOOT_CIC_SEED_BIT);
platform_pi_io_write(&SC64_CFG->ARG[0], 1);
platform_pi_io_write(&SC64_CFG->COMMAND, (uint32_t) CMD_SDRAM_SWITCH);
// if (!skip_menu) {
// char rom_path[256] = DEFAULT_MENU_FILE_PATH;
// char save_path[256] = "\0";
// sc64_sd_fs_error_t sd_fs_error;
// sc64_sd_fs_config_t config = {
// .rom = rom_path,
// .rom_reload = false,
// .save = save_path,
// .save_type = 0,
// .save_writeback = false,
// .cic_seed = 0xFFFF,
// .tv_type = -1,
// };
do {
scr = platform_pi_io_read(&SC64_CFG->SCR);
} while (scr & SC64_CFG_SCR_CPU_BUSY);
// sd_fs_error = sc64_sd_fs_init();
// if (sd_fs_error != SC64_SD_FS_OK) {
// loader_display_error_and_halt(convert_error(sd_fs_error), "sc64_sd_fs_init");
// }
cart_header_t *cart_header = boot_load_cart_header();
uint16_t cic_seed = boot_get_cic_seed(cart_header);
tv_type_t tv_type = boot_get_tv_type(cart_header);
// sd_fs_error = sc64_sd_fs_load_config(CONFIG_FILE_PATH, &config);
// if ((sd_fs_error != SC64_SD_FS_OK) && (sd_fs_error != SC64_SD_FS_NO_FILE)) {
// loader_display_error_and_halt(convert_error(sd_fs_error), "sc64_sd_fs_load_config");
// }
// if (config.cic_seed != 0xFFFF) {
// cic_seed_override = true;
// cic_seed = config.cic_seed;
// }
// if (config.tv_type != -1) {
// tv_type_override = true;
// tv_type = config.tv_type;
// }
// if (!rom_loaded || config.rom_reload) {
// loader_display_logo();
// }
// if (config.save_type > 0) {
// sc64_disable_eeprom();
// sc64_disable_sram();
// sc64_disable_flashram();
// switch (config.save_type) {
// case 1: sc64_enable_eeprom(false); break;
// case 2: sc64_enable_eeprom(true); break;
// case 3:
// case 4: sc64_enable_sram(); break;
// case 5:
// case 6: sc64_enable_flashram(); break;
// }
// if (config.save_type >= 3 || config.save_type <= 5) {
// sc64_set_save_address(SC64_SDRAM_SIZE - (128 * 1024));
// } else if (config.save_type == 6) {
// sc64_set_save_address(0x01618000);
// }
// if (rom_loaded && (config.save[0] != '\0') && config.save_writeback) {
// sd_fs_error = sc64_sd_fs_store_save(config.save);
// if (sd_fs_error != SC64_SD_FS_OK) {
// loader_display_error_and_halt(convert_error(sd_fs_error), "sc64_sd_fs_store_save");
// }
// }
// }
// if (!rom_loaded || config.rom_reload) {
// sd_fs_error = sc64_sd_fs_load_rom(config.rom);
// if (sd_fs_error != SC64_SD_FS_OK) {
// loader_display_error_and_halt(convert_error(sd_fs_error), "sc64_sd_fs_load_rom");
// }
// sc64_set_boot_mode(boot_mode | SC64_CART_BOOT_ROM_LOADED);
// }
// if ((config.save_type > 0) && (config.save[0] != '\0') && !rom_loaded) {
// sd_fs_error = sc64_sd_fs_load_save(config.save);
// if (sd_fs_error != SC64_SD_FS_OK) {
// loader_display_error_and_halt(convert_error(sd_fs_error), "sc64_sd_fs_load_save");
// }
// }
// sc64_sd_fs_deinit();
// if (!rom_loaded || config.rom_reload) {
// loader_cleanup();
// }
// }
// if (ddipl_override) {
// sc64_enable_ddipl();
// } else {
// sc64_disable_ddipl();
// }
// cart_header_t *cart_header = boot_load_cart_header(ddipl_override);
// if (!cic_seed_override) {
// cic_seed = boot_get_cic_seed(cart_header);
// }
// if (!tv_type_override) {
// tv_type = boot_get_tv_type(cart_header);
// }
// boot(cart_header, cic_seed, tv_type, ddipl_override);
boot(cart_header, cic_seed, tv_type);
}

View File

@ -1,131 +0,0 @@
#include "sc64.h"
static void sc64_enable_peripheral(uint32_t mask) {
uint32_t config = platform_pi_io_read(&SC64_CART->SCR);
config |= mask;
platform_pi_io_write(&SC64_CART->SCR, config);
}
static void sc64_disable_peripheral(uint32_t mask) {
uint32_t config = platform_pi_io_read(&SC64_CART->SCR);
config &= ~mask;
platform_pi_io_write(&SC64_CART->SCR, config);
}
uint32_t sc64_get_scr(void) {
return platform_pi_io_read(&SC64_CART->SCR);
}
void sc64_set_scr(uint32_t scr) {
platform_pi_io_write(&SC64_CART->SCR, scr);
}
void sc64_enable_skip_bootloader(void) {
sc64_enable_peripheral(SC64_CART_SCR_SKIP_BOOTLOADER);
}
void sc64_disable_skip_bootloader(void) {
sc64_disable_peripheral(SC64_CART_SCR_SKIP_BOOTLOADER);
}
void sc64_enable_flashram(void) {
sc64_enable_peripheral(SC64_CART_SCR_FLASHRAM_ENABLE);
}
void sc64_disable_flashram(void) {
sc64_disable_peripheral(SC64_CART_SCR_FLASHRAM_ENABLE);
}
void sc64_enable_sram(void) {
sc64_enable_peripheral(SC64_CART_SCR_SRAM_ENABLE);
}
void sc64_disable_sram(void) {
sc64_disable_peripheral(SC64_CART_SCR_SRAM_ENABLE);
}
void sc64_enable_sd(void) {
sc64_enable_peripheral(SC64_CART_SCR_SD_ENABLE);
}
void sc64_disable_sd(void) {
sc64_disable_peripheral(SC64_CART_SCR_SD_ENABLE);
}
void sc64_enable_eeprom_pi(void) {
sc64_enable_peripheral(SC64_CART_SCR_EEPROM_PI_ENABLE);
}
void sc64_disable_eeprom_pi(void) {
sc64_disable_peripheral(SC64_CART_SCR_EEPROM_PI_ENABLE);
}
void sc64_enable_eeprom(bool mode_16k) {
sc64_enable_peripheral(SC64_CART_SCR_EEPROM_ENABLE);
if (mode_16k) {
sc64_enable_peripheral(SC64_CART_SCR_EEPROM_16K_MODE);
} else {
sc64_disable_peripheral(SC64_CART_SCR_EEPROM_16K_MODE);
}
}
void sc64_disable_eeprom(void) {
sc64_disable_peripheral(SC64_CART_SCR_EEPROM_ENABLE);
}
void sc64_enable_ddipl(void) {
sc64_enable_peripheral(SC64_CART_SCR_DDIPL_ENABLE);
}
void sc64_disable_ddipl(void) {
sc64_disable_peripheral(SC64_CART_SCR_DDIPL_ENABLE);
}
void sc64_enable_rom_switch(void) {
sc64_enable_peripheral(SC64_CART_SCR_ROM_SWITCH);
}
void sc64_disable_rom_switch(void) {
sc64_disable_peripheral(SC64_CART_SCR_ROM_SWITCH);
}
void sc64_enable_sdram_writable(void) {
sc64_enable_peripheral(SC64_CART_SCR_SDRAM_WRITABLE);
}
void sc64_disable_sdram_writable(void) {
sc64_disable_peripheral(SC64_CART_SCR_SDRAM_WRITABLE);
}
uint32_t sc64_get_boot_mode(void) {
return platform_pi_io_read(&SC64_CART->BOOT);
}
void sc64_set_boot_mode(uint32_t boot) {
platform_pi_io_write(&SC64_CART->BOOT, boot);
}
uint32_t sc64_get_version(void) {
return platform_pi_io_read(&SC64_CART->VERSION);
}
uint32_t sc64_get_ddipl_address(void) {
return platform_pi_io_read(&SC64_CART->DDIPL_ADDR) & SC64_CART_DDIPL_ADDR_ADDRESS_MASK;
}
void sc64_set_ddipl_address(uint32_t address) {
platform_pi_io_write(&SC64_CART->DDIPL_ADDR, address & SC64_CART_DDIPL_ADDR_ADDRESS_MASK);
}
uint32_t sc64_get_save_address(void) {
return platform_pi_io_read(&SC64_CART->SRAM_ADDR) & SC64_CART_SRAM_ADDR_ADDRESS_MASK;
}
void sc64_set_save_address(uint32_t address) {
platform_pi_io_write(&SC64_CART->SRAM_ADDR, address & SC64_CART_SRAM_ADDR_ADDRESS_MASK);
}

View File

@ -1,40 +0,0 @@
#ifndef SC64_H__
#define SC64_H__
#include "sc64_regs.h"
#define SC64_SDRAM_SIZE (64 * 1024 * 1024)
uint32_t sc64_get_scr(void);
void sc64_set_scr(uint32_t scr);
void sc64_enable_skip_bootloader(void);
void sc64_disable_skip_bootloader(void);
void sc64_enable_flashram(void);
void sc64_disable_flashram(void);
void sc64_enable_sram(void);
void sc64_disable_sram(void);
void sc64_enable_sd(void);
void sc64_disable_sd(void);
void sc64_enable_eeprom_pi(void);
void sc64_disable_eeprom_pi(void);
void sc64_enable_eeprom(bool mode_16k);
void sc64_disable_eeprom(void);
void sc64_enable_ddipl(void);
void sc64_disable_ddipl(void);
void sc64_enable_rom_switch(void);
void sc64_disable_rom_switch(void);
void sc64_enable_sdram_writable(void);
void sc64_disable_sdram_writable(void);
uint32_t sc64_get_boot_mode(void);
void sc64_set_boot_mode(uint32_t boot);
uint32_t sc64_get_version(void);
uint32_t sc64_get_ddipl_address(void);
void sc64_set_ddipl_address(uint32_t address);
uint32_t sc64_get_save_address(void);
void sc64_set_save_address(uint32_t address);
#endif

View File

@ -1,197 +0,0 @@
#ifndef SC64_REGS_H__
#define SC64_REGS_H__
#include "platform.h"
// Bank definitions
#define SC64_BANK_INVALID (0)
#define SC64_BANK_SDRAM (1)
#define SC64_BANK_CART (2)
#define SC64_BANK_EEPROM (3)
#define SC64_BANK_SD (4)
// Cart Interface Registers
typedef struct sc64_cart_registers {
__IO reg_t SCR; // Cart status and config
__IO reg_t BOOT; // Boot behavior override
__IO reg_t VERSION; // Cart firmware version
__IO reg_t GPIO; // Fixed I/O control
__IO reg_t USB_SCR; // USB interface status and control
__IO reg_t USB_DMA_ADDR; // USB bank and address for DMA to PC
__IO reg_t USB_DMA_LEN; // USB transfer length for DMA to PC
__IO reg_t DDIPL_ADDR; // 64 Disk Drive IPL location in SDRAM
__IO reg_t SRAM_ADDR; // SRAM save emulation location in SDRAM
__IO reg_t ___unused[1015];
__IO reg_t USB_FIFO[1024]; // USB data from PC read FIFO memory end
} sc64_cart_registers_t;
#define SC64_CART_BASE (0x1E000000)
#define SC64_CART ((__IO sc64_cart_registers_t *) SC64_CART_BASE)
#define SC64_CART_SCR_SKIP_BOOTLOADER (1 << 10)
#define SC64_CART_SCR_FLASHRAM_ENABLE (1 << 9)
#define SC64_CART_SCR_SRAM_768K_MODE (1 << 8)
#define SC64_CART_SCR_SRAM_ENABLE (1 << 7)
#define SC64_CART_SCR_SD_ENABLE (1 << 6)
#define SC64_CART_SCR_EEPROM_PI_ENABLE (1 << 5)
#define SC64_CART_SCR_EEPROM_16K_MODE (1 << 4)
#define SC64_CART_SCR_EEPROM_ENABLE (1 << 3)
#define SC64_CART_SCR_DDIPL_ENABLE (1 << 2)
#define SC64_CART_SCR_ROM_SWITCH (1 << 1)
#define SC64_CART_SCR_SDRAM_WRITABLE (1 << 0)
#define SC64_CART_BOOT_SKIP_MENU (1 << 15)
#define SC64_CART_BOOT_CIC_SEED_OVERRIDE (1 << 14)
#define SC64_CART_BOOT_TV_TYPE_OVERRIDE (1 << 13)
#define SC64_CART_BOOT_DDIPL_OVERRIDE (1 << 12)
#define SC64_CART_BOOT_TV_TYPE_BIT (10)
#define SC64_CART_BOOT_TV_TYPE_MASK (0x3 << SC64_CART_BOOT_TV_TYPE_BIT)
#define SC64_CART_BOOT_ROM_LOADED (1 << 9)
#define SC64_CART_BOOT_CIC_SEED_BIT (0)
#define SC64_CART_BOOT_CIC_SEED_MASK (0x1FF << SC64_CART_BOOT_CIC_SEED_BIT)
#define SC64_CART_VERSION_A (0x53363461)
#define SC64_CART_GPIO_RESET_BUTTON (1 << 0)
#define SC64_CART_USB_SCR_FIFO_ITEMS_BIT (3)
#define SC64_CART_USB_SCR_FIFO_ITEMS_MASK (0x7FF << SC64_CART_USB_SCR_FIFO_ITEMS_BIT)
#define SC64_CART_USB_SCR_READY (1 << 1)
#define SC64_CART_USB_SCR_DMA_BUSY (1 << 0)
#define SC64_CART_USB_SCR_FIFO_FLUSH (1 << 2)
#define SC64_CART_USB_SCR_DMA_START (1 << 0)
#define SC64_CART_USB_SCR_FIFO_ITEMS(i) (((i) & SC64_CART_USB_SCR_FIFO_ITEMS_MASK) >> SC64_CART_USB_SCR_FIFO_ITEMS_BIT)
#define SC64_CART_USB_DMA_ADDR_BANK_BIT (28)
#define SC64_CART_USB_DMA_ADDR_BANK_MASK (0xF << SC64_CART_USB_DMA_ADDR_BANK_BIT)
#define SC64_CART_USB_DMA_ADDR_ADDRESS_BIT (0)
#define SC64_CART_USB_DMA_ADDR_ADDRESS_MASK (0x3FFFFFC << SC64_CART_USB_DMA_ADDR_ADDRESS_BIT)
#define SC64_CART_USB_DMA_ADDR(b, a) ((((b) << SC64_CART_USB_DMA_ADDR_BANK_BIT) & SC64_CART_USB_DMA_ADDR_BANK_MASK) | (((a) << SC64_CART_USB_DMA_ADDR_ADDRESS_BIT) & SC64_CART_USB_DMA_ADDR_ADDRESS_MASK))
#define SC64_CART_USB_DMA_LEN_LENGTH_BIT (0)
#define SC64_CART_USB_DMA_LEN_LENGTH_MASK (0xFFFFF << SC64_CART_USB_DMA_LEN_LENGTH_BIT)
#define SC64_CART_USB_DMA_LEN(l) ((((l) - 1) << SC64_CART_USB_DMA_LEN_LENGTH_BIT) & SC64_CART_USB_DMA_LEN_LENGTH_MASK)
#define SC64_CART_DDIPL_ADDR_ADDRESS_BIT (0)
#define SC64_CART_DDIPL_ADDR_ADDRESS_MASK (0x3FFFFFC << SC64_CART_DDIPL_ADDR_ADDRESS_BIT)
#define SC64_CART_DDIPL_ADDR_DEFAULT (0x3C00000)
#define SC64_CART_DDIPL_ADDR(a) (((a) << SC64_CART_DDIPL_ADDR_ADDRESS_BIT) & SC64_CART_DDIPL_ADDR_ADDRESS_MASK)
#define SC64_CART_SRAM_ADDR_ADDRESS_BIT (0)
#define SC64_CART_SRAM_ADDR_ADDRESS_MASK (0x3FFFFFC << SC64_CART_SRAM_ADDR_ADDRESS_BIT)
#define SC64_CART_SRAM_ADDR_DEFAULT (0x3FF8000)
#define SC64_CART_SRAM_ADDR(a) (((a) << SC64_CART_SRAM_ADDR_ADDRESS_BIT) & SC64_CART_SRAM_ADDR_ADDRESS_MASK)
// EEPROM Registers
typedef struct sc64_eeprom_registers {
__IO reg_t MEM[512]; // EEPROM memory
} sc64_eeprom_registers_t;
#define SC64_EEPROM_BASE (0x1E010000)
#define SC64_EEPROM ((__IO sc64_eeprom_registers_t *) SC64_EEPROM_BASE)
// SD Card Interface Registers
typedef struct sc64_sd_registers_s {
__IO reg_t SCR; // Clock control and bus width selection
__IO reg_t ARG; // SD command argument
__IO reg_t CMD; // SD command index and flags
__IO reg_t RSP; // SD command response
__IO reg_t DAT; // SD data path control
__IO reg_t DMA_SCR; // DMA status and configuration
__IO reg_t DMA_ADDR; // DMA current address
__IO reg_t DMA_LEN; // DMA remaining length
__IO reg_t ___unused[120];
__IO reg_t FIFO[128]; // SD data path FIFO buffer
} sc64_sd_registers_t;
#define SC64_SD_BASE (0x1E020000)
#define SC64_SD ((__IO sc64_sd_registers_t *) SC64_SD_BASE)
#define SC64_SD_SCR_DAT_WIDTH (1 << 2)
#define SC64_SD_SCR_CLK_MASK (0x3 << 0)
#define SC64_SD_SCR_CLK_STOP (0 << 0)
#define SC64_SD_SCR_CLK_400_KHZ (1 << 0)
#define SC64_SD_SCR_CLK_25_MHZ (2 << 0)
#define SC64_SD_SCR_CLK_50_MHZ (3 << 0)
#define SC64_SD_CMD_RESPONSE_CRC_ERROR (1 << 8)
#define SC64_SD_CMD_TIMEOUT (1 << 7)
#define SC64_SD_CMD_BUSY (1 << 6)
#define SC64_SD_CMD_INDEX_GET(cmd) ((cmd) & 0x3F)
#define SC64_SD_CMD_SKIP_RESPONSE (1 << 8)
#define SC64_SD_CMD_LONG_RESPONSE (1 << 7)
#define SC64_SD_CMD_START (1 << 6)
#define SC64_SD_CMD_INDEX(i) ((i) & 0x3F)
#define SC64_SD_DAT_WRITE_OK (1 << 28)
#define SC64_SD_DAT_WRITE_ERROR (1 << 27)
#define SC64_SD_DAT_WRITE_BUSY (1 << 26)
#define SC64_SD_DAT_TX_FIFO_ITEMS_GET(dat) (((dat) >> 17) & 0x1FF)
#define SC64_SD_DAT_TX_FIFO_BYTES_GET(dat) (SC64_SD_DAT_TX_FIFO_ITEMS_GET(dat) * 4)
#define SC64_SD_DAT_TX_FIFO_FULL (1 << 16)
#define SC64_SD_DAT_TX_FIFO_EMPTY (1 << 15)
#define SC64_SD_DAT_TX_FIFO_UNDERRUN (1 << 14)
#define SC64_SD_DAT_RX_FIFO_ITEMS_GET(dat) (((dat) >> 5) & 0x1FF)
#define SC64_SD_DAT_RX_FIFO_BYTES_GET(dat) (SC64_SD_DAT_RX_FIFO_ITEMS_GET(dat) * 4)
#define SC64_SD_DAT_RX_FIFO_FULL (1 << 4)
#define SC64_SD_DAT_RX_FIFO_EMPTY (1 << 3)
#define SC64_SD_DAT_RX_FIFO_OVERRUN (1 << 2)
#define SC64_SD_DAT_CRC_ERROR (1 << 1)
#define SC64_SD_DAT_BUSY (1 << 0)
#define SC64_SD_DAT_TX_FIFO_FLUSH (1 << 19)
#define SC64_SD_DAT_RX_FIFO_FLUSH (1 << 18)
#define SC64_SD_DAT_NUM_BLOCKS(nb) ((((nb) - 1) & 0xFF) << 10)
#define SC64_SD_DAT_BLOCK_SIZE(bs) (((((bs) / 4) - 1) & 0x7F) << 3)
#define SC64_SD_DAT_DIRECTION (1 << 2)
#define SC64_SD_DAT_STOP (1 << 1)
#define SC64_SD_DAT_START (1 << 0)
#define SC64_SD_DAT_FIFO_SIZE_BYTES (1024)
#define SC64_SD_DAT_NUM_BLOCKS_MAX (256)
#define SC64_SD_DAT_BLOCK_SIZE_MAX (512)
#define SC64_SD_DMA_SCR_BUSY (1 << 0)
#define SC64_SD_DMA_SCR_DIRECTION (1 << 2)
#define SC64_SD_DMA_SCR_STOP (1 << 1)
#define SC64_SD_DMA_SCR_START (1 << 0)
#define SC64_SD_DMA_ADDR_GET(addr) ((addr) & 0x3FFFFFC)
#define SC64_SD_DMA_BANK_GET(addr) (((addr) >> 28) & 0xF)
#define SC64_SD_DMA_BANK_ADDR(b, a) ((((b) & 0xF) << 28) | ((a) & 0x3FFFFFC))
#define SC64_SD_DMA_LEN_GET(len) (((len) & 0x7FFF) * 4)
#define SC64_SD_DMA_LEN(l) ((((l) / 4) - 1) & 0x7FFF)
#define SC64_SD_DMA_LEN_MAX (0x20000)
#endif

View File

@ -1,667 +0,0 @@
#include "sc64.h"
#include "sc64_sd.h"
#define CMD8_ARG_SUPPLY_VOLTAGE_27_36_V (1 << 8)
#define CMD8_ARG_CHECK_PATTERN_AA (0xAA << 0)
#define ACMD41_ARG_HCS (1 << 30)
#define R3_CCS (1 << 30)
#define R3_BUSY (1 << 31)
#define R7_SUPPLY_VOLTAGE_27_36_V (1 << 8)
#define R7_CHECK_PATTERN_AA (0xAA << 0)
#define SD_BLOCK_SIZE (512)
typedef enum sc64_sd_clock_e {
CLOCK_STOP,
CLOCK_400_KHZ,
CLOCK_25_MHZ,
CLOCK_50_MHZ,
} sc64_sd_clock_t;
typedef enum sc64_sd_dat_width_e {
DAT_WIDTH_1BIT,
DAT_WIDTH_4BIT,
} sc64_sd_dat_width_t;
typedef enum sc64_sd_cmd_flags_e {
NO_FLAGS = 0,
ACMD = (1 << 0),
SKIP_RESPONSE = (1 << 1),
LONG_RESPONSE = (1 << 2),
IGNORE_CRC = (1 << 3),
IGNORE_INDEX = (1 << 4),
} sc64_sd_cmd_flags_t;
typedef enum sc64_sd_dat_direction_e {
DAT_DIR_RX,
DAT_DIR_TX,
} sc64_sd_dat_direction_t;
typedef enum sc64_sd_dma_direction_e {
DMA_DIR_MEM,
DMA_DIR_CARD,
} sc64_sd_dma_direction_t;
static bool sd_card_initialized = false;
static bool sd_card_type_block = false;
static bool sd_card_selected = false;
static uint32_t rca = 0;
static void sc64_sd_set_clock(sc64_sd_clock_t clock) {
uint32_t scr = platform_pi_io_read(&SC64_SD->SCR);
scr &= ~SC64_SD_SCR_CLK_MASK;
switch (clock) {
case CLOCK_400_KHZ:
scr |= SC64_SD_SCR_CLK_400_KHZ;
break;
case CLOCK_25_MHZ:
scr |= SC64_SD_SCR_CLK_25_MHZ;
break;
case CLOCK_50_MHZ:
scr |= SC64_SD_SCR_CLK_50_MHZ;
break;
default:
break;
}
platform_pi_io_write(&SC64_SD->SCR, scr);
}
static void sc64_sd_set_dat_width(sc64_sd_dat_width_t dat_width) {
uint32_t scr = platform_pi_io_read(&SC64_SD->SCR);
scr &= ~SC64_SD_SCR_DAT_WIDTH;
if (dat_width == DAT_WIDTH_4BIT) {
scr |= SC64_SD_SCR_DAT_WIDTH;
}
platform_pi_io_write(&SC64_SD->SCR, scr);
}
static void sc64_sd_hw_reset(void) {
while (platform_pi_io_read(&SC64_SD->CMD) & SC64_SD_CMD_BUSY);
platform_pi_io_write(&SC64_SD->DMA_SCR, SC64_SD_DMA_SCR_STOP);
platform_pi_io_write(&SC64_SD->DAT, SC64_SD_DAT_TX_FIFO_FLUSH | SC64_SD_DAT_RX_FIFO_FLUSH | SC64_SD_DAT_STOP);
platform_pi_io_write(&SC64_SD->SCR, 0);
}
static void sc64_sd_hw_init(void) {
sc64_enable_sd();
sc64_sd_hw_reset();
sc64_sd_set_clock(CLOCK_400_KHZ);
sc64_sd_set_dat_width(DAT_WIDTH_1BIT);
}
static void sc64_sd_hw_deinit(void) {
if (sc64_get_scr() & SC64_CART_SCR_SD_ENABLE) {
sc64_sd_hw_reset();
}
sc64_disable_sd();
}
static sc64_sd_err_t sc64_sd_cmd_send(uint8_t index, uint32_t arg, sc64_sd_cmd_flags_t flags, uint32_t *response) {
sc64_sd_err_t error;
uint32_t reg;
if (flags & ACMD) {
error = sc64_sd_cmd_send(55, rca, NO_FLAGS, response);
if (error != E_OK) {
return error;
}
}
platform_pi_io_write(&SC64_SD->ARG, arg);
reg = SC64_SD_CMD_START | SC64_SD_CMD_INDEX(index);
if (flags & SKIP_RESPONSE) {
reg |= SC64_SD_CMD_SKIP_RESPONSE;
}
if (flags & LONG_RESPONSE) {
reg |= SC64_SD_CMD_LONG_RESPONSE;
}
platform_pi_io_write(&SC64_SD->CMD, reg);
do {
reg = platform_pi_io_read(&SC64_SD->CMD);
} while (reg & SC64_SD_CMD_BUSY);
*response = platform_pi_io_read(&SC64_SD->RSP);
if (reg & SC64_SD_CMD_TIMEOUT) {
return E_TIMEOUT;
}
if ((!(flags & IGNORE_CRC)) && (!(flags & SKIP_RESPONSE)) && (reg & SC64_SD_CMD_RESPONSE_CRC_ERROR)) {
return E_CRC_ERROR;
}
if ((!(flags & SKIP_RESPONSE)) && (!(flags & IGNORE_INDEX)) && (SC64_SD_CMD_INDEX_GET(reg) != index)) {
return E_BAD_INDEX;
}
return E_OK;
}
static void sc64_sd_dat_prepare(size_t num_blocks, size_t block_size, sc64_sd_dat_direction_t direction) {
uint32_t reg = (
SC64_SD_DAT_NUM_BLOCKS(num_blocks) |
SC64_SD_DAT_BLOCK_SIZE(block_size) |
((direction == DAT_DIR_TX) ? SC64_SD_DAT_DIRECTION : 0) |
SC64_SD_DAT_START
);
platform_pi_io_write(&SC64_SD->DAT, reg);
}
static void sc64_sd_dat_abort(void) {
uint32_t reg = (
SC64_SD_DAT_TX_FIFO_FLUSH |
SC64_SD_DAT_RX_FIFO_FLUSH |
SC64_SD_DAT_STOP
);
platform_pi_io_write(&SC64_SD->DAT, reg);
}
static sc64_sd_err_t sc64_sd_dat_read(size_t block_size, void *buffer) {
int timeout;
uint32_t reg;
timeout = 1000000;
do {
reg = platform_pi_io_read(&SC64_SD->DAT);
if (SC64_SD_DAT_RX_FIFO_BYTES_GET(reg) >= block_size) {
break;
}
} while ((reg & SC64_SD_DAT_BUSY) && (--timeout));
if (!(reg & SC64_SD_DAT_BUSY)) {
if (reg & SC64_SD_DAT_CRC_ERROR) {
return E_CRC_ERROR;
}
if (reg & SC64_SD_DAT_RX_FIFO_OVERRUN) {
platform_pi_io_write(&SC64_SD->DAT, SC64_SD_DAT_RX_FIFO_FLUSH);
return E_FIFO_ERROR;
}
}
if (timeout == 0) {
sc64_sd_dat_abort();
return E_TIMEOUT;
}
platform_pi_dma_read(buffer, &SC64_SD->FIFO, block_size);
platform_cache_invalidate(buffer, block_size);
return E_OK;
}
static sc64_sd_err_t sc64_sd_dat_write(size_t block_size, void *buffer) {
int timeout;
uint32_t reg;
timeout = 1000000;
do {
reg = platform_pi_io_read(&SC64_SD->DAT);
if ((SC64_SD_DAT_FIFO_SIZE_BYTES - SC64_SD_DAT_TX_FIFO_BYTES_GET(reg)) >= block_size) {
break;
}
} while ((reg & SC64_SD_DAT_BUSY) && (--timeout));
if (timeout == 0) {
sc64_sd_dat_abort();
return E_TIMEOUT;
}
if (!(reg & SC64_SD_DAT_BUSY)) {
if (reg & SC64_SD_DAT_CRC_ERROR) {
return E_CRC_ERROR;
}
if (reg & SC64_SD_DAT_WRITE_ERROR) {
return E_WRITE_ERROR;
}
if (reg & SC64_SD_DAT_TX_FIFO_UNDERRUN) {
platform_pi_io_write(&SC64_SD->DAT, SC64_SD_DAT_TX_FIFO_FLUSH);
return E_FIFO_ERROR;
}
}
platform_cache_writeback(buffer, block_size);
platform_pi_dma_write(buffer, &SC64_SD->FIFO, block_size);
return E_OK;
}
static void sc64_sd_dma_prepare(size_t num_blocks, size_t block_size, sc64_sd_dma_direction_t direction, uint8_t bank, uint32_t address) {
platform_pi_io_write(&SC64_SD->DMA_ADDR, SC64_SD_DMA_BANK_ADDR(bank, address));
platform_pi_io_write(&SC64_SD->DMA_LEN, SC64_SD_DMA_LEN(num_blocks * block_size));
platform_pi_io_write(&SC64_SD->DMA_SCR, (direction == DMA_DIR_MEM ? SC64_SD_DMA_SCR_DIRECTION : 0) | SC64_SD_DMA_SCR_START);
}
static void sc64_sd_dma_abort(void) {
platform_pi_io_write(&SC64_SD->DMA_SCR, SC64_SD_DMA_SCR_STOP);
}
static sc64_sd_err_t sc64_sd_sectors_parameters_check(size_t count, uint8_t *buffer, bool check_buffer) {
if (!sd_card_initialized) {
return E_NO_INIT;
}
if ((count == 0) || (check_buffer && (buffer == NULL))) {
return E_PAR_ERROR;
}
return E_OK;
}
bool sc64_sd_init(void) {
sc64_sd_err_t error;
uint32_t response;
uint32_t argument;
bool sd_version_2_or_later;
uint8_t buffer[64] __attribute__((aligned(16)));
if (sd_card_initialized) {
return true;
}
sc64_sd_hw_init();
do {
error = sc64_sd_cmd_send(0, 0, SKIP_RESPONSE, &response);
argument = CMD8_ARG_SUPPLY_VOLTAGE_27_36_V | CMD8_ARG_CHECK_PATTERN_AA;
error = sc64_sd_cmd_send(8, argument, NO_FLAGS, &response);
sd_version_2_or_later = (error == E_OK);
if (sd_version_2_or_later && (response != (R7_SUPPLY_VOLTAGE_27_36_V | R7_CHECK_PATTERN_AA))) {
break;
}
argument = (sd_version_2_or_later ? ACMD41_ARG_HCS : 0) | 0x00FF8000;
for (int i = 0; i < 4000; i++) {
error = sc64_sd_cmd_send(41, argument, ACMD | IGNORE_CRC | IGNORE_INDEX, &response);
if ((error != E_OK) || (response & R3_BUSY)) {
break;
}
}
if ((error != E_OK) || ((response & 0x00FF8000) == 0)) {
break;
}
sd_card_type_block = (response & R3_CCS) ? true : false;
error = sc64_sd_cmd_send(2, 0, LONG_RESPONSE | IGNORE_INDEX, &response);
if (error != E_OK) {
break;
}
error = sc64_sd_cmd_send(3, 0, NO_FLAGS, &response);
if (error != E_OK) {
break;
}
rca = response & 0xFFFF0000;
error = sc64_sd_cmd_send(7, rca, NO_FLAGS, &response);
if (error != E_OK) {
break;
}
sd_card_selected = true;
error = sc64_sd_cmd_send(6, 2, ACMD, &response);
if (error != E_OK) {
break;
}
sc64_sd_set_clock(CLOCK_25_MHZ);
sc64_sd_set_dat_width(DAT_WIDTH_4BIT);
sc64_sd_dat_prepare(1, 64, DAT_DIR_RX);
error = sc64_sd_cmd_send(6, 0x00000001, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
break;
}
error = sc64_sd_dat_read(64, buffer);
if (error != E_OK) {
break;
}
if (buffer[13] & 0x02) {
sc64_sd_dat_prepare(1, 64, DAT_DIR_RX);
error = sc64_sd_cmd_send(6, 0x80000001, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
break;
}
error = sc64_sd_dat_read(64, buffer);
if (error != E_OK) {
break;
}
sc64_sd_set_clock(CLOCK_50_MHZ);
}
sd_card_initialized = true;
return true;
} while(0);
sc64_sd_deinit();
return false;
}
void sc64_sd_deinit(void) {
uint32_t response;
if (sd_card_selected) {
sc64_sd_cmd_send(7, rca, NO_FLAGS, &response);
sd_card_selected = false;
}
sc64_sd_cmd_send(0, 0, SKIP_RESPONSE, &response);
sc64_sd_hw_deinit();
}
bool sc64_sd_status_get(void) {
return sd_card_initialized;
}
sc64_sd_err_t sc64_sd_sectors_read(uint32_t starting_sector, size_t count, uint8_t *buffer) {
sc64_sd_err_t error;
uint32_t response;
uint32_t current_sector;
error = sc64_sd_sectors_parameters_check(count, buffer, true);
if (error != E_OK) {
return error;
}
current_sector = starting_sector;
if (!sd_card_type_block) {
current_sector *= SD_BLOCK_SIZE;
}
for (size_t i = 0; i < count; i++) {
sc64_sd_dat_prepare(1, SD_BLOCK_SIZE, DAT_DIR_RX);
error = sc64_sd_cmd_send(17, current_sector, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
return error;
}
error = sc64_sd_dat_read(SD_BLOCK_SIZE, buffer);
if (error != E_OK) {
return error;
}
buffer += SD_BLOCK_SIZE;
current_sector += sd_card_type_block ? 1 : SD_BLOCK_SIZE;
}
return E_OK;
}
sc64_sd_err_t sc64_sd_sectors_write(uint32_t starting_sector, size_t count, uint8_t *buffer) {
sc64_sd_err_t error;
sc64_sd_err_t write_error;
uint32_t response;
uint32_t current_sector;
size_t sectors_remaining;
size_t num_blocks;
error = sc64_sd_sectors_parameters_check(count, buffer, true);
if (error != E_OK) {
return error;
}
current_sector = starting_sector;
if (!sd_card_type_block) {
current_sector *= SD_BLOCK_SIZE;
}
sectors_remaining = count;
while (sectors_remaining) {
num_blocks = (sectors_remaining > SC64_SD_DAT_NUM_BLOCKS_MAX) ? SC64_SD_DAT_NUM_BLOCKS_MAX : sectors_remaining;
sc64_sd_dat_prepare(num_blocks, SD_BLOCK_SIZE, DAT_DIR_TX);
error = sc64_sd_cmd_send(25, current_sector, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
return error;
}
for (size_t i = 0; i < num_blocks; i++) {
write_error = sc64_sd_dat_write(SD_BLOCK_SIZE, buffer);
if (write_error != E_OK) {
break;
}
buffer += SD_BLOCK_SIZE;
}
error = sc64_sd_dat_busy_wait();
if (error != E_OK) {
sc64_sd_dat_abort();
return error;
}
error = sc64_sd_cmd_send(12, 0, NO_FLAGS, &response);
if (error != E_OK) {
return error;
}
error = sc64_sd_dat_busy_wait();
if (error != E_OK) {
return error;
}
if (write_error != E_OK) {
return write_error;
}
current_sector += num_blocks * (sd_card_type_block ? 1 : SD_BLOCK_SIZE);
sectors_remaining -= num_blocks;
}
return E_OK;
}
sc64_sd_err_t sc64_sd_sectors_read_dma(uint32_t starting_sector, size_t count, uint8_t bank, uint32_t address) {
size_t sectors_left;
uint32_t current_sector;
uint32_t current_address;
uint32_t num_blocks;
uint32_t reg;
sc64_sd_err_t error;
uint32_t response;
int timeout;
error = sc64_sd_sectors_parameters_check(count, NULL, false);
if (error != E_OK) {
return error;
}
sectors_left = count;
current_sector = starting_sector;
if (!sd_card_type_block) {
current_sector *= SD_BLOCK_SIZE;
}
current_address = address;
do {
num_blocks = (sectors_left > SC64_SD_DAT_NUM_BLOCKS_MAX) ? SC64_SD_DAT_NUM_BLOCKS_MAX : sectors_left;
sc64_sd_dma_prepare(num_blocks, SD_BLOCK_SIZE, DMA_DIR_MEM, bank, current_address);
sc64_sd_dat_prepare(num_blocks, SD_BLOCK_SIZE, DAT_DIR_RX);
error = sc64_sd_cmd_send(18, current_sector, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
sc64_sd_dma_abort();
return error;
}
timeout = 1000000;
do {
reg = platform_pi_io_read(&SC64_SD->DAT);
} while ((reg & SC64_SD_DAT_BUSY) && (--timeout));
error = sc64_sd_cmd_send(12, 0, NO_FLAGS, &response);
if (error != E_OK) {
sc64_sd_dat_abort();
sc64_sd_dma_abort();
return error;
}
if (reg & SC64_SD_DAT_CRC_ERROR) {
sc64_sd_dma_abort();
return E_CRC_ERROR;
}
if (reg & SC64_SD_DAT_RX_FIFO_OVERRUN) {
platform_pi_io_write(&SC64_SD->DAT, SC64_SD_DAT_RX_FIFO_FLUSH);
sc64_sd_dma_abort();
return E_FIFO_ERROR;
}
if (timeout == 0) {
sc64_sd_dat_abort();
sc64_sd_dma_abort();
return E_TIMEOUT;
}
while (platform_pi_io_read(&SC64_SD->DMA_SCR) & SC64_SD_DMA_SCR_BUSY);
sectors_left -= num_blocks;
current_sector += num_blocks * (sd_card_type_block ? 1 : SD_BLOCK_SIZE);
current_address += num_blocks * SD_BLOCK_SIZE;
} while (sectors_left > 0);
return E_OK;
}
// sc64_sd_err_t sc64_sd_sectors_write_dma(uint32_t starting_sector, size_t count, uint8_t bank, uint32_t address) {
// size_t sectors_left;
// uint32_t current_sector;
// uint32_t current_address;
// uint32_t num_blocks;
// uint32_t reg;
// sc64_sd_err_t error;
// uint32_t response;
// int timeout;
// error = sc64_sd_sectors_parameters_check(count, NULL, false);
// if (error != E_OK) {
// return error;
// }
// sectors_left = count;
// current_sector = starting_sector;
// if (!sd_card_type_block) {
// current_sector *= SD_BLOCK_SIZE;
// }
// current_address = address;
// do {
// num_blocks = (sectors_left > SC64_SD_DAT_NUM_BLOCKS_MAX) ? SC64_SD_DAT_NUM_BLOCKS_MAX : sectors_left;
// sc64_sd_dat_prepare(num_blocks, SD_BLOCK_SIZE, DAT_DIR_TX);
// sc64_sd_dma_prepare(num_blocks, SD_BLOCK_SIZE, DMA_DIR_CARD, bank, current_address);
// error = sc64_sd_cmd_send(25, current_sector, NO_FLAGS, &response);
// if (error != E_OK) {
// sc64_sd_dma_abort();
// sc64_sd_dat_abort();
// return error;
// }
// timeout = 1000000;
// do {
// reg = platform_pi_io_read(&SC64_SD->DAT);
// } while ((reg & SC64_SD_DAT_BUSY) && (--timeout));
// error = sc64_sd_cmd_send(12, 0, NO_FLAGS, &response);
// if (error != E_OK) {
// sc64_sd_dma_abort();
// sc64_sd_dat_abort();
// return error;
// }
// if (reg & SC64_SD_DAT_CRC_ERROR) {
// sc64_sd_dma_abort();
// return E_CRC_ERROR;
// }
// if (reg & SC64_SD_DAT_TX_FIFO_UNDERRUN) {
// sc64_sd_dma_abort();
// platform_pi_io_write(&SC64_SD->DAT, SC64_SD_DAT_TX_FIFO_FLUSH);
// return E_FIFO_ERROR;
// }
// if (timeout == 0) {
// sc64_sd_dma_abort();
// sc64_sd_dat_abort();
// return E_TIMEOUT;
// }
// sectors_left -= num_blocks;
// current_sector += num_blocks * (sd_card_type_block ? 1 : SD_BLOCK_SIZE);
// current_address += num_blocks * SD_BLOCK_SIZE;
// } while (sectors_left > 0);
// return E_OK;
// }
sc64_sd_err_t sc64_sd_dat_busy_wait(void) {
int timeout;
uint32_t reg;
timeout = 1000000;
do {
reg = platform_pi_io_read(&SC64_SD->DAT);
} while ((reg & (SC64_SD_DAT_WRITE_BUSY | SC64_SD_DAT_BUSY)) && (--timeout));
if (timeout == 0) {
return E_TIMEOUT;
}
return E_OK;
}

View File

@ -1,30 +0,0 @@
#ifndef SC64_SD_H__
#define SC64_SD_H__
#include "platform.h"
typedef enum sc64_sd_err_e {
E_OK,
E_TIMEOUT,
E_CRC_ERROR,
E_BAD_INDEX,
E_PAR_ERROR,
E_FIFO_ERROR,
E_WRITE_ERROR,
E_NO_INIT,
} sc64_sd_err_t;
bool sc64_sd_init(void);
void sc64_sd_deinit(void);
bool sc64_sd_status_get(void);
sc64_sd_err_t sc64_sd_sectors_read(uint32_t starting_sector, size_t count, uint8_t *buffer);
sc64_sd_err_t sc64_sd_sectors_write(uint32_t starting_sector, size_t count, uint8_t *buffer);
sc64_sd_err_t sc64_sd_sectors_read_dma(uint32_t starting_sector, size_t count, uint8_t bank, uint32_t address);
// sc64_sd_err_t sc64_sd_sectors_write_dma(uint32_t starting_sector, size_t count, uint8_t bank, uint32_t address);
sc64_sd_err_t sc64_sd_dat_busy_wait(void);
#endif

View File

@ -1,228 +0,0 @@
#include "ff.h"
#include "diskio.h"
#include "sc64.h"
#include "sc64_sd.h"
#include "sc64_sd_fs.h"
#include <string.h>
#include <stdlib.h>
static uint8_t current_bank = SC64_BANK_INVALID;
static uint32_t current_offset = 0;
static uint8_t save_buffer[128 * 1024] __attribute__((aligned(16)));
static bool fs_initialized = false;
static FATFS fatfs;
static DRESULT sc64_sd_fs_load_with_dma(BYTE pdrv, FSIZE_t offset, LBA_t sector, UINT count) {
sc64_sd_err_t error;
if (pdrv > 0) {
return RES_PARERR;
}
error = sc64_sd_sectors_read_dma(sector, count, current_bank, current_offset + offset);
if (error != E_OK) {
switch (error) {
case E_NO_INIT:
return RES_NOTRDY;
case E_PAR_ERROR:
return RES_PARERR;
default:
return RES_ERROR;
}
}
return RES_OK;
}
sc64_sd_fs_error_t sc64_sd_fs_init(void) {
FRESULT fresult;
fresult = f_mount(&fatfs, "", 1);
if (fresult != FR_OK) {
switch (fresult) {
case FR_DISK_ERR:
return SC64_SD_FS_READ_ERROR;
case FR_NOT_READY:
return SC64_SD_FS_NO_CARD;
case FR_NO_FILESYSTEM:
return SC64_SD_FS_NO_FILESYSTEM;
default:
return SC64_SD_FS_OTHER_ERROR;
}
}
fs_initialized = true;
return SC64_SD_FS_OK;
}
void sc64_sd_fs_deinit(void) {
if (fs_initialized) {
f_unmount("");
}
sc64_sd_deinit();
}
sc64_sd_fs_error_t sc64_sd_fs_load_config(const char *path, sc64_sd_fs_config_t *config) {
FRESULT fresult;
FIL fil;
char config_buffer[256];
fresult = f_open(&fil, path, FA_READ);
if (fresult != FR_OK) {
switch (fresult) {
case FR_DISK_ERR:
case FR_NOT_READY:
return SC64_SD_FS_READ_ERROR;
case FR_NO_FILE:
case FR_NO_PATH:
return SC64_SD_FS_NO_FILE;
default:
return SC64_SD_FS_OTHER_ERROR;
}
}
while (!f_eof(&fil)) {
char *line = f_gets(config_buffer, sizeof(config_buffer), &fil);
if (line == NULL) {
break;
}
if (strncmp("rom=", line, 4) == 0) {
strncpy(config->rom, line + 4, sizeof(config_buffer) - 4);
} else if (strncmp("rom_reload=", line, 11) == 0) {
config->rom_reload = line[11] != '0';
} else if (strncmp("save=", line, 5) == 0) {
strncpy(config->save, line + 5, sizeof(config_buffer) - 5);
} else if (strncmp("save_type=", line, 10) == 0) {
config->save_type = (uint8_t) strtol(line + 10, NULL, 10);
} else if (strncmp("save_writeback=", line, 15) == 0) {
config->save_writeback = line[15] != '0';
} else if (strncmp("cic_seed=", line, 9) == 0) {
config->cic_seed = (uint16_t) strtoul(line + 9, NULL, 16);
} else if (strncmp("tv_type=", line, 8) == 0) {
config->tv_type = (tv_type_t) strtol(line + 8, NULL, 10);
}
}
fresult = f_close(&fil);
if (fresult != FR_OK) {
return SC64_SD_FS_OTHER_ERROR;
}
return SC64_SD_FS_OK;
}
sc64_sd_fs_error_t sc64_sd_fs_load_rom(const char *path) {
FRESULT fresult;
current_bank = SC64_BANK_SDRAM;
current_offset = 0;
fresult = fe_load(path, SC64_SDRAM_SIZE, sc64_sd_fs_load_with_dma);
if (fresult != FR_OK) {
switch (fresult) {
case FR_DISK_ERR:
case FR_NOT_READY:
return SC64_SD_FS_READ_ERROR;
case FR_NO_FILE:
case FR_NO_PATH:
return SC64_SD_FS_NO_FILE;
default:
return SC64_SD_FS_OTHER_ERROR;
}
}
return SC64_SD_FS_OK;
}
sc64_sd_fs_error_t sc64_sd_fs_load_save(const char *path) {
FRESULT fresult;
uint32_t scr;
size_t length;
scr = sc64_get_scr();
length = 0;
if (scr & SC64_CART_SCR_EEPROM_ENABLE) {
length = (scr & SC64_CART_SCR_EEPROM_16K_MODE) ? 2048 : 512;
current_bank = SC64_BANK_EEPROM;
current_offset = 0;
} else if (scr & (SC64_CART_SCR_SRAM_ENABLE | SC64_CART_SCR_FLASHRAM_ENABLE)) {
length = 128 * 1024;
current_bank = SC64_BANK_SDRAM;
current_offset = sc64_get_save_address();
}
if ((length == 0) || (path == NULL)) {
return SC64_SD_FS_OK;
}
fresult = fe_load(path, length, sc64_sd_fs_load_with_dma);
if (fresult != FR_OK) {
switch (fresult) {
case FR_DISK_ERR:
case FR_NOT_READY:
return SC64_SD_FS_READ_ERROR;
case FR_NO_FILE:
case FR_NO_PATH:
return SC64_SD_FS_NO_FILE;
default:
return SC64_SD_FS_OTHER_ERROR;
}
}
return SC64_SD_FS_OK;
}
sc64_sd_fs_error_t sc64_sd_fs_store_save(const char *path) {
FRESULT fresult;
FIL fil;
UINT written;
uint32_t scr;
size_t length;
scr = sc64_get_scr();
length = 0;
if (scr & SC64_CART_SCR_EEPROM_ENABLE) {
sc64_enable_eeprom_pi();
length = (scr & SC64_CART_SCR_EEPROM_16K_MODE) ? 2048 : 512;
platform_pi_dma_read(save_buffer, &SC64_EEPROM->MEM, length);
platform_cache_invalidate(save_buffer, length);
sc64_disable_eeprom_pi();
} else if (scr & (SC64_CART_SCR_SRAM_ENABLE | SC64_CART_SCR_FLASHRAM_ENABLE)) {
length = 128 * 1024;
platform_pi_dma_read(save_buffer, sc64_get_save_address(), length);
platform_cache_invalidate(save_buffer, length);
}
if ((length == 0) || (path == NULL)) {
return SC64_SD_FS_OK;
}
fresult = f_open(&fil, path, FA_CREATE_ALWAYS | FA_WRITE);
if (fresult != FR_OK) {
return SC64_SD_FS_WRITE_ERROR;
}
fresult = f_write(&fil, save_buffer, length, &written);
if (fresult != FR_OK) {
return SC64_SD_FS_WRITE_ERROR;
}
fresult = f_close(&fil);
if (fresult != FR_OK) {
return SC64_SD_FS_WRITE_ERROR;
}
return SC64_SD_FS_OK;
}

View File

@ -1,38 +0,0 @@
#ifndef SC64_SD_FS_H__
#define SC64_SD_FS_H__
#include "platform.h"
typedef enum sc64_sd_fs_error_e {
SC64_SD_FS_OK,
SC64_SD_FS_NO_CARD,
SC64_SD_FS_NO_FILESYSTEM,
SC64_SD_FS_NO_FILE,
SC64_SD_FS_READ_ERROR,
SC64_SD_FS_OTHER_ERROR,
SC64_SD_FS_WRITE_ERROR,
} sc64_sd_fs_error_t;
typedef struct sc64_sd_fs_config_s {
char *rom;
char *save;
uint8_t save_type;
bool save_writeback;
bool rom_reload;
uint16_t cic_seed;
tv_type_t tv_type;
} sc64_sd_fs_config_t;
sc64_sd_fs_error_t sc64_sd_fs_init(void);
void sc64_sd_fs_deinit(void);
sc64_sd_fs_error_t sc64_sd_fs_load_config(const char *path, sc64_sd_fs_config_t *config);
sc64_sd_fs_error_t sc64_sd_fs_load_rom(const char *path);
sc64_sd_fs_error_t sc64_sd_fs_load_save(const char *path);
sc64_sd_fs_error_t sc64_sd_fs_store_save(const char *path);
#endif