[SC64][FW][SW] Moved CIC emulation from MCU to FPGA

This commit is contained in:
Mateusz Faderewski 2023-11-26 21:16:22 +01:00
parent 73716de8f6
commit a30986c7cc
48 changed files with 3692 additions and 476 deletions

1
.gitattributes vendored
View File

@ -1,4 +1,5 @@
fw/project/lcmxo2/*.sty linguist-generated fw/project/lcmxo2/*.sty linguist-generated
fw/rtl/serv/* -linguist-vendored
fw/rtl/vendor/** -linguist-vendored fw/rtl/vendor/** -linguist-vendored
fw/rtl/vendor/lcmxo2/generated/* linguist-generated fw/rtl/vendor/lcmxo2/generated/* linguist-generated
hw/pcb/*.html linguist-generated hw/pcb/*.html linguist-generated

View File

@ -29,6 +29,7 @@ FILES=(
BUILT_BOOTLOADER=false BUILT_BOOTLOADER=false
BUILT_CONTROLLER=false BUILT_CONTROLLER=false
BUILT_CIC=false
BUILT_FPGA=false BUILT_FPGA=false
BUILT_UPDATE=false BUILT_UPDATE=false
BUILT_RELEASE=false BUILT_RELEASE=false
@ -66,6 +67,19 @@ build_controller () {
BUILT_CONTROLLER=true BUILT_CONTROLLER=true
} }
build_cic () {
if [ "$BUILT_CIC" = true ]; then return; fi
pushd sw/cic > /dev/null
if [ "$FORCE_CLEAN" = true ]; then
./build.sh clean
fi
./build.sh all
popd > /dev/null
BUILT_CIC=true
}
build_fpga () { build_fpga () {
if [ "$BUILT_FPGA" = true ]; then return; fi if [ "$BUILT_FPGA" = true ]; then return; fi
@ -84,6 +98,7 @@ build_update () {
build_bootloader build_bootloader
build_controller build_controller
build_cic
build_fpga build_fpga
pushd sw/tools > /dev/null pushd sw/tools > /dev/null
@ -126,10 +141,11 @@ build_release () {
print_usage () { print_usage () {
echo "builder script for SC64" echo "builder script for SC64"
echo "usage: ./build.sh [bootloader] [controller] [fpga] [update] [release] [-c] [--help]" echo "usage: ./build.sh [bootloader] [controller] [cic] [fpga] [update] [release] [-c] [--help]"
echo "parameters:" echo "parameters:"
echo " bootloader - compile N64 bootloader software" echo " bootloader - compile N64 bootloader software"
echo " controller - compile MCU controller software" echo " controller - compile MCU controller software"
echo " cic - compile CIC emulation software"
echo " fpga - compile FPGA design" echo " fpga - compile FPGA design"
echo " update - compile all software and designs" echo " update - compile all software and designs"
echo " release - collect and zip files for release (triggers 'update' build)" echo " release - collect and zip files for release (triggers 'update' build)"
@ -147,6 +163,7 @@ fi
TRIGGER_BOOTLOADER=false TRIGGER_BOOTLOADER=false
TRIGGER_CONTROLLER=false TRIGGER_CONTROLLER=false
TRIGGER_CIC=false
TRIGGER_FPGA=false TRIGGER_FPGA=false
TRIGGER_UPDATE=false TRIGGER_UPDATE=false
TRIGGER_RELEASE=false TRIGGER_RELEASE=false
@ -159,6 +176,9 @@ while test $# -gt 0; do
controller) controller)
TRIGGER_CONTROLLER=true TRIGGER_CONTROLLER=true
;; ;;
cic)
TRIGGER_CIC=true
;;
fpga) fpga)
TRIGGER_FPGA=true TRIGGER_FPGA=true
;; ;;
@ -187,6 +207,7 @@ done
if [ "$TRIGGER_BOOTLOADER" = true ]; then build_bootloader; fi if [ "$TRIGGER_BOOTLOADER" = true ]; then build_bootloader; fi
if [ "$TRIGGER_CONTROLLER" = true ]; then build_controller; fi if [ "$TRIGGER_CONTROLLER" = true ]; then build_controller; fi
if [ "$TRIGGER_CIC" = true ]; then build_cic; fi
if [ "$TRIGGER_FPGA" = true ]; then build_fpga; fi if [ "$TRIGGER_FPGA" = true ]; then build_fpga; fi
if [ "$TRIGGER_UPDATE" = true ]; then build_update; fi if [ "$TRIGGER_UPDATE" = true ]; then build_update; fi
if [ "$TRIGGER_RELEASE" = true ]; then build_release; fi if [ "$TRIGGER_RELEASE" = true ]; then build_release; fi

View File

@ -1,6 +1,6 @@
#!/bin/bash #!/bin/bash
BUILDER_IMAGE="ghcr.io/polprzewodnikowy/sc64env:v1.5" BUILDER_IMAGE="ghcr.io/polprzewodnikowy/sc64env:v1.6"
pushd $(dirname $0) > /dev/null pushd $(dirname $0) > /dev/null

View File

@ -72,6 +72,7 @@
<Property name="PROP_LST_RAMStyle" value="Auto" time="0"/> <Property name="PROP_LST_RAMStyle" value="Auto" time="0"/>
<Property name="PROP_LST_ROMStyle" value="Auto" time="0"/> <Property name="PROP_LST_ROMStyle" value="Auto" time="0"/>
<Property name="PROP_LST_RemoveDupRegs" value="True" time="0"/> <Property name="PROP_LST_RemoveDupRegs" value="True" time="0"/>
<Property name="PROP_LST_ReportTrimmedUserNets" value="False" time="0"/>
<Property name="PROP_LST_ResolvedMixedDrivers" value="False" time="0"/> <Property name="PROP_LST_ResolvedMixedDrivers" value="False" time="0"/>
<Property name="PROP_LST_ResourceShare" value="True" time="0"/> <Property name="PROP_LST_ResourceShare" value="True" time="0"/>
<Property name="PROP_LST_UseIOReg" value="Auto" time="0"/> <Property name="PROP_LST_UseIOReg" value="Auto" time="0"/>

View File

@ -72,6 +72,7 @@
<Property name="PROP_LST_RAMStyle" value="Auto" time="0"/> <Property name="PROP_LST_RAMStyle" value="Auto" time="0"/>
<Property name="PROP_LST_ROMStyle" value="Auto" time="0"/> <Property name="PROP_LST_ROMStyle" value="Auto" time="0"/>
<Property name="PROP_LST_RemoveDupRegs" value="True" time="0"/> <Property name="PROP_LST_RemoveDupRegs" value="True" time="0"/>
<Property name="PROP_LST_ReportTrimmedUserNets" value="False" time="0"/>
<Property name="PROP_LST_ResolvedMixedDrivers" value="False" time="0"/> <Property name="PROP_LST_ResolvedMixedDrivers" value="False" time="0"/>
<Property name="PROP_LST_ResourceShare" value="True" time="0"/> <Property name="PROP_LST_ResourceShare" value="True" time="0"/>
<Property name="PROP_LST_UseIOReg" value="Auto" time="0"/> <Property name="PROP_LST_UseIOReg" value="Auto" time="0"/>
@ -93,7 +94,7 @@
<Property name="PROP_MAP_MapModArgs" value="" time="0"/> <Property name="PROP_MAP_MapModArgs" value="" time="0"/>
<Property name="PROP_MAP_OvermapDevice" value="False" time="0"/> <Property name="PROP_MAP_OvermapDevice" value="False" time="0"/>
<Property name="PROP_MAP_PackLogMapDes" value="" time="0"/> <Property name="PROP_MAP_PackLogMapDes" value="" time="0"/>
<Property name="PROP_MAP_RegRetiming" value="False" time="0"/> <Property name="PROP_MAP_RegRetiming" value="True" time="0"/>
<Property name="PROP_MAP_SigCrossRef" value="False" time="0"/> <Property name="PROP_MAP_SigCrossRef" value="False" time="0"/>
<Property name="PROP_MAP_SymCrossRef" value="False" time="0"/> <Property name="PROP_MAP_SymCrossRef" value="False" time="0"/>
<Property name="PROP_MAP_TimingDriven" value="False" time="0"/> <Property name="PROP_MAP_TimingDriven" value="False" time="0"/>
@ -119,12 +120,12 @@
<Property name="PROP_PAR_PARModArgs" value="" time="0"/> <Property name="PROP_PAR_PARModArgs" value="" time="0"/>
<Property name="PROP_PAR_ParMultiNodeList" value="" time="0"/> <Property name="PROP_PAR_ParMultiNodeList" value="" time="0"/>
<Property name="PROP_PAR_ParRunPlaceOnly" value="False" time="0"/> <Property name="PROP_PAR_ParRunPlaceOnly" value="False" time="0"/>
<Property name="PROP_PAR_PlcIterParDes" value="10" time="0"/> <Property name="PROP_PAR_PlcIterParDes" value="16" time="0"/>
<Property name="PROP_PAR_PlcStCostTblParDes" value="1" time="0"/> <Property name="PROP_PAR_PlcStCostTblParDes" value="1" time="0"/>
<Property name="PROP_PAR_PrefErrorOut" value="True" time="0"/> <Property name="PROP_PAR_PrefErrorOut" value="True" time="0"/>
<Property name="PROP_PAR_RemoveDir" value="True" time="0"/> <Property name="PROP_PAR_RemoveDir" value="True" time="0"/>
<Property name="PROP_PAR_RouteDlyRedParDes" value="0" time="0"/> <Property name="PROP_PAR_RouteDlyRedParDes" value="0" time="0"/>
<Property name="PROP_PAR_RoutePassParDes" value="10" time="0"/> <Property name="PROP_PAR_RoutePassParDes" value="20" time="0"/>
<Property name="PROP_PAR_RouteResOptParDes" value="0" time="0"/> <Property name="PROP_PAR_RouteResOptParDes" value="0" time="0"/>
<Property name="PROP_PAR_RoutingCDP" value="1" time="0"/> <Property name="PROP_PAR_RoutingCDP" value="1" time="0"/>
<Property name="PROP_PAR_RoutingCDR" value="1" time="0"/> <Property name="PROP_PAR_RoutingCDR" value="1" time="0"/>
@ -179,8 +180,8 @@
<Property name="PROP_SYN_EdfNumStartEnd" value="" time="0"/> <Property name="PROP_SYN_EdfNumStartEnd" value="" time="0"/>
<Property name="PROP_SYN_EdfOutNetForm" value="None" time="0"/> <Property name="PROP_SYN_EdfOutNetForm" value="None" time="0"/>
<Property name="PROP_SYN_EdfPushTirstates" value="True" time="0"/> <Property name="PROP_SYN_EdfPushTirstates" value="True" time="0"/>
<Property name="PROP_SYN_EdfResSharing" value="True" time="0"/> <Property name="PROP_SYN_EdfResSharing" value="False" time="0"/>
<Property name="PROP_SYN_EdfRunRetiming" value="Pipelining Only" time="0"/> <Property name="PROP_SYN_EdfRunRetiming" value="Pipelining and Retiming" time="0"/>
<Property name="PROP_SYN_EdfSymFSM" value="True" time="0"/> <Property name="PROP_SYN_EdfSymFSM" value="True" time="0"/>
<Property name="PROP_SYN_EdfUnconsClk" value="False" time="0"/> <Property name="PROP_SYN_EdfUnconsClk" value="False" time="0"/>
<Property name="PROP_SYN_EdfVerilogInput" value="Verilog 2001" time="0"/> <Property name="PROP_SYN_EdfVerilogInput" value="Verilog 2001" time="0"/>

View File

@ -6,6 +6,12 @@
<Source name="../../rtl/memory/mem_bus.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/memory/mem_bus.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/n64/n64_scb.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/sd/sd_scb.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/fifo/fifo_bus.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/fifo/fifo_bus.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
@ -33,9 +39,15 @@
<Source name="../../rtl/memory/memory_sdram.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/memory/memory_sdram.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/n64/n64_reg_bus.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/n64/n64_cfg.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/n64/n64_cfg.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/n64/n64_cic.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/n64/n64_dd.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/n64/n64_dd.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
@ -48,15 +60,9 @@
<Source name="../../rtl/n64/n64_pi_fifo.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/n64/n64_pi_fifo.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/n64/n64_reg_bus.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/n64/n64_save_counter.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/n64/n64_save_counter.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/n64/n64_scb.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/n64/n64_si.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/n64/n64_si.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
@ -78,9 +84,6 @@
<Source name="../../rtl/sd/sd_dat.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/sd/sd_dat.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
<Source name="../../rtl/sd/sd_scb.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/>
</Source>
<Source name="../../rtl/sd/sd_top.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/sd/sd_top.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog"/> <Options VerilogStandard="System Verilog"/>
</Source> </Source>
@ -108,6 +111,54 @@
<Source name="../../rtl/vendor/lcmxo2/generated/pll_lattice_generated.v" type="Verilog" type_short="Verilog"> <Source name="../../rtl/vendor/lcmxo2/generated/pll_lattice_generated.v" type="Verilog" type_short="Verilog">
<Options/> <Options/>
</Source> </Source>
<Source name="../../rtl/serv/serv_aligner.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_alu.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_bufreg.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_bufreg2.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_compdec.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_csr.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_ctrl.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_decode.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_immdec.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_mem_if.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_rf_if.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_rf_ram.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_rf_ram_if.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_rf_top.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_state.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/serv/serv_top.v" type="Verilog" type_short="Verilog">
<Options/>
</Source>
<Source name="../../rtl/top.sv" type="Verilog" type_short="Verilog"> <Source name="../../rtl/top.sv" type="Verilog" type_short="Verilog">
<Options VerilogStandard="System Verilog" top_module="top"/> <Options VerilogStandard="System Verilog" top_module="top"/>
</Source> </Source>

View File

@ -358,7 +358,9 @@ module mcu_top (
REG_VENDOR_SCR, REG_VENDOR_SCR,
REG_VENDOR_DATA, REG_VENDOR_DATA,
REG_DEBUG_0, REG_DEBUG_0,
REG_DEBUG_1 REG_DEBUG_1,
REG_CIC_0,
REG_CIC_1
} reg_address_e; } reg_address_e;
logic bootloader_skip; logic bootloader_skip;
@ -368,6 +370,8 @@ module mcu_top (
logic dd_bm_ack; logic dd_bm_ack;
logic cic_invalid_region;
// Register read logic // Register read logic
@ -649,6 +653,22 @@ module mcu_top (
n64_scb.pi_debug[35:32] n64_scb.pi_debug[35:32]
}; };
end end
REG_CIC_0: begin
reg_rdata <= {
4'd0,
cic_invalid_region,
n64_scb.cic_disabled,
n64_scb.cic_64dd_mode,
n64_scb.cic_region,
n64_scb.cic_seed,
n64_scb.cic_checksum[47:32]
};
end
REG_CIC_1: begin
reg_rdata <= n64_scb.cic_checksum[31:0];
end
endcase endcase
end end
end end
@ -705,6 +725,10 @@ module mcu_top (
dd_bm_ack <= 1'b1; dd_bm_ack <= 1'b1;
end end
if (n64_scb.cic_invalid_region) begin
cic_invalid_region <= 1'b1;
end
if (reset) begin if (reset) begin
mcu_int <= 1'b0; mcu_int <= 1'b0;
sd_scb.clock_mode <= 2'd0; sd_scb.clock_mode <= 2'd0;
@ -723,6 +747,12 @@ module mcu_top (
flash_scb.erase_pending <= 1'b0; flash_scb.erase_pending <= 1'b0;
dd_bm_ack <= 1'b0; dd_bm_ack <= 1'b0;
n64_scb.rtc_wdata_valid <= 1'b0; n64_scb.rtc_wdata_valid <= 1'b0;
cic_invalid_region <= 1'b0;
n64_scb.cic_disabled <= 1'b0;
n64_scb.cic_64dd_mode <= 1'b0;
n64_scb.cic_region <= 1'b0;
n64_scb.cic_seed <= 8'h3F;
n64_scb.cic_checksum <= 48'hA536C0F1D859;
end else if (reg_write) begin end else if (reg_write) begin
case (address) case (address)
REG_MEM_ADDRESS: begin REG_MEM_ADDRESS: begin
@ -900,6 +930,21 @@ module mcu_top (
REG_VENDOR_DATA: begin REG_VENDOR_DATA: begin
vendor_scb.data_wdata <= reg_wdata; vendor_scb.data_wdata <= reg_wdata;
end end
REG_CIC_0: begin
if (reg_wdata[28]) begin
cic_invalid_region <= 1'b0;
end
n64_scb.cic_disabled <= reg_wdata[26];
n64_scb.cic_64dd_mode <= reg_wdata[25];
n64_scb.cic_region <= reg_wdata[24];
n64_scb.cic_seed <= reg_wdata[23:16];
n64_scb.cic_checksum[47:32] <= reg_wdata[15:0];
end
REG_CIC_1: begin
n64_scb.cic_checksum[31:0] <= reg_wdata;
end
endcase endcase
end end
end end

168
fw/rtl/n64/n64_cic.sv Normal file
View File

@ -0,0 +1,168 @@
module n64_cic (
input clk,
input reset,
n64_scb.cic n64_scb,
input n64_reset,
input n64_cic_clk,
inout n64_cic_dq
);
// Input/output synchronization
logic [1:0] n64_reset_ff;
logic [1:0] n64_cic_clk_ff;
logic [1:0] n64_cic_dq_ff;
always_ff @(posedge clk) begin
n64_reset_ff <= {n64_reset_ff[0], n64_reset};
n64_cic_clk_ff <= {n64_cic_clk_ff[0], n64_cic_clk};
n64_cic_dq_ff <= {n64_cic_dq_ff[0], n64_cic_dq};
end
logic cic_reset;
logic cic_clk;
logic cic_dq;
always_comb begin
cic_reset = n64_reset_ff[1];
cic_clk = n64_cic_clk_ff[1];
cic_dq = n64_cic_dq_ff[1];
end
logic cic_dq_out;
assign n64_cic_dq = cic_dq_out ? 1'bZ : 1'b0;
// SERV RISC-V CPU
logic [31:0] ibus_addr;
logic ibus_cycle;
logic [31:0] ibus_rdata;
logic ibus_ack;
logic [31:0] dbus_addr;
logic [31:0] dbus_wdata;
logic [3:0] dbus_wmask;
logic dbus_write;
logic dbus_cycle;
logic [31:0] dbus_rdata;
logic dbus_ack;
logic [31:0] ext_rs1;
logic [31:0] ext_rs2;
logic [2:0] ext_funct3;
logic mdu_valid;
serv_rf_top #(
.RESET_PC(32'h8000_0000),
.PRE_REGISTER(0),
.WITH_CSR(0)
) serv_rf_top_inst (
.clk(clk),
.i_rst(reset),
.i_timer_irq(1'b0),
.o_ibus_adr(ibus_addr),
.o_ibus_cyc(ibus_cycle),
.i_ibus_rdt(ibus_rdata),
.i_ibus_ack(ibus_ack),
.o_dbus_adr(dbus_addr),
.o_dbus_dat(dbus_wdata),
.o_dbus_sel(dbus_wmask),
.o_dbus_we(dbus_write) ,
.o_dbus_cyc(dbus_cycle),
.i_dbus_rdt(dbus_rdata),
.i_dbus_ack(dbus_ack),
.o_ext_rs1(ext_rs1),
.o_ext_rs2(ext_rs2),
.o_ext_funct3(ext_funct3),
.i_ext_rd(32'd0),
.i_ext_ready(1'b0),
.o_mdu_valid(mdu_valid)
);
// CPU memory
logic [8:0] ram_addr;
logic [31:0] ram [0:511];
logic [31:0] ram_output;
assign ram_addr = ibus_cycle ? ibus_addr[10:2] : dbus_addr[10:2];
assign ibus_rdata = ram_output;
always_ff @(posedge clk) begin
ram_output <= ram[ram_addr];
ibus_ack <= ibus_cycle && !ibus_ack;
end
initial begin
$readmemh("../../../sw/cic/cic.mem", ram);
end
// Bus controller
always_ff @(posedge clk) begin
n64_scb.cic_invalid_region <= 1'b0;
dbus_ack <= dbus_cycle && !dbus_ack;
if (dbus_cycle && dbus_write) begin
case (dbus_addr[31:30])
2'b10: begin
if (dbus_wmask[0]) ram[ram_addr][7:0] <= dbus_wdata[7:0];
if (dbus_wmask[1]) ram[ram_addr][15:8] <= dbus_wdata[15:8];
if (dbus_wmask[2]) ram[ram_addr][23:16] <= dbus_wdata[23:16];
if (dbus_wmask[3]) ram[ram_addr][31:24] <= dbus_wdata[31:24];
end
2'b11: begin
case (dbus_addr[3:2])
2'b10: begin
n64_scb.cic_invalid_region <= dbus_wdata[3];
cic_dq_out <= dbus_wdata[0];
end
endcase
end
endcase
end
if (reset || !cic_reset) begin
cic_dq_out <= 1'b1;
end
end
always_comb begin
dbus_rdata = 32'd0;
case (dbus_addr[31:30])
2'b10: begin
dbus_rdata = ram_output;
end
2'b11: begin
case (dbus_addr[3:2])
2'b00: dbus_rdata = {
n64_scb.cic_disabled,
n64_scb.cic_64dd_mode,
n64_scb.cic_region,
n64_scb.cic_seed,
n64_scb.cic_checksum[47:32]
};
2'b01: dbus_rdata = n64_scb.cic_checksum[31:0];
2'b10: dbus_rdata = {29'd0, cic_reset, cic_clk, cic_dq};
endcase
end
endcase
end
endmodule

View File

@ -20,16 +20,16 @@ module n64_pi (
logic [1:0] n64_reset_ff; logic [1:0] n64_reset_ff;
logic [1:0] n64_nmi_ff; logic [1:0] n64_nmi_ff;
logic [3:0] n64_pi_alel_ff; logic [2:0] n64_pi_alel_ff;
logic [3:0] n64_pi_aleh_ff; logic [2:0] n64_pi_aleh_ff;
logic [1:0] n64_pi_read_ff; logic [1:0] n64_pi_read_ff;
logic [2:0] n64_pi_write_ff; logic [2:0] n64_pi_write_ff;
always_ff @(posedge clk) begin always_ff @(posedge clk) begin
n64_reset_ff <= {n64_reset_ff[0], n64_reset}; n64_reset_ff <= {n64_reset_ff[0], n64_reset};
n64_nmi_ff <= {n64_nmi_ff[0], n64_nmi}; n64_nmi_ff <= {n64_nmi_ff[0], n64_nmi};
n64_pi_aleh_ff <= {n64_pi_aleh_ff[2:0], n64_pi_aleh}; n64_pi_aleh_ff <= {n64_pi_aleh_ff[1:0], n64_pi_aleh};
n64_pi_alel_ff <= {n64_pi_alel_ff[2:0], n64_pi_alel}; n64_pi_alel_ff <= {n64_pi_alel_ff[1:0], n64_pi_alel};
n64_pi_read_ff <= {n64_pi_read_ff[0], n64_pi_read}; n64_pi_read_ff <= {n64_pi_read_ff[0], n64_pi_read};
n64_pi_write_ff <= {n64_pi_write_ff[1:0], n64_pi_write}; n64_pi_write_ff <= {n64_pi_write_ff[1:0], n64_pi_write};
end end
@ -44,8 +44,8 @@ module n64_pi (
always_comb begin always_comb begin
pi_reset = n64_reset_ff[1]; pi_reset = n64_reset_ff[1];
pi_nmi = n64_nmi_ff[1]; pi_nmi = n64_nmi_ff[1];
pi_aleh = n64_pi_aleh_ff[3]; pi_aleh = n64_pi_aleh_ff[2];
pi_alel = n64_pi_alel_ff[3]; pi_alel = n64_pi_alel_ff[2];
pi_read = n64_pi_read_ff[1]; pi_read = n64_pi_read_ff[1];
pi_write = n64_pi_write_ff[2]; pi_write = n64_pi_write_ff[2];
end end
@ -98,11 +98,14 @@ module n64_pi (
always_comb begin always_comb begin
n64_scb.n64_reset = !last_reset && pi_reset; n64_scb.n64_reset = !last_reset && pi_reset;
n64_scb.n64_nmi = !last_nmi && pi_nmi; n64_scb.n64_nmi = !last_nmi && pi_nmi;
aleh_op = pi_reset && (last_pi_mode != PI_MODE_HIGH) && (pi_mode == PI_MODE_HIGH); end
alel_op = pi_reset && (last_pi_mode == PI_MODE_HIGH) && (pi_mode == PI_MODE_LOW);
read_op = pi_reset && (pi_mode == PI_MODE_VALID) && (read_port != PORT_NONE) && (last_read && !pi_read); always_ff @(posedge clk) begin
write_op = pi_reset && (pi_mode == PI_MODE_VALID) && (write_port != PORT_NONE) && (last_write && !pi_write); aleh_op <= pi_reset && (last_pi_mode != PI_MODE_HIGH) && (pi_mode == PI_MODE_HIGH);
end_op = pi_reset && (last_pi_mode == PI_MODE_VALID) && (pi_mode != PI_MODE_VALID); alel_op <= pi_reset && (last_pi_mode == PI_MODE_HIGH) && (pi_mode == PI_MODE_LOW);
read_op <= pi_reset && (pi_mode == PI_MODE_VALID) && (read_port != PORT_NONE) && (last_read && !pi_read);
write_op <= pi_reset && (pi_mode == PI_MODE_VALID) && (write_port != PORT_NONE) && (last_write && !pi_write);
end_op <= pi_reset && (last_pi_mode == PI_MODE_VALID) && (pi_mode != PI_MODE_VALID);
end end

View File

@ -55,6 +55,13 @@ interface n64_scb ();
logic [15:0] save_count; logic [15:0] save_count;
logic cic_invalid_region;
logic cic_disabled;
logic cic_64dd_mode;
logic cic_region;
logic [7:0] cic_seed;
logic [47:0] cic_checksum;
logic pi_sdram_active; logic pi_sdram_active;
logic pi_flash_active; logic pi_flash_active;
logic [35:0] pi_debug; logic [35:0] pi_debug;
@ -98,6 +105,13 @@ interface n64_scb ();
input save_count, input save_count,
input cic_invalid_region,
output cic_disabled,
output cic_64dd_mode,
output cic_region,
output cic_seed,
output cic_checksum,
input pi_debug input pi_debug
); );
@ -205,6 +219,15 @@ interface n64_scb ();
output save_count output save_count
); );
modport cic (
output cic_invalid_region,
input cic_disabled,
input cic_64dd_mode,
input cic_region,
input cic_seed,
input cic_checksum
);
modport arbiter ( modport arbiter (
input pi_sdram_active, input pi_sdram_active,
input pi_flash_active input pi_flash_active

View File

@ -18,7 +18,10 @@ module n64_top (
inout [15:0] n64_pi_ad, inout [15:0] n64_pi_ad,
input n64_si_clk, input n64_si_clk,
inout n64_si_dq inout n64_si_dq,
input n64_cic_clk,
inout n64_cic_dq
); );
logic n64_dd_irq; logic n64_dd_irq;
@ -101,4 +104,15 @@ module n64_top (
.n64_scb(n64_scb) .n64_scb(n64_scb)
); );
n64_cic n64_cic_inst (
.clk(clk),
.reset(reset),
.n64_scb(n64_scb),
.n64_reset(n64_reset),
.n64_cic_clk(n64_cic_clk),
.n64_cic_dq(n64_cic_dq)
);
endmodule endmodule

View File

@ -0,0 +1,67 @@
module serv_aligner
(
input wire clk,
input wire rst,
// serv_top
input wire [31:0] i_ibus_adr,
input wire i_ibus_cyc,
output wire [31:0] o_ibus_rdt,
output wire o_ibus_ack,
// serv_rf_top
output wire [31:0] o_wb_ibus_adr,
output wire o_wb_ibus_cyc,
input wire [31:0] i_wb_ibus_rdt,
input wire i_wb_ibus_ack);
wire [31:0] ibus_rdt_concat;
wire ack_en;
reg [15:0] lower_hw;
reg ctrl_misal ;
/* From SERV core to Memory
o_wb_ibus_adr: Carries address of instruction to memory. In case of misaligned access,
which is caused by pc+2 due to compressed instruction, next instruction is fetched
by pc+4 and concatenation is done to make the instruction aligned.
o_wb_ibus_cyc: Simply forwarded from SERV to Memory and is only altered by memory or SERV core.
*/
assign o_wb_ibus_adr = ctrl_misal ? (i_ibus_adr+32'b100) : i_ibus_adr;
assign o_wb_ibus_cyc = i_ibus_cyc;
/* From Memory to SERV core
o_ibus_ack: Instruction bus acknowledge is send to SERV only when the aligned instruction,
either compressed or un-compressed, is ready to dispatch.
o_ibus_rdt: Carries the instruction from memory to SERV core. It can be either aligned
instruction coming from memory or made aligned by two bus transactions and concatenation.
*/
assign o_ibus_ack = i_wb_ibus_ack & ack_en;
assign o_ibus_rdt = ctrl_misal ? ibus_rdt_concat : i_wb_ibus_rdt;
/* 16-bit register used to hold the upper half word of the current instruction in-case
concatenation will be required with the upper half word of upcoming instruction
*/
always @(posedge clk) begin
if(i_wb_ibus_ack)begin
lower_hw <= i_wb_ibus_rdt[31:16];
end
end
assign ibus_rdt_concat = {i_wb_ibus_rdt[15:0],lower_hw};
/* Two control signals: ack_en, ctrl_misal are set to control the bus transactions between
SERV core and the memory
*/
assign ack_en = !(i_ibus_adr[1] & !ctrl_misal);
always @(posedge clk ) begin
if(rst)
ctrl_misal <= 0;
else if(i_wb_ibus_ack & i_ibus_adr[1])
ctrl_misal <= !ctrl_misal;
end
endmodule

81
fw/rtl/serv/serv_alu.v Normal file
View File

@ -0,0 +1,81 @@
`default_nettype none
module serv_alu
#(
parameter W = 1,
parameter B = W-1
)
(
input wire clk,
//State
input wire i_en,
input wire i_cnt0,
output wire o_cmp,
//Control
input wire i_sub,
input wire [1:0] i_bool_op,
input wire i_cmp_eq,
input wire i_cmp_sig,
input wire [2:0] i_rd_sel,
//Data
input wire [B:0] i_rs1,
input wire [B:0] i_op_b,
input wire [B:0] i_buf,
output wire [B:0] o_rd);
wire [B:0] result_add;
wire [B:0] result_slt;
reg cmp_r;
wire add_cy;
reg [B:0] add_cy_r;
//Sign-extended operands
wire rs1_sx = i_rs1[B] & i_cmp_sig;
wire op_b_sx = i_op_b[B] & i_cmp_sig;
wire [B:0] add_b = i_op_b^{W{i_sub}};
assign {add_cy,result_add} = i_rs1+add_b+add_cy_r;
wire result_lt = rs1_sx + ~op_b_sx + add_cy;
wire result_eq = !(|result_add) & (cmp_r | i_cnt0);
assign o_cmp = i_cmp_eq ? result_eq : result_lt;
/*
The result_bool expression implements the following operations between
i_rs1 and i_op_b depending on the value of i_bool_op
00 xor
01 0
10 or
11 and
i_bool_op will be 01 during shift operations, so by outputting zero under
this condition we can safely or result_bool with i_buf
*/
wire [B:0] result_bool = ((i_rs1 ^ i_op_b) & ~{W{i_bool_op[0]}}) | ({W{i_bool_op[1]}} & i_op_b & i_rs1);
assign result_slt[0] = cmp_r & i_cnt0;
generate
if (W>1) begin : gen_w_gt_1
assign result_slt[B:1] = {B{1'b0}};
end
endgenerate
assign o_rd = i_buf |
({W{i_rd_sel[0]}} & result_add) |
({W{i_rd_sel[1]}} & result_slt) |
({W{i_rd_sel[2]}} & result_bool);
always @(posedge clk) begin
add_cy_r <= {W{1'b0}};
add_cy_r[0] <= i_en ? add_cy : i_sub;
if (i_en)
cmp_r <= o_cmp;
end
endmodule

51
fw/rtl/serv/serv_bufreg.v Normal file
View File

@ -0,0 +1,51 @@
module serv_bufreg #(
parameter [0:0] MDU = 0
)(
input wire i_clk,
//State
input wire i_cnt0,
input wire i_cnt1,
input wire i_en,
input wire i_init,
input wire i_mdu_op,
output wire [1:0] o_lsb,
//Control
input wire i_rs1_en,
input wire i_imm_en,
input wire i_clr_lsb,
input wire i_sh_signed,
//Data
input wire i_rs1,
input wire i_imm,
output wire o_q,
//External
output wire [31:0] o_dbus_adr,
//Extension
output wire [31:0] o_ext_rs1);
wire c, q;
reg c_r;
reg [31:2] data;
reg [1:0] lsb;
wire clr_lsb = i_cnt0 & i_clr_lsb;
assign {c,q} = {1'b0,(i_rs1 & i_rs1_en)} + {1'b0,(i_imm & i_imm_en & !clr_lsb)} + c_r;
always @(posedge i_clk) begin
//Make sure carry is cleared before loading new data
c_r <= c & i_en;
if (i_en)
data <= {i_init ? q : (data[31] & i_sh_signed), data[31:3]};
if (i_init ? (i_cnt0 | i_cnt1) : i_en)
lsb <= {i_init ? q : data[2],lsb[1]};
end
assign o_q = lsb[0] & i_en;
assign o_dbus_adr = {data, 2'b00};
assign o_ext_rs1 = {o_dbus_adr[31:2],lsb};
assign o_lsb = (MDU & i_mdu_op) ? 2'b00 : lsb;
endmodule

View File

@ -0,0 +1,65 @@
module serv_bufreg2
(
input wire i_clk,
//State
input wire i_en,
input wire i_init,
input wire i_cnt_done,
input wire [1:0] i_lsb,
input wire i_byte_valid,
output wire o_sh_done,
output wire o_sh_done_r,
//Control
input wire i_op_b_sel,
input wire i_shift_op,
//Data
input wire i_rs2,
input wire i_imm,
output wire o_op_b,
output wire o_q,
//External
output wire [31:0] o_dat,
input wire i_load,
input wire [31:0] i_dat);
reg [31:0] dat;
assign o_op_b = i_op_b_sel ? i_rs2 : i_imm;
wire dat_en = i_shift_op | (i_en & i_byte_valid);
/* The dat register has three different use cases for store, load and
shift operations.
store : Data to be written is shifted to the correct position in dat during
init by dat_en and is presented on the data bus as o_wb_dat
load : Data from the bus gets latched into dat during i_wb_ack and is then
shifted out at the appropriate time to end up in the correct
position in rd
shift : Data is shifted in during init. After that, the six LSB are used as
a downcounter (with bit 5 initially set to 0) that triggers
o_sh_done and o_sh_done_r when they wrap around to indicate that
the requested number of shifts have been performed
*/
wire [5:0] dat_shamt = (i_shift_op & !i_init) ?
//Down counter mode
dat[5:0]-1 :
//Shift reg mode with optional clearing of bit 5
{dat[6] & !(i_shift_op & i_cnt_done),dat[5:1]};
assign o_sh_done = dat_shamt[5];
assign o_sh_done_r = dat[5];
assign o_q =
((i_lsb == 2'd3) & dat[24]) |
((i_lsb == 2'd2) & dat[16]) |
((i_lsb == 2'd1) & dat[8]) |
((i_lsb == 2'd0) & dat[0]);
assign o_dat = dat;
always @(posedge i_clk) begin
if (dat_en | i_load)
dat <= i_load ? i_dat : {o_op_b, dat[31:7], dat_shamt};
end
endmodule

234
fw/rtl/serv/serv_compdec.v Normal file
View File

@ -0,0 +1,234 @@
/* Copyright lowRISC contributors.
Copyright 2018 ETH Zurich and University of Bologna, see also CREDITS.md.
Licensed under the Apache License, Version 2.0, see LICENSE for details.
SPDX-License-Identifier: Apache-2.0
* Adapted to SERV by @Abdulwadoodd as part of the project under spring '22 LFX Mentorship program */
/* Decodes RISC-V compressed instructions into their RV32i equivalent. */
module serv_compdec
(
input wire i_clk,
input wire [31:0] i_instr,
input wire i_ack,
output wire [31:0] o_instr,
output reg o_iscomp);
localparam OPCODE_LOAD = 7'h03;
localparam OPCODE_OP_IMM = 7'h13;
localparam OPCODE_STORE = 7'h23;
localparam OPCODE_OP = 7'h33;
localparam OPCODE_LUI = 7'h37;
localparam OPCODE_BRANCH = 7'h63;
localparam OPCODE_JALR = 7'h67;
localparam OPCODE_JAL = 7'h6f;
reg [31:0] comp_instr;
reg illegal_instr;
assign o_instr = illegal_instr ? i_instr : comp_instr;
always @(posedge i_clk) begin
if(i_ack)
o_iscomp <= !illegal_instr;
end
always @ (*) begin
// By default, forward incoming instruction, mark it as legal.
comp_instr = i_instr;
illegal_instr = 1'b0;
// Check if incoming instruction is compressed.
case (i_instr[1:0])
// C0
2'b00: begin
case (i_instr[15:14])
2'b00: begin
// c.addi4spn -> addi rd', x2, imm
comp_instr = {2'b0, i_instr[10:7], i_instr[12:11], i_instr[5],
i_instr[6], 2'b00, 5'h02, 3'b000, 2'b01, i_instr[4:2], {OPCODE_OP_IMM}};
end
2'b01: begin
// c.lw -> lw rd', imm(rs1')
comp_instr = {5'b0, i_instr[5], i_instr[12:10], i_instr[6],
2'b00, 2'b01, i_instr[9:7], 3'b010, 2'b01, i_instr[4:2], {OPCODE_LOAD}};
end
2'b11: begin
// c.sw -> sw rs2', imm(rs1')
comp_instr = {5'b0, i_instr[5], i_instr[12], 2'b01, i_instr[4:2],
2'b01, i_instr[9:7], 3'b010, i_instr[11:10], i_instr[6],
2'b00, {OPCODE_STORE}};
end
2'b10: begin
illegal_instr = 1'b1;
end
endcase
end
// C1
// Register address checks for RV32E are performed in the regular instruction decoder.
// If this check fails, an illegal instruction exception is triggered and the controller
// writes the actual faulting instruction to mtval.
2'b01: begin
case (i_instr[15:13])
3'b000: begin
// c.addi -> addi rd, rd, nzimm
// c.nop
comp_instr = {{6 {i_instr[12]}}, i_instr[12], i_instr[6:2],
i_instr[11:7], 3'b0, i_instr[11:7], {OPCODE_OP_IMM}};
end
3'b001, 3'b101: begin
// 001: c.jal -> jal x1, imm
// 101: c.j -> jal x0, imm
comp_instr = {i_instr[12], i_instr[8], i_instr[10:9], i_instr[6],
i_instr[7], i_instr[2], i_instr[11], i_instr[5:3],
{9 {i_instr[12]}}, 4'b0, ~i_instr[15], {OPCODE_JAL}};
end
3'b010: begin
// c.li -> addi rd, x0, nzimm
// (c.li hints are translated into an addi hint)
comp_instr = {{6 {i_instr[12]}}, i_instr[12], i_instr[6:2], 5'b0,
3'b0, i_instr[11:7], {OPCODE_OP_IMM}};
end
3'b011: begin
// c.lui -> lui rd, imm
// (c.lui hints are translated into a lui hint)
comp_instr = {{15 {i_instr[12]}}, i_instr[6:2], i_instr[11:7], {OPCODE_LUI}};
if (i_instr[11:7] == 5'h02) begin
// c.addi16sp -> addi x2, x2, nzimm
comp_instr = {{3 {i_instr[12]}}, i_instr[4:3], i_instr[5], i_instr[2],
i_instr[6], 4'b0, 5'h02, 3'b000, 5'h02, {OPCODE_OP_IMM}};
end
end
3'b100: begin
case (i_instr[11:10])
2'b00,
2'b01: begin
// 00: c.srli -> srli rd, rd, shamt
// 01: c.srai -> srai rd, rd, shamt
// (c.srli/c.srai hints are translated into a srli/srai hint)
comp_instr = {1'b0, i_instr[10], 5'b0, i_instr[6:2], 2'b01, i_instr[9:7],
3'b101, 2'b01, i_instr[9:7], {OPCODE_OP_IMM}};
end
2'b10: begin
// c.andi -> andi rd, rd, imm
comp_instr = {{6 {i_instr[12]}}, i_instr[12], i_instr[6:2], 2'b01, i_instr[9:7],
3'b111, 2'b01, i_instr[9:7], {OPCODE_OP_IMM}};
end
2'b11: begin
case (i_instr[6:5])
2'b00: begin
// c.sub -> sub rd', rd', rs2'
comp_instr = {2'b01, 5'b0, 2'b01, i_instr[4:2], 2'b01, i_instr[9:7],
3'b000, 2'b01, i_instr[9:7], {OPCODE_OP}};
end
2'b01: begin
// c.xor -> xor rd', rd', rs2'
comp_instr = {7'b0, 2'b01, i_instr[4:2], 2'b01, i_instr[9:7], 3'b100,
2'b01, i_instr[9:7], {OPCODE_OP}};
end
2'b10: begin
// c.or -> or rd', rd', rs2'
comp_instr = {7'b0, 2'b01, i_instr[4:2], 2'b01, i_instr[9:7], 3'b110,
2'b01, i_instr[9:7], {OPCODE_OP}};
end
2'b11: begin
// c.and -> and rd', rd', rs2'
comp_instr = {7'b0, 2'b01, i_instr[4:2], 2'b01, i_instr[9:7], 3'b111,
2'b01, i_instr[9:7], {OPCODE_OP}};
end
endcase
end
endcase
end
3'b110, 3'b111: begin
// 0: c.beqz -> beq rs1', x0, imm
// 1: c.bnez -> bne rs1', x0, imm
comp_instr = {{4 {i_instr[12]}}, i_instr[6:5], i_instr[2], 5'b0, 2'b01,
i_instr[9:7], 2'b00, i_instr[13], i_instr[11:10], i_instr[4:3],
i_instr[12], {OPCODE_BRANCH}};
end
endcase
end
// C2
// Register address checks for RV32E are performed in the regular instruction decoder.
// If this check fails, an illegal instruction exception is triggered and the controller
// writes the actual faulting instruction to mtval.
2'b10: begin
case (i_instr[15:14])
2'b00: begin
// c.slli -> slli rd, rd, shamt
// (c.ssli hints are translated into a slli hint)
comp_instr = {7'b0, i_instr[6:2], i_instr[11:7], 3'b001, i_instr[11:7], {OPCODE_OP_IMM}};
end
2'b01: begin
// c.lwsp -> lw rd, imm(x2)
comp_instr = {4'b0, i_instr[3:2], i_instr[12], i_instr[6:4], 2'b00, 5'h02,
3'b010, i_instr[11:7], OPCODE_LOAD};
end
2'b10: begin
if (i_instr[12] == 1'b0) begin
if (i_instr[6:2] != 5'b0) begin
// c.mv -> add rd/rs1, x0, rs2
// (c.mv hints are translated into an add hint)
comp_instr = {7'b0, i_instr[6:2], 5'b0, 3'b0, i_instr[11:7], {OPCODE_OP}};
end else begin
// c.jr -> jalr x0, rd/rs1, 0
comp_instr = {12'b0, i_instr[11:7], 3'b0, 5'b0, {OPCODE_JALR}};
end
end else begin
if (i_instr[6:2] != 5'b0) begin
// c.add -> add rd, rd, rs2
// (c.add hints are translated into an add hint)
comp_instr = {7'b0, i_instr[6:2], i_instr[11:7], 3'b0, i_instr[11:7], {OPCODE_OP}};
end else begin
if (i_instr[11:7] == 5'b0) begin
// c.ebreak -> ebreak
comp_instr = {32'h00_10_00_73};
end else begin
// c.jalr -> jalr x1, rs1, 0
comp_instr = {12'b0, i_instr[11:7], 3'b000, 5'b00001, {OPCODE_JALR}};
end
end
end
end
2'b11: begin
// c.swsp -> sw rs2, imm(x2)
comp_instr = {4'b0, i_instr[8:7], i_instr[12], i_instr[6:2], 5'h02, 3'b010,
i_instr[11:9], 2'b00, {OPCODE_STORE}};
end
endcase
end
// Incoming instruction is not compressed.
2'b11: illegal_instr = 1'b1;
endcase
end
endmodule

142
fw/rtl/serv/serv_csr.v Normal file
View File

@ -0,0 +1,142 @@
`default_nettype none
module serv_csr
#(parameter RESET_STRATEGY = "MINI")
(
input wire i_clk,
input wire i_rst,
//State
input wire i_trig_irq,
input wire i_en,
input wire i_cnt0to3,
input wire i_cnt3,
input wire i_cnt7,
input wire i_cnt_done,
input wire i_mem_op,
input wire i_mtip,
input wire i_trap,
output reg o_new_irq,
//Control
input wire i_e_op,
input wire i_ebreak,
input wire i_mem_cmd,
input wire i_mstatus_en,
input wire i_mie_en,
input wire i_mcause_en,
input wire [1:0] i_csr_source,
input wire i_mret,
input wire i_csr_d_sel,
//Data
input wire i_rf_csr_out,
output wire o_csr_in,
input wire i_csr_imm,
input wire i_rs1,
output wire o_q);
localparam [1:0]
CSR_SOURCE_CSR = 2'b00,
CSR_SOURCE_EXT = 2'b01,
CSR_SOURCE_SET = 2'b10,
CSR_SOURCE_CLR = 2'b11;
reg mstatus_mie;
reg mstatus_mpie;
reg mie_mtie;
reg mcause31;
reg [3:0] mcause3_0;
wire mcause;
wire csr_in;
wire csr_out;
reg timer_irq_r;
wire d = i_csr_d_sel ? i_csr_imm : i_rs1;
assign csr_in = (i_csr_source == CSR_SOURCE_EXT) ? d :
(i_csr_source == CSR_SOURCE_SET) ? csr_out | d :
(i_csr_source == CSR_SOURCE_CLR) ? csr_out & ~d :
(i_csr_source == CSR_SOURCE_CSR) ? csr_out :
1'bx;
assign csr_out = (i_mstatus_en & mstatus_mie & i_cnt3) |
i_rf_csr_out |
(i_mcause_en & i_en & mcause);
assign o_q = csr_out;
wire timer_irq = i_mtip & mstatus_mie & mie_mtie;
assign mcause = i_cnt0to3 ? mcause3_0[0] : //[3:0]
i_cnt_done ? mcause31 //[31]
: 1'b0;
assign o_csr_in = csr_in;
always @(posedge i_clk) begin
if (i_trig_irq) begin
timer_irq_r <= timer_irq;
o_new_irq <= timer_irq & !timer_irq_r;
end
if (i_mie_en & i_cnt7)
mie_mtie <= csr_in;
/*
The mie bit in mstatus gets updated under three conditions
When a trap is taken, the bit is cleared
During an mret instruction, the bit is restored from mpie
During a mstatus CSR access instruction it's assigned when
bit 3 gets updated
These conditions are all mutually exclusibe
*/
if ((i_trap & i_cnt_done) | i_mstatus_en & i_cnt3 | i_mret)
mstatus_mie <= !i_trap & (i_mret ? mstatus_mpie : csr_in);
/*
Note: To save resources mstatus_mpie (mstatus bit 7) is not
readable or writable from sw
*/
if (i_trap & i_cnt_done)
mstatus_mpie <= mstatus_mie;
/*
The four lowest bits in mcause hold the exception code
These bits get updated under three conditions
During an mcause CSR access function, they are assigned when
bits 0 to 3 gets updated
During an external interrupt the exception code is set to
7, since SERV only support timer interrupts
During an exception, the exception code is assigned to indicate
if it was caused by an ebreak instruction (3),
ecall instruction (11), misaligned load (4), misaligned store (6)
or misaligned jump (0)
The expressions below are derived from the following truth table
irq => 0111 (timer=7)
e_op => x011 (ebreak=3, ecall=11)
mem => 01x0 (store=6, load=4)
ctrl => 0000 (jump=0)
*/
if (i_mcause_en & i_en & i_cnt0to3 | (i_trap & i_cnt_done)) begin
mcause3_0[3] <= (i_e_op & !i_ebreak) | (!i_trap & csr_in);
mcause3_0[2] <= o_new_irq | i_mem_op | (!i_trap & mcause3_0[3]);
mcause3_0[1] <= o_new_irq | i_e_op | (i_mem_op & i_mem_cmd) | (!i_trap & mcause3_0[2]);
mcause3_0[0] <= o_new_irq | i_e_op | (!i_trap & mcause3_0[1]);
end
if (i_mcause_en & i_cnt_done | i_trap)
mcause31 <= i_trap ? o_new_irq : csr_in;
if (i_rst)
if (RESET_STRATEGY != "NONE") begin
o_new_irq <= 1'b0;
mie_mtie <= 1'b0;
end
end
endmodule

84
fw/rtl/serv/serv_ctrl.v Normal file
View File

@ -0,0 +1,84 @@
`default_nettype none
module serv_ctrl
#(parameter RESET_STRATEGY = "MINI",
parameter RESET_PC = 32'd0,
parameter WITH_CSR = 1)
(
input wire clk,
input wire i_rst,
//State
input wire i_pc_en,
input wire i_cnt12to31,
input wire i_cnt0,
input wire i_cnt1,
input wire i_cnt2,
//Control
input wire i_jump,
input wire i_jal_or_jalr,
input wire i_utype,
input wire i_pc_rel,
input wire i_trap,
input wire i_iscomp,
//Data
input wire i_imm,
input wire i_buf,
input wire i_csr_pc,
output wire o_rd,
output wire o_bad_pc,
//External
output reg [31:0] o_ibus_adr);
wire pc_plus_4;
wire pc_plus_4_cy;
reg pc_plus_4_cy_r;
wire pc_plus_offset;
wire pc_plus_offset_cy;
reg pc_plus_offset_cy_r;
wire pc_plus_offset_aligned;
wire plus_4;
wire pc = o_ibus_adr[0];
wire new_pc;
wire offset_a;
wire offset_b;
/* If i_iscomp=1: increment pc by 2 else increment pc by 4 */
assign plus_4 = i_iscomp ? i_cnt1 : i_cnt2;
assign o_bad_pc = pc_plus_offset_aligned;
assign {pc_plus_4_cy,pc_plus_4} = pc+plus_4+pc_plus_4_cy_r;
generate
if (|WITH_CSR) begin : gen_csr
assign new_pc = i_trap ? (i_csr_pc & !i_cnt0) : i_jump ? pc_plus_offset_aligned : pc_plus_4;
end else begin : gen_no_csr
assign new_pc = i_jump ? pc_plus_offset_aligned : pc_plus_4;
end
endgenerate
assign o_rd = (i_utype & pc_plus_offset_aligned) | (pc_plus_4 & i_jal_or_jalr);
assign offset_a = i_pc_rel & pc;
assign offset_b = i_utype ? (i_imm & i_cnt12to31): i_buf;
assign {pc_plus_offset_cy,pc_plus_offset} = offset_a+offset_b+pc_plus_offset_cy_r;
assign pc_plus_offset_aligned = pc_plus_offset & !i_cnt0;
initial if (RESET_STRATEGY == "NONE") o_ibus_adr = RESET_PC;
always @(posedge clk) begin
pc_plus_4_cy_r <= i_pc_en & pc_plus_4_cy;
pc_plus_offset_cy_r <= i_pc_en & pc_plus_offset_cy;
if (RESET_STRATEGY == "NONE") begin
if (i_pc_en)
o_ibus_adr <= {new_pc, o_ibus_adr[31:1]};
end else begin
if (i_pc_en | i_rst)
o_ibus_adr <= i_rst ? RESET_PC : {new_pc, o_ibus_adr[31:1]};
end
end
endmodule

365
fw/rtl/serv/serv_decode.v Normal file
View File

@ -0,0 +1,365 @@
`default_nettype none
module serv_decode
#(parameter [0:0] PRE_REGISTER = 1,
parameter [0:0] MDU = 0)
(
input wire clk,
//Input
input wire [31:2] i_wb_rdt,
input wire i_wb_en,
//To state
output reg o_sh_right,
output reg o_bne_or_bge,
output reg o_cond_branch,
output reg o_e_op,
output reg o_ebreak,
output reg o_branch_op,
output reg o_shift_op,
output reg o_slt_or_branch,
output reg o_rd_op,
output reg o_two_stage_op,
output reg o_dbus_en,
//MDU
output reg o_mdu_op,
//Extension
output reg [2:0] o_ext_funct3,
//To bufreg
output reg o_bufreg_rs1_en,
output reg o_bufreg_imm_en,
output reg o_bufreg_clr_lsb,
output reg o_bufreg_sh_signed,
//To ctrl
output reg o_ctrl_jal_or_jalr,
output reg o_ctrl_utype,
output reg o_ctrl_pc_rel,
output reg o_ctrl_mret,
//To alu
output reg o_alu_sub,
output reg [1:0] o_alu_bool_op,
output reg o_alu_cmp_eq,
output reg o_alu_cmp_sig,
output reg [2:0] o_alu_rd_sel,
//To mem IF
output reg o_mem_signed,
output reg o_mem_word,
output reg o_mem_half,
output reg o_mem_cmd,
//To CSR
output reg o_csr_en,
output reg [1:0] o_csr_addr,
output reg o_csr_mstatus_en,
output reg o_csr_mie_en,
output reg o_csr_mcause_en,
output reg [1:0] o_csr_source,
output reg o_csr_d_sel,
output reg o_csr_imm_en,
output reg o_mtval_pc,
//To top
output reg [3:0] o_immdec_ctrl,
output reg [3:0] o_immdec_en,
output reg o_op_b_source,
//To RF IF
output reg o_rd_mem_en,
output reg o_rd_csr_en,
output reg o_rd_alu_en);
reg [4:0] opcode;
reg [2:0] funct3;
reg op20;
reg op21;
reg op22;
reg op26;
reg imm25;
reg imm30;
wire co_mdu_op = MDU & (opcode == 5'b01100) & imm25;
wire co_two_stage_op =
~opcode[2] | (funct3[0] & ~funct3[1] & ~opcode[0] & ~opcode[4]) |
(funct3[1] & ~funct3[2] & ~opcode[0] & ~opcode[4]) | co_mdu_op;
wire co_shift_op = (opcode[2] & ~funct3[1]) & !co_mdu_op;
wire co_slt_or_branch = (opcode[4] | (funct3[1] & opcode[2]) | (imm30 & opcode[2] & opcode[3] & ~funct3[2])) & !co_mdu_op;
wire co_branch_op = opcode[4];
wire co_dbus_en = ~opcode[2] & ~opcode[4];
wire co_mtval_pc = opcode[4];
wire co_mem_word = funct3[1];
wire co_rd_alu_en = !opcode[0] & opcode[2] & !opcode[4] & !co_mdu_op;
wire co_rd_mem_en = (!opcode[2] & !opcode[0]) | co_mdu_op;
wire [2:0] co_ext_funct3 = funct3;
//jal,branch = imm
//jalr = rs1+imm
//mem = rs1+imm
//shift = rs1
wire co_bufreg_rs1_en = !opcode[4] | (!opcode[1] & opcode[0]);
wire co_bufreg_imm_en = !opcode[2];
//Clear LSB of immediate for BRANCH and JAL ops
//True for BRANCH and JAL
//False for JALR/LOAD/STORE/OP/OPIMM?
wire co_bufreg_clr_lsb = opcode[4] & ((opcode[1:0] == 2'b00) | (opcode[1:0] == 2'b11));
//Conditional branch
//True for BRANCH
//False for JAL/JALR
wire co_cond_branch = !opcode[0];
wire co_ctrl_utype = !opcode[4] & opcode[2] & opcode[0];
wire co_ctrl_jal_or_jalr = opcode[4] & opcode[0];
//PC-relative operations
//True for jal, b* auipc, ebreak
//False for jalr, lui
wire co_ctrl_pc_rel = (opcode[2:0] == 3'b000) |
(opcode[1:0] == 2'b11) |
(opcode[4] & opcode[2]) & op20|
(opcode[4:3] == 2'b00);
//Write to RD
//True for OP-IMM, AUIPC, OP, LUI, SYSTEM, JALR, JAL, LOAD
//False for STORE, BRANCH, MISC-MEM
wire co_rd_op = (opcode[2] |
(!opcode[2] & opcode[4] & opcode[0]) |
(!opcode[2] & !opcode[3] & !opcode[0]));
//
//funct3
//
wire co_sh_right = funct3[2];
wire co_bne_or_bge = funct3[0];
//Matches system ops except eceall/ebreak/mret
wire csr_op = opcode[4] & opcode[2] & (|funct3);
//op20
wire co_ebreak = op20;
//opcode & funct3 & op21
wire co_ctrl_mret = opcode[4] & opcode[2] & op21 & !(|funct3);
//Matches system opcodes except CSR accesses (funct3 == 0)
//and mret (!op21)
wire co_e_op = opcode[4] & opcode[2] & !op21 & !(|funct3);
//opcode & funct3 & imm30
wire co_bufreg_sh_signed = imm30;
/*
True for sub, b*, slt*
False for add*
op opcode f3 i30
b* 11000 xxx x t
addi 00100 000 x f
slt* 0x100 01x x t
add 01100 000 0 f
sub 01100 000 1 t
*/
wire co_alu_sub = funct3[1] | funct3[0] | (opcode[3] & imm30) | opcode[4];
/*
Bits 26, 22, 21 and 20 are enough to uniquely identify the eight supported CSR regs
mtvec, mscratch, mepc and mtval are stored externally (normally in the RF) and are
treated differently from mstatus, mie and mcause which are stored in serv_csr.
The former get a 2-bit address as seen below while the latter get a
one-hot enable signal each.
Hex|2 222|Reg |csr
adr|6 210|name |addr
---|-----|--------|----
300|0_000|mstatus | xx
304|0_100|mie | xx
305|0_101|mtvec | 01
340|1_000|mscratch| 00
341|1_001|mepc | 10
342|1_010|mcause | xx
343|1_011|mtval | 11
*/
//true for mtvec,mscratch,mepc and mtval
//false for mstatus, mie, mcause
wire csr_valid = op20 | (op26 & !op21);
wire co_rd_csr_en = csr_op;
wire co_csr_en = csr_op & csr_valid;
wire co_csr_mstatus_en = csr_op & !op26 & !op22;
wire co_csr_mie_en = csr_op & !op26 & op22 & !op20;
wire co_csr_mcause_en = csr_op & op21 & !op20;
wire [1:0] co_csr_source = funct3[1:0];
wire co_csr_d_sel = funct3[2];
wire co_csr_imm_en = opcode[4] & opcode[2] & funct3[2];
wire [1:0] co_csr_addr = {op26 & op20, !op26 | op21};
wire co_alu_cmp_eq = funct3[2:1] == 2'b00;
wire co_alu_cmp_sig = ~((funct3[0] & funct3[1]) | (funct3[1] & funct3[2]));
wire co_mem_cmd = opcode[3];
wire co_mem_signed = ~funct3[2];
wire co_mem_half = funct3[0];
wire [1:0] co_alu_bool_op = funct3[1:0];
wire [3:0] co_immdec_ctrl;
//True for S (STORE) or B (BRANCH) type instructions
//False for J type instructions
assign co_immdec_ctrl[0] = opcode[3:0] == 4'b1000;
//True for OP-IMM, LOAD, STORE, JALR (I S)
//False for LUI, AUIPC, JAL (U J)
assign co_immdec_ctrl[1] = (opcode[1:0] == 2'b00) | (opcode[2:1] == 2'b00);
assign co_immdec_ctrl[2] = opcode[4] & !opcode[0];
assign co_immdec_ctrl[3] = opcode[4];
wire [3:0] co_immdec_en;
assign co_immdec_en[3] = opcode[4] | opcode[3] | opcode[2] | !opcode[0]; //B I J S U
assign co_immdec_en[2] = (opcode[4] & opcode[2]) | !opcode[3] | opcode[0]; // I J U
assign co_immdec_en[1] = (opcode[2:1] == 2'b01) | (opcode[2] & opcode[0]) | co_csr_imm_en;// J U
assign co_immdec_en[0] = ~co_rd_op; //B S
wire [2:0] co_alu_rd_sel;
assign co_alu_rd_sel[0] = (funct3 == 3'b000); // Add/sub
assign co_alu_rd_sel[1] = (funct3[2:1] == 2'b01); //SLT*
assign co_alu_rd_sel[2] = funct3[2]; //Bool
//0 (OP_B_SOURCE_IMM) when OPIMM
//1 (OP_B_SOURCE_RS2) when BRANCH or OP
wire co_op_b_source = opcode[3];
generate
if (PRE_REGISTER) begin : gen_pre_register
always @(posedge clk) begin
if (i_wb_en) begin
funct3 <= i_wb_rdt[14:12];
imm30 <= i_wb_rdt[30];
imm25 <= i_wb_rdt[25];
opcode <= i_wb_rdt[6:2];
op20 <= i_wb_rdt[20];
op21 <= i_wb_rdt[21];
op22 <= i_wb_rdt[22];
op26 <= i_wb_rdt[26];
end
end
always @(*) begin
o_sh_right = co_sh_right;
o_bne_or_bge = co_bne_or_bge;
o_cond_branch = co_cond_branch;
o_dbus_en = co_dbus_en;
o_mtval_pc = co_mtval_pc;
o_two_stage_op = co_two_stage_op;
o_e_op = co_e_op;
o_ebreak = co_ebreak;
o_branch_op = co_branch_op;
o_shift_op = co_shift_op;
o_slt_or_branch = co_slt_or_branch;
o_rd_op = co_rd_op;
o_mdu_op = co_mdu_op;
o_ext_funct3 = co_ext_funct3;
o_bufreg_rs1_en = co_bufreg_rs1_en;
o_bufreg_imm_en = co_bufreg_imm_en;
o_bufreg_clr_lsb = co_bufreg_clr_lsb;
o_bufreg_sh_signed = co_bufreg_sh_signed;
o_ctrl_jal_or_jalr = co_ctrl_jal_or_jalr;
o_ctrl_utype = co_ctrl_utype;
o_ctrl_pc_rel = co_ctrl_pc_rel;
o_ctrl_mret = co_ctrl_mret;
o_alu_sub = co_alu_sub;
o_alu_bool_op = co_alu_bool_op;
o_alu_cmp_eq = co_alu_cmp_eq;
o_alu_cmp_sig = co_alu_cmp_sig;
o_alu_rd_sel = co_alu_rd_sel;
o_mem_signed = co_mem_signed;
o_mem_word = co_mem_word;
o_mem_half = co_mem_half;
o_mem_cmd = co_mem_cmd;
o_csr_en = co_csr_en;
o_csr_addr = co_csr_addr;
o_csr_mstatus_en = co_csr_mstatus_en;
o_csr_mie_en = co_csr_mie_en;
o_csr_mcause_en = co_csr_mcause_en;
o_csr_source = co_csr_source;
o_csr_d_sel = co_csr_d_sel;
o_csr_imm_en = co_csr_imm_en;
o_immdec_ctrl = co_immdec_ctrl;
o_immdec_en = co_immdec_en;
o_op_b_source = co_op_b_source;
o_rd_csr_en = co_rd_csr_en;
o_rd_alu_en = co_rd_alu_en;
o_rd_mem_en = co_rd_mem_en;
end
end else begin : gen_post_register
always @(*) begin
funct3 = i_wb_rdt[14:12];
imm30 = i_wb_rdt[30];
imm25 = i_wb_rdt[25];
opcode = i_wb_rdt[6:2];
op20 = i_wb_rdt[20];
op21 = i_wb_rdt[21];
op22 = i_wb_rdt[22];
op26 = i_wb_rdt[26];
end
always @(posedge clk) begin
if (i_wb_en) begin
o_sh_right <= co_sh_right;
o_bne_or_bge <= co_bne_or_bge;
o_cond_branch <= co_cond_branch;
o_e_op <= co_e_op;
o_ebreak <= co_ebreak;
o_two_stage_op <= co_two_stage_op;
o_dbus_en <= co_dbus_en;
o_mtval_pc <= co_mtval_pc;
o_branch_op <= co_branch_op;
o_shift_op <= co_shift_op;
o_slt_or_branch <= co_slt_or_branch;
o_rd_op <= co_rd_op;
o_mdu_op <= co_mdu_op;
o_ext_funct3 <= co_ext_funct3;
o_bufreg_rs1_en <= co_bufreg_rs1_en;
o_bufreg_imm_en <= co_bufreg_imm_en;
o_bufreg_clr_lsb <= co_bufreg_clr_lsb;
o_bufreg_sh_signed <= co_bufreg_sh_signed;
o_ctrl_jal_or_jalr <= co_ctrl_jal_or_jalr;
o_ctrl_utype <= co_ctrl_utype;
o_ctrl_pc_rel <= co_ctrl_pc_rel;
o_ctrl_mret <= co_ctrl_mret;
o_alu_sub <= co_alu_sub;
o_alu_bool_op <= co_alu_bool_op;
o_alu_cmp_eq <= co_alu_cmp_eq;
o_alu_cmp_sig <= co_alu_cmp_sig;
o_alu_rd_sel <= co_alu_rd_sel;
o_mem_signed <= co_mem_signed;
o_mem_word <= co_mem_word;
o_mem_half <= co_mem_half;
o_mem_cmd <= co_mem_cmd;
o_csr_en <= co_csr_en;
o_csr_addr <= co_csr_addr;
o_csr_mstatus_en <= co_csr_mstatus_en;
o_csr_mie_en <= co_csr_mie_en;
o_csr_mcause_en <= co_csr_mcause_en;
o_csr_source <= co_csr_source;
o_csr_d_sel <= co_csr_d_sel;
o_csr_imm_en <= co_csr_imm_en;
o_immdec_ctrl <= co_immdec_ctrl;
o_immdec_en <= co_immdec_en;
o_op_b_source <= co_op_b_source;
o_rd_csr_en <= co_rd_csr_en;
o_rd_alu_en <= co_rd_alu_en;
o_rd_mem_en <= co_rd_mem_en;
end
end
end
endgenerate
endmodule

95
fw/rtl/serv/serv_immdec.v Normal file
View File

@ -0,0 +1,95 @@
`default_nettype none
module serv_immdec
#(parameter SHARED_RFADDR_IMM_REGS = 1)
(
input wire i_clk,
//State
input wire i_cnt_en,
input wire i_cnt_done,
//Control
input wire [3:0] i_immdec_en,
input wire i_csr_imm_en,
input wire [3:0] i_ctrl,
output wire [4:0] o_rd_addr,
output wire [4:0] o_rs1_addr,
output wire [4:0] o_rs2_addr,
//Data
output wire o_csr_imm,
output wire o_imm,
//External
input wire i_wb_en,
input wire [31:7] i_wb_rdt);
reg imm31;
reg [8:0] imm19_12_20;
reg imm7;
reg [5:0] imm30_25;
reg [4:0] imm24_20;
reg [4:0] imm11_7;
assign o_csr_imm = imm19_12_20[4];
wire signbit = imm31 & !i_csr_imm_en;
generate
if (SHARED_RFADDR_IMM_REGS) begin : gen_shared_imm_regs
assign o_rs1_addr = imm19_12_20[8:4];
assign o_rs2_addr = imm24_20;
assign o_rd_addr = imm11_7;
always @(posedge i_clk) begin
if (i_wb_en) begin
/* CSR immediates are always zero-extended, hence clear the signbit */
imm31 <= i_wb_rdt[31];
end
if (i_wb_en | (i_cnt_en & i_immdec_en[1]))
imm19_12_20 <= i_wb_en ? {i_wb_rdt[19:12],i_wb_rdt[20]} : {i_ctrl[3] ? signbit : imm24_20[0], imm19_12_20[8:1]};
if (i_wb_en | (i_cnt_en))
imm7 <= i_wb_en ? i_wb_rdt[7] : signbit;
if (i_wb_en | (i_cnt_en & i_immdec_en[3]))
imm30_25 <= i_wb_en ? i_wb_rdt[30:25] : {i_ctrl[2] ? imm7 : i_ctrl[1] ? signbit : imm19_12_20[0], imm30_25[5:1]};
if (i_wb_en | (i_cnt_en & i_immdec_en[2]))
imm24_20 <= i_wb_en ? i_wb_rdt[24:20] : {imm30_25[0], imm24_20[4:1]};
if (i_wb_en | (i_cnt_en & i_immdec_en[0]))
imm11_7 <= i_wb_en ? i_wb_rdt[11:7] : {imm30_25[0], imm11_7[4:1]};
end
end else begin : gen_separate_imm_regs
reg [4:0] rd_addr;
reg [4:0] rs1_addr;
reg [4:0] rs2_addr;
assign o_rd_addr = rd_addr;
assign o_rs1_addr = rs1_addr;
assign o_rs2_addr = rs2_addr;
always @(posedge i_clk) begin
if (i_wb_en) begin
/* CSR immediates are always zero-extended, hence clear the signbit */
imm31 <= i_wb_rdt[31];
imm19_12_20 <= {i_wb_rdt[19:12],i_wb_rdt[20]};
imm7 <= i_wb_rdt[7];
imm30_25 <= i_wb_rdt[30:25];
imm24_20 <= i_wb_rdt[24:20];
imm11_7 <= i_wb_rdt[11:7];
rd_addr <= i_wb_rdt[11:7];
rs1_addr <= i_wb_rdt[19:15];
rs2_addr <= i_wb_rdt[24:20];
end
if (i_cnt_en) begin
imm19_12_20 <= {i_ctrl[3] ? signbit : imm24_20[0], imm19_12_20[8:1]};
imm7 <= signbit;
imm30_25 <= {i_ctrl[2] ? imm7 : i_ctrl[1] ? signbit : imm19_12_20[0], imm30_25[5:1]};
imm24_20 <= {imm30_25[0], imm24_20[4:1]};
imm11_7 <= {imm30_25[0], imm11_7[4:1]};
end
end
end
endgenerate
assign o_imm = i_cnt_done ? signbit : i_ctrl[0] ? imm11_7[0] : imm24_20[0];
endmodule

69
fw/rtl/serv/serv_mem_if.v Normal file
View File

@ -0,0 +1,69 @@
`default_nettype none
module serv_mem_if
#(
parameter [0:0] WITH_CSR = 1,
parameter W = 1,
parameter B = W-1
)
(
input wire i_clk,
//State
input wire [1:0] i_bytecnt,
input wire [1:0] i_lsb,
output wire o_byte_valid,
output wire o_misalign,
//Control
input wire i_signed,
input wire i_word,
input wire i_half,
//MDU
input wire i_mdu_op,
//Data
input wire [B:0] i_bufreg2_q,
output wire [B:0] o_rd,
//External interface
output wire [3:0] o_wb_sel);
reg signbit;
/*
Before a store operation, the data to be written needs to be shifted into
place. Depending on the address alignment, we need to shift different
amounts. One formula for calculating this is to say that we shift when
i_lsb + i_bytecnt < 4. Unfortunately, the synthesis tools don't seem to be
clever enough so the hideous expression below is used to achieve the same
thing in a more optimal way.
*/
assign o_byte_valid
= (!i_lsb[0] & !i_lsb[1]) |
(!i_bytecnt[0] & !i_bytecnt[1]) |
(!i_bytecnt[1] & !i_lsb[1]) |
(!i_bytecnt[1] & !i_lsb[0]) |
(!i_bytecnt[0] & !i_lsb[1]);
wire dat_valid =
i_mdu_op |
i_word |
(i_bytecnt == 2'b00) |
(i_half & !i_bytecnt[1]);
assign o_rd = dat_valid ? i_bufreg2_q : {W{i_signed & signbit}};
assign o_wb_sel[3] = (i_lsb == 2'b11) | i_word | (i_half & i_lsb[1]);
assign o_wb_sel[2] = (i_lsb == 2'b10) | i_word;
assign o_wb_sel[1] = (i_lsb == 2'b01) | i_word | (i_half & !i_lsb[1]);
assign o_wb_sel[0] = (i_lsb == 2'b00);
always @(posedge i_clk) begin
if (dat_valid)
signbit <= i_bufreg2_q[B];
end
/*
mem_misalign is checked after the init stage to decide whether to do a data
bus transaction or go to the trap state. It is only guaranteed to be correct
at this time
*/
assign o_misalign = WITH_CSR & ((i_lsb[0] & (i_word | i_half)) | (i_lsb[1] & i_word));
endmodule

149
fw/rtl/serv/serv_rf_if.v Normal file
View File

@ -0,0 +1,149 @@
`default_nettype none
module serv_rf_if
#(parameter WITH_CSR = 1)
(//RF Interface
input wire i_cnt_en,
output wire [4+WITH_CSR:0] o_wreg0,
output wire [4+WITH_CSR:0] o_wreg1,
output wire o_wen0,
output wire o_wen1,
output wire o_wdata0,
output wire o_wdata1,
output wire [4+WITH_CSR:0] o_rreg0,
output wire [4+WITH_CSR:0] o_rreg1,
input wire i_rdata0,
input wire i_rdata1,
//Trap interface
input wire i_trap,
input wire i_mret,
input wire i_mepc,
input wire i_mtval_pc,
input wire i_bufreg_q,
input wire i_bad_pc,
output wire o_csr_pc,
//CSR interface
input wire i_csr_en,
input wire [1:0] i_csr_addr,
input wire i_csr,
output wire o_csr,
//RD write port
input wire i_rd_wen,
input wire [4:0] i_rd_waddr,
input wire i_ctrl_rd,
input wire i_alu_rd,
input wire i_rd_alu_en,
input wire i_csr_rd,
input wire i_rd_csr_en,
input wire i_mem_rd,
input wire i_rd_mem_en,
//RS1 read port
input wire [4:0] i_rs1_raddr,
output wire o_rs1,
//RS2 read port
input wire [4:0] i_rs2_raddr,
output wire o_rs2);
/*
********** Write side ***********
*/
wire rd_wen = i_rd_wen & (|i_rd_waddr);
generate
if (|WITH_CSR) begin : gen_csr
wire rd = (i_ctrl_rd ) |
(i_alu_rd & i_rd_alu_en) |
(i_csr_rd & i_rd_csr_en) |
(i_mem_rd & i_rd_mem_en);
wire mtval = i_mtval_pc ? i_bad_pc : i_bufreg_q;
assign o_wdata0 = i_trap ? mtval : rd;
assign o_wdata1 = i_trap ? i_mepc : i_csr;
/* Port 0 handles writes to mtval during traps and rd otherwise
* Port 1 handles writes to mepc during traps and csr accesses otherwise
*
* GPR registers are mapped to address 0-31 (bits 0xxxxx).
* Following that are four CSR registers
* mscratch 100000
* mtvec 100001
* mepc 100010
* mtval 100011
*/
assign o_wreg0 = i_trap ? {6'b100011} : {1'b0,i_rd_waddr};
assign o_wreg1 = i_trap ? {6'b100010} : {4'b1000,i_csr_addr};
assign o_wen0 = i_cnt_en & (i_trap | rd_wen);
assign o_wen1 = i_cnt_en & (i_trap | i_csr_en);
/*
********** Read side ***********
*/
//0 : RS1
//1 : RS2 / CSR
assign o_rreg0 = {1'b0, i_rs1_raddr};
/*
The address of the second read port (o_rreg1) can get assigned from four
different sources
Normal operations : i_rs2_raddr
CSR access : i_csr_addr
trap : MTVEC
mret : MEPC
Address 0-31 in the RF are assigned to the GPRs. After that follows the four
CSRs on addresses 32-35
32 MSCRATCH
33 MTVEC
34 MEPC
35 MTVAL
The expression below is an optimized version of this logic
*/
wire sel_rs2 = !(i_trap | i_mret | i_csr_en);
assign o_rreg1 = {~sel_rs2,
i_rs2_raddr[4:2] & {3{sel_rs2}},
{1'b0,i_trap} | {i_mret,1'b0} | ({2{i_csr_en}} & i_csr_addr) | ({2{sel_rs2}} & i_rs2_raddr[1:0])};
assign o_rs1 = i_rdata0;
assign o_rs2 = i_rdata1;
assign o_csr = i_rdata1 & i_csr_en;
assign o_csr_pc = i_rdata1;
end else begin : gen_no_csr
wire rd = (i_ctrl_rd ) |
(i_alu_rd & i_rd_alu_en) |
(i_mem_rd & i_rd_mem_en);
assign o_wdata0 = rd;
assign o_wdata1 = 1'b0;
assign o_wreg0 = i_rd_waddr;
assign o_wreg1 = 5'd0;
assign o_wen0 = i_cnt_en & rd_wen;
assign o_wen1 = 1'b0;
/*
********** Read side ***********
*/
assign o_rreg0 = i_rs1_raddr;
assign o_rreg1 = i_rs2_raddr;
assign o_rs1 = i_rdata0;
assign o_rs2 = i_rdata1;
assign o_csr = 1'b0;
assign o_csr_pc = 1'b0;
end // else: !if(WITH_CSR)
endgenerate
endmodule

45
fw/rtl/serv/serv_rf_ram.v Normal file
View File

@ -0,0 +1,45 @@
module serv_rf_ram
#(parameter width=0,
parameter csr_regs=4,
parameter depth=32*(32+csr_regs)/width)
(input wire i_clk,
input wire [$clog2(depth)-1:0] i_waddr,
input wire [width-1:0] i_wdata,
input wire i_wen,
input wire [$clog2(depth)-1:0] i_raddr,
input wire i_ren,
output wire [width-1:0] o_rdata);
reg [width-1:0] memory [0:depth-1];
reg [width-1:0] rdata ;
always @(posedge i_clk) begin
if (i_wen)
memory[i_waddr] <= i_wdata;
rdata <= i_ren ? memory[i_raddr] : {width{1'bx}};
end
/* Reads from reg x0 needs to return 0
Check that the part of the read address corresponding to the register
is zero and gate the output
width LSB of reg index $clog2(width)
2 4 1
4 3 2
8 2 3
16 1 4
32 0 5
*/
reg regzero;
always @(posedge i_clk)
regzero <= !(|i_raddr[$clog2(depth)-1:5-$clog2(width)]);
assign o_rdata = rdata & ~{width{regzero}};
`ifdef SERV_CLEAR_RAM
integer i;
initial
for (i=0;i<depth;i=i+1)
memory[i] = {width{1'd0}};
`endif
endmodule

View File

@ -0,0 +1,174 @@
`default_nettype none
module serv_rf_ram_if
#(//Data width. Adjust to preferred width of SRAM data interface
parameter width=8,
//Select reset strategy.
// "MINI" for resetting minimally required FFs
// "NONE" for relying on FFs having a defined value on startup
parameter reset_strategy="MINI",
//Number of CSR registers. These are allocated after the normal
// GPR registers in the RAM.
parameter csr_regs=4,
//Internal parameters calculated from above values. Do not change
parameter raw=$clog2(32+csr_regs), //Register address width
parameter l2w=$clog2(width), //log2 of width
parameter aw=5+raw-l2w) //Address width
(
//SERV side
input wire i_clk,
input wire i_rst,
input wire i_wreq,
input wire i_rreq,
output wire o_ready,
input wire [raw-1:0] i_wreg0,
input wire [raw-1:0] i_wreg1,
input wire i_wen0,
input wire i_wen1,
input wire i_wdata0,
input wire i_wdata1,
input wire [raw-1:0] i_rreg0,
input wire [raw-1:0] i_rreg1,
output wire o_rdata0,
output wire o_rdata1,
//RAM side
output wire [aw-1:0] o_waddr,
output wire [width-1:0] o_wdata,
output wire o_wen,
output wire [aw-1:0] o_raddr,
output wire o_ren,
input wire [width-1:0] i_rdata);
reg rgnt;
assign o_ready = rgnt | i_wreq;
reg [4:0] rcnt;
reg rtrig1;
/*
********** Write side ***********
*/
wire [4:0] wcnt;
reg [width-1:0] wdata0_r;
reg [width-0:0] wdata1_r;
reg wen0_r;
reg wen1_r;
wire wtrig0;
wire wtrig1;
assign wtrig0 = rtrig1;
generate if (width == 2) begin : gen_w_eq_2
assign wtrig1 = wcnt[0];
end else begin : gen_w_neq_2
reg wtrig0_r;
always @(posedge i_clk) wtrig0_r <= wtrig0;
assign wtrig1 = wtrig0_r;
end
endgenerate
assign o_wdata = wtrig1 ?
wdata1_r[width-1:0] :
wdata0_r;
wire [raw-1:0] wreg = wtrig1 ? i_wreg1 : i_wreg0;
generate if (width == 32) begin : gen_w_eq_32
assign o_waddr = wreg;
end else begin : gen_w_neq_32
assign o_waddr = {wreg, wcnt[4:l2w]};
end
endgenerate
assign o_wen = (wtrig0 & wen0_r) | (wtrig1 & wen1_r);
assign wcnt = rcnt-4;
always @(posedge i_clk) begin
if (wcnt[0]) begin
wen0_r <= i_wen0;
wen1_r <= i_wen1;
end
wdata0_r <= {i_wdata0,wdata0_r[width-1:1]};
wdata1_r <= {i_wdata1,wdata1_r[width-0:1]};
end
/*
********** Read side ***********
*/
wire rtrig0;
wire [raw-1:0] rreg = rtrig0 ? i_rreg1 : i_rreg0;
generate if (width == 32) begin : gen_rreg_eq_32
assign o_raddr = rreg;
end else begin : gen_rreg_neq_32
assign o_raddr = {rreg, rcnt[4:l2w]};
end
endgenerate
reg [width-1:0] rdata0;
reg [width-2:0] rdata1;
reg rgate;
assign o_rdata0 = rdata0[0];
assign o_rdata1 = rtrig1 ? i_rdata[0] : rdata1[0];
assign rtrig0 = (rcnt[l2w-1:0] == 1);
generate if (width == 2) begin : gen_ren_w_eq_2
assign o_ren = rgate;
end else begin : gen_ren_w_neq_2
assign o_ren = rgate & (rcnt[l2w-1:1] == 0);
end
endgenerate
reg rreq_r;
generate if (width>2) begin : gen_rdata1_w_neq_2
always @(posedge i_clk) begin
rdata1 <= {1'b0,rdata1[width-2:1]}; //Optimize?
if (rtrig1)
rdata1[width-2:0] <= i_rdata[width-1:1];
end
end else begin : gen_rdata1_w_eq_2
always @(posedge i_clk) if (rtrig1) rdata1 <= i_rdata[1];
end
endgenerate
always @(posedge i_clk) begin
if (&rcnt | i_rreq)
rgate <= i_rreq;
rtrig1 <= rtrig0;
rcnt <= rcnt+5'd1;
if (i_rreq | i_wreq)
rcnt <= {3'd0,i_wreq,1'b0};
rreq_r <= i_rreq;
rgnt <= rreq_r;
rdata0 <= {1'b0,rdata0[width-1:1]};
if (rtrig0)
rdata0 <= i_rdata;
if (i_rst) begin
if (reset_strategy != "NONE") begin
rgate <= 1'b0;
rgnt <= 1'b0;
rreq_r <= 1'b0;
rcnt <= 5'd0;
end
end
end
endmodule

216
fw/rtl/serv/serv_rf_top.v Normal file
View File

@ -0,0 +1,216 @@
`default_nettype none
module serv_rf_top
#(parameter RESET_PC = 32'd0,
/* COMPRESSED=1: Enable the compressed decoder and allowed misaligned jump of pc
COMPRESSED=0: Disable the compressed decoder and does not allow the misaligned jump of pc
*/
parameter [0:0] COMPRESSED = 0,
/*
ALIGN = 1: Fetch the aligned instruction by making two bus transactions if the misaligned address
is given to the instruction bus.
*/
parameter [0:0] ALIGN = COMPRESSED,
/* Multiplication and Division Unit
This parameter enables the interface for connecting SERV and MDU
*/
parameter [0:0] MDU = 0,
/* Register signals before or after the decoder
0 : Register after the decoder. Faster but uses more resources
1 : (default) Register before the decoder. Slower but uses less resources
*/
parameter PRE_REGISTER = 1,
/* Amount of reset applied to design
"NONE" : No reset at all. Relies on a POR to set correct initialization
values and that core isn't reset during runtime
"MINI" : Standard setting. Resets the minimal amount of FFs needed to
restart execution from the instruction at RESET_PC
*/
parameter RESET_STRATEGY = "MINI",
parameter WITH_CSR = 1,
parameter RF_WIDTH = 2,
parameter RF_L2D = $clog2((32+(WITH_CSR*4))*32/RF_WIDTH))
(
input wire clk,
input wire i_rst,
input wire i_timer_irq,
`ifdef RISCV_FORMAL
output wire rvfi_valid,
output wire [63:0] rvfi_order,
output wire [31:0] rvfi_insn,
output wire rvfi_trap,
output wire rvfi_halt,
output wire rvfi_intr,
output wire [1:0] rvfi_mode,
output wire [1:0] rvfi_ixl,
output wire [4:0] rvfi_rs1_addr,
output wire [4:0] rvfi_rs2_addr,
output wire [31:0] rvfi_rs1_rdata,
output wire [31:0] rvfi_rs2_rdata,
output wire [4:0] rvfi_rd_addr,
output wire [31:0] rvfi_rd_wdata,
output wire [31:0] rvfi_pc_rdata,
output wire [31:0] rvfi_pc_wdata,
output wire [31:0] rvfi_mem_addr,
output wire [3:0] rvfi_mem_rmask,
output wire [3:0] rvfi_mem_wmask,
output wire [31:0] rvfi_mem_rdata,
output wire [31:0] rvfi_mem_wdata,
`endif
output wire [31:0] o_ibus_adr,
output wire o_ibus_cyc,
input wire [31:0] i_ibus_rdt,
input wire i_ibus_ack,
output wire [31:0] o_dbus_adr,
output wire [31:0] o_dbus_dat,
output wire [3:0] o_dbus_sel,
output wire o_dbus_we ,
output wire o_dbus_cyc,
input wire [31:0] i_dbus_rdt,
input wire i_dbus_ack,
// Extension
output wire [31:0] o_ext_rs1,
output wire [31:0] o_ext_rs2,
output wire [ 2:0] o_ext_funct3,
input wire [31:0] i_ext_rd,
input wire i_ext_ready,
// MDU
output wire o_mdu_valid);
localparam CSR_REGS = WITH_CSR*4;
wire rf_wreq;
wire rf_rreq;
wire [4+WITH_CSR:0] wreg0;
wire [4+WITH_CSR:0] wreg1;
wire wen0;
wire wen1;
wire wdata0;
wire wdata1;
wire [4+WITH_CSR:0] rreg0;
wire [4+WITH_CSR:0] rreg1;
wire rf_ready;
wire rdata0;
wire rdata1;
wire [RF_L2D-1:0] waddr;
wire [RF_WIDTH-1:0] wdata;
wire wen;
wire [RF_L2D-1:0] raddr;
wire ren;
wire [RF_WIDTH-1:0] rdata;
serv_rf_ram_if
#(.width (RF_WIDTH),
.reset_strategy (RESET_STRATEGY),
.csr_regs (CSR_REGS))
rf_ram_if
(.i_clk (clk),
.i_rst (i_rst),
.i_wreq (rf_wreq),
.i_rreq (rf_rreq),
.o_ready (rf_ready),
.i_wreg0 (wreg0),
.i_wreg1 (wreg1),
.i_wen0 (wen0),
.i_wen1 (wen1),
.i_wdata0 (wdata0),
.i_wdata1 (wdata1),
.i_rreg0 (rreg0),
.i_rreg1 (rreg1),
.o_rdata0 (rdata0),
.o_rdata1 (rdata1),
.o_waddr (waddr),
.o_wdata (wdata),
.o_wen (wen),
.o_raddr (raddr),
.o_ren (ren),
.i_rdata (rdata));
serv_rf_ram
#(.width (RF_WIDTH),
.csr_regs (CSR_REGS))
rf_ram
(.i_clk (clk),
.i_waddr (waddr),
.i_wdata (wdata),
.i_wen (wen),
.i_raddr (raddr),
.i_ren (ren),
.o_rdata (rdata));
serv_top
#(.RESET_PC (RESET_PC),
.PRE_REGISTER (PRE_REGISTER),
.RESET_STRATEGY (RESET_STRATEGY),
.WITH_CSR (WITH_CSR),
.MDU(MDU),
.COMPRESSED(COMPRESSED),
.ALIGN(ALIGN))
cpu
(
.clk (clk),
.i_rst (i_rst),
.i_timer_irq (i_timer_irq),
`ifdef RISCV_FORMAL
.rvfi_valid (rvfi_valid ),
.rvfi_order (rvfi_order ),
.rvfi_insn (rvfi_insn ),
.rvfi_trap (rvfi_trap ),
.rvfi_halt (rvfi_halt ),
.rvfi_intr (rvfi_intr ),
.rvfi_mode (rvfi_mode ),
.rvfi_ixl (rvfi_ixl ),
.rvfi_rs1_addr (rvfi_rs1_addr ),
.rvfi_rs2_addr (rvfi_rs2_addr ),
.rvfi_rs1_rdata (rvfi_rs1_rdata),
.rvfi_rs2_rdata (rvfi_rs2_rdata),
.rvfi_rd_addr (rvfi_rd_addr ),
.rvfi_rd_wdata (rvfi_rd_wdata ),
.rvfi_pc_rdata (rvfi_pc_rdata ),
.rvfi_pc_wdata (rvfi_pc_wdata ),
.rvfi_mem_addr (rvfi_mem_addr ),
.rvfi_mem_rmask (rvfi_mem_rmask),
.rvfi_mem_wmask (rvfi_mem_wmask),
.rvfi_mem_rdata (rvfi_mem_rdata),
.rvfi_mem_wdata (rvfi_mem_wdata),
`endif
.o_rf_rreq (rf_rreq),
.o_rf_wreq (rf_wreq),
.i_rf_ready (rf_ready),
.o_wreg0 (wreg0),
.o_wreg1 (wreg1),
.o_wen0 (wen0),
.o_wen1 (wen1),
.o_wdata0 (wdata0),
.o_wdata1 (wdata1),
.o_rreg0 (rreg0),
.o_rreg1 (rreg1),
.i_rdata0 (rdata0),
.i_rdata1 (rdata1),
.o_ibus_adr (o_ibus_adr),
.o_ibus_cyc (o_ibus_cyc),
.i_ibus_rdt (i_ibus_rdt),
.i_ibus_ack (i_ibus_ack),
.o_dbus_adr (o_dbus_adr),
.o_dbus_dat (o_dbus_dat),
.o_dbus_sel (o_dbus_sel),
.o_dbus_we (o_dbus_we),
.o_dbus_cyc (o_dbus_cyc),
.i_dbus_rdt (i_dbus_rdt),
.i_dbus_ack (i_dbus_ack),
//Extension
.o_ext_funct3 (o_ext_funct3),
.i_ext_ready (i_ext_ready),
.i_ext_rd (i_ext_rd),
.o_ext_rs1 (o_ext_rs1),
.o_ext_rs2 (o_ext_rs2),
//MDU
.o_mdu_valid (o_mdu_valid));
endmodule
`default_nettype wire

224
fw/rtl/serv/serv_state.v Normal file
View File

@ -0,0 +1,224 @@
module serv_state
#(parameter RESET_STRATEGY = "MINI",
parameter [0:0] WITH_CSR = 1,
parameter [0:0] ALIGN =0,
parameter [0:0] MDU = 0,
parameter W = 1
)
(
input wire i_clk,
input wire i_rst,
//State
input wire i_new_irq,
input wire i_alu_cmp,
output wire o_init,
output reg o_cnt_en,
output wire o_cnt0to3,
output wire o_cnt12to31,
output wire o_cnt0,
output wire o_cnt1,
output wire o_cnt2,
output wire o_cnt3,
output wire o_cnt7,
output wire o_cnt_done,
output wire o_bufreg_en,
output wire o_ctrl_pc_en,
output reg o_ctrl_jump,
output wire o_ctrl_trap,
input wire i_ctrl_misalign,
input wire i_sh_done,
input wire i_sh_done_r,
output wire [1:0] o_mem_bytecnt,
input wire i_mem_misalign,
//Control
input wire i_bne_or_bge,
input wire i_cond_branch,
input wire i_dbus_en,
input wire i_two_stage_op,
input wire i_branch_op,
input wire i_shift_op,
input wire i_sh_right,
input wire i_slt_or_branch,
input wire i_e_op,
input wire i_rd_op,
//MDU
input wire i_mdu_op,
output wire o_mdu_valid,
//Extension
input wire i_mdu_ready,
//External
output wire o_dbus_cyc,
input wire i_dbus_ack,
output wire o_ibus_cyc,
input wire i_ibus_ack,
//RF Interface
output wire o_rf_rreq,
output wire o_rf_wreq,
input wire i_rf_ready,
output wire o_rf_rd_en);
reg stage_two_req;
reg init_done;
wire misalign_trap_sync;
reg [4:2] o_cnt;
reg [3:0] cnt_r;
reg ibus_cyc;
//Update PC in RUN or TRAP states
assign o_ctrl_pc_en = o_cnt_en & !o_init;
assign o_mem_bytecnt = o_cnt[4:3];
assign o_cnt0to3 = (o_cnt[4:2] == 3'd0);
assign o_cnt12to31 = (o_cnt[4] | (o_cnt[3:2] == 2'b11));
assign o_cnt0 = (o_cnt[4:2] == 3'd0) & cnt_r[0];
assign o_cnt1 = (o_cnt[4:2] == 3'd0) & cnt_r[1];
assign o_cnt2 = (o_cnt[4:2] == 3'd0) & cnt_r[2];
assign o_cnt3 = (o_cnt[4:2] == 3'd0) & cnt_r[3];
assign o_cnt7 = (o_cnt[4:2] == 3'd1) & cnt_r[3];
//Take branch for jump or branch instructions (opcode == 1x0xx) if
//a) It's an unconditional branch (opcode[0] == 1)
//b) It's a conditional branch (opcode[0] == 0) of type beq,blt,bltu (funct3[0] == 0) and ALU compare is true
//c) It's a conditional branch (opcode[0] == 0) of type bne,bge,bgeu (funct3[0] == 1) and ALU compare is false
//Only valid during the last cycle of INIT, when the branch condition has
//been calculated.
wire take_branch = i_branch_op & (!i_cond_branch | (i_alu_cmp^i_bne_or_bge));
//valid signal for mdu
assign o_mdu_valid = MDU & !o_cnt_en & init_done & i_mdu_op;
//Prepare RF for writes when everything is ready to enter stage two
// and the first stage didn't cause a misalign exception
assign o_rf_wreq = !misalign_trap_sync & !o_cnt_en & init_done &
((i_shift_op & (i_sh_done | !i_sh_right)) |
i_dbus_ack | (MDU & i_mdu_ready) |
i_slt_or_branch);
assign o_dbus_cyc = !o_cnt_en & init_done & i_dbus_en & !i_mem_misalign;
//Prepare RF for reads when a new instruction is fetched
// or when stage one caused an exception (rreq implies a write request too)
assign o_rf_rreq = i_ibus_ack | (stage_two_req & misalign_trap_sync);
assign o_rf_rd_en = i_rd_op & !o_init;
/*
bufreg is used during mem. branch and shift operations
mem : bufreg is used for dbus address. Shift in data during phase 1.
Shift out during phase 2 if there was an misalignment exception.
branch : Shift in during phase 1. Shift out during phase 2
shift : Shift in during phase 1. Continue shifting between phases (except
for the first cycle after init). Shift out during phase 2
*/
assign o_bufreg_en = (o_cnt_en & (o_init | ((o_ctrl_trap | i_branch_op) & i_two_stage_op))) | (i_shift_op & !stage_two_req & (i_sh_right | i_sh_done_r) & init_done);
assign o_ibus_cyc = ibus_cyc & !i_rst;
assign o_init = i_two_stage_op & !i_new_irq & !init_done;
assign o_cnt_done = (o_cnt[4:2] == 3'b111) & cnt_r[3];
always @(posedge i_clk) begin
//ibus_cyc changes on three conditions.
//1. i_rst is asserted. Together with the async gating above, o_ibus_cyc
// will be asserted as soon as the reset is released. This is how the
// first instruction is fetced
//2. o_cnt_done and o_ctrl_pc_en are asserted. This means that SERV just
// finished updating the PC, is done with the current instruction and
// o_ibus_cyc gets asserted to fetch a new instruction
//3. When i_ibus_ack, a new instruction is fetched and o_ibus_cyc gets
// deasserted to finish the transaction
if (i_ibus_ack | o_cnt_done | i_rst)
ibus_cyc <= o_ctrl_pc_en | i_rst;
if (o_cnt_done) begin
init_done <= o_init & !init_done;
o_ctrl_jump <= o_init & take_branch;
end
//Need a strobe for the first cycle in the IDLE state after INIT
stage_two_req <= o_cnt_done & o_init;
if (i_rst) begin
if (RESET_STRATEGY != "NONE") begin
init_done <= 1'b0;
o_ctrl_jump <= 1'b0;
stage_two_req <= 1'b0;
end
end
end
always @(posedge i_clk) begin
/*
Because SERV is 32-bit bit-serial we need a counter than can count 0-31
to keep track of which bit we are currently processing. o_cnt and cnt_r
are used together to create such a counter.
The top three bits (o_cnt) are implemented as a normal counter, but
instead of the two LSB, cnt_r is a 4-bit shift register which loops 0-3
When cnt_r[3] is 1, o_cnt will be increased.
The counting starts when the core is idle and the i_rf_ready signal
comes in from the RF module by shifting in the i_rf_ready bit as LSB of
the shift register. Counting is stopped by using o_cnt_done to block the
bit that was supposed to be shifted into bit 0 of cnt_r.
There are two benefit of doing the counter this way
1. We only need to check four bits instead of five when we want to check
if the counter is at a certain value. For 4-LUT architectures this means
we only need one LUT instead of two for each comparison.
2. We don't need a separate enable signal to turn on and off the counter
between stages, which saves an extra FF and a unique control signal. We
just need to check if cnt_r is not zero to see if the counter is
currently running
*/
if (W == 4) begin
if (i_rf_ready) o_cnt_en <= 1; else
if (o_cnt_done) o_cnt_en <= 0;
o_cnt <= o_cnt + { 2'b0, o_cnt_en };
end else if (W == 1) begin
o_cnt <= o_cnt + {2'd0,cnt_r[3]};
cnt_r <= {cnt_r[2:0],(cnt_r[3] & !o_cnt_done) | (i_rf_ready & !o_cnt_en)};
end
if (i_rst) begin
if (RESET_STRATEGY != "NONE") begin
o_cnt <= 3'd0;
if (W == 1)
cnt_r <= 4'b0000;
else if (W == 4)
o_cnt_en <= 1'b0;
end
end
end
always @(*)
if (W == 1)
o_cnt_en = |cnt_r;
else if (W == 4)
cnt_r = 4'b1111;
assign o_ctrl_trap = WITH_CSR & (i_e_op | i_new_irq | misalign_trap_sync);
generate
if (WITH_CSR) begin : gen_csr
reg misalign_trap_sync_r;
//trap_pending is only guaranteed to have correct value during the
// last cycle of the init stage
wire trap_pending = WITH_CSR & ((take_branch & i_ctrl_misalign & !ALIGN) |
(i_dbus_en & i_mem_misalign));
always @(posedge i_clk) begin
if (i_ibus_ack | o_cnt_done | i_rst)
misalign_trap_sync_r <= !(i_ibus_ack | i_rst) & ((trap_pending & o_init) | misalign_trap_sync_r);
end
assign misalign_trap_sync = misalign_trap_sync_r;
end else begin : gen_no_csr
assign misalign_trap_sync = 1'b0;
end
endgenerate
endmodule

659
fw/rtl/serv/serv_top.v Normal file
View File

@ -0,0 +1,659 @@
`default_nettype none
module serv_top
#(parameter WITH_CSR = 1,
parameter PRE_REGISTER = 1,
parameter RESET_STRATEGY = "MINI",
parameter RESET_PC = 32'd0,
parameter [0:0] MDU = 1'b0,
parameter [0:0] COMPRESSED=0,
parameter [0:0] ALIGN = COMPRESSED)
(
input wire clk,
input wire i_rst,
input wire i_timer_irq,
`ifdef RISCV_FORMAL
output reg rvfi_valid = 1'b0,
output reg [63:0] rvfi_order = 64'd0,
output reg [31:0] rvfi_insn = 32'd0,
output reg rvfi_trap = 1'b0,
output reg rvfi_halt = 1'b0,
output reg rvfi_intr = 1'b0,
output reg [1:0] rvfi_mode = 2'b11,
output reg [1:0] rvfi_ixl = 2'b01,
output reg [4:0] rvfi_rs1_addr,
output reg [4:0] rvfi_rs2_addr,
output reg [31:0] rvfi_rs1_rdata,
output reg [31:0] rvfi_rs2_rdata,
output reg [4:0] rvfi_rd_addr,
output reg [31:0] rvfi_rd_wdata,
output reg [31:0] rvfi_pc_rdata,
output reg [31:0] rvfi_pc_wdata,
output reg [31:0] rvfi_mem_addr,
output reg [3:0] rvfi_mem_rmask,
output reg [3:0] rvfi_mem_wmask,
output reg [31:0] rvfi_mem_rdata,
output reg [31:0] rvfi_mem_wdata,
`endif
//RF Interface
output wire o_rf_rreq,
output wire o_rf_wreq,
input wire i_rf_ready,
output wire [4+WITH_CSR:0] o_wreg0,
output wire [4+WITH_CSR:0] o_wreg1,
output wire o_wen0,
output wire o_wen1,
output wire o_wdata0,
output wire o_wdata1,
output wire [4+WITH_CSR:0] o_rreg0,
output wire [4+WITH_CSR:0] o_rreg1,
input wire i_rdata0,
input wire i_rdata1,
output wire [31:0] o_ibus_adr,
output wire o_ibus_cyc,
input wire [31:0] i_ibus_rdt,
input wire i_ibus_ack,
output wire [31:0] o_dbus_adr,
output wire [31:0] o_dbus_dat,
output wire [3:0] o_dbus_sel,
output wire o_dbus_we ,
output wire o_dbus_cyc,
input wire [31:0] i_dbus_rdt,
input wire i_dbus_ack,
//Extension
output wire [ 2:0] o_ext_funct3,
input wire i_ext_ready,
input wire [31:0] i_ext_rd,
output wire [31:0] o_ext_rs1,
output wire [31:0] o_ext_rs2,
//MDU
output wire o_mdu_valid);
wire [4:0] rd_addr;
wire [4:0] rs1_addr;
wire [4:0] rs2_addr;
wire [3:0] immdec_ctrl;
wire [3:0] immdec_en;
wire sh_right;
wire bne_or_bge;
wire cond_branch;
wire two_stage_op;
wire e_op;
wire ebreak;
wire branch_op;
wire shift_op;
wire slt_or_branch;
wire rd_op;
wire mdu_op;
wire rd_alu_en;
wire rd_csr_en;
wire rd_mem_en;
wire ctrl_rd;
wire alu_rd;
wire mem_rd;
wire csr_rd;
wire mtval_pc;
wire ctrl_pc_en;
wire jump;
wire jal_or_jalr;
wire utype;
wire mret;
wire imm;
wire trap;
wire pc_rel;
wire iscomp;
wire init;
wire cnt_en;
wire cnt0to3;
wire cnt12to31;
wire cnt0;
wire cnt1;
wire cnt2;
wire cnt3;
wire cnt7;
wire cnt_done;
wire bufreg_en;
wire bufreg_sh_signed;
wire bufreg_rs1_en;
wire bufreg_imm_en;
wire bufreg_clr_lsb;
wire bufreg_q;
wire bufreg2_q;
wire [31:0] dbus_rdt;
wire dbus_ack;
wire alu_sub;
wire [1:0] alu_bool_op;
wire alu_cmp_eq;
wire alu_cmp_sig;
wire alu_cmp;
wire [2:0] alu_rd_sel;
wire rs1;
wire rs2;
wire rd_en;
wire op_b;
wire op_b_sel;
wire mem_signed;
wire mem_word;
wire mem_half;
wire [1:0] mem_bytecnt;
wire sh_done;
wire sh_done_r;
wire byte_valid;
wire mem_misalign;
wire bad_pc;
wire csr_mstatus_en;
wire csr_mie_en;
wire csr_mcause_en;
wire [1:0] csr_source;
wire csr_imm;
wire csr_d_sel;
wire csr_en;
wire [1:0] csr_addr;
wire csr_pc;
wire csr_imm_en;
wire csr_in;
wire rf_csr_out;
wire dbus_en;
wire new_irq;
wire [1:0] lsb;
wire [31:0] i_wb_rdt;
wire [31:0] wb_ibus_adr;
wire wb_ibus_cyc;
wire [31:0] wb_ibus_rdt;
wire wb_ibus_ack;
generate
if (ALIGN) begin : gen_align
serv_aligner align
(
.clk(clk),
.rst(i_rst),
// serv_rf_top
.i_ibus_adr(wb_ibus_adr),
.i_ibus_cyc(wb_ibus_cyc),
.o_ibus_rdt(wb_ibus_rdt),
.o_ibus_ack(wb_ibus_ack),
// servant_arbiter
.o_wb_ibus_adr(o_ibus_adr),
.o_wb_ibus_cyc(o_ibus_cyc),
.i_wb_ibus_rdt(i_ibus_rdt),
.i_wb_ibus_ack(i_ibus_ack));
end else begin : gen_no_align
assign o_ibus_adr = wb_ibus_adr;
assign o_ibus_cyc = wb_ibus_cyc;
assign wb_ibus_rdt = i_ibus_rdt;
assign wb_ibus_ack = i_ibus_ack;
end
endgenerate
generate
if (COMPRESSED) begin : gen_compressed
serv_compdec compdec
(
.i_clk(clk),
.i_instr(wb_ibus_rdt),
.i_ack(wb_ibus_ack),
.o_instr(i_wb_rdt),
.o_iscomp(iscomp));
end else begin : gen_no_compressed
assign i_wb_rdt = wb_ibus_rdt;
assign iscomp = 1'b0;
end
endgenerate
serv_state
#(.RESET_STRATEGY (RESET_STRATEGY),
.WITH_CSR (WITH_CSR[0:0]),
.MDU(MDU),
.ALIGN(ALIGN))
state
(
.i_clk (clk),
.i_rst (i_rst),
//State
.i_new_irq (new_irq),
.i_alu_cmp (alu_cmp),
.o_init (init),
.o_cnt_en (cnt_en),
.o_cnt0to3 (cnt0to3),
.o_cnt12to31 (cnt12to31),
.o_cnt0 (cnt0),
.o_cnt1 (cnt1),
.o_cnt2 (cnt2),
.o_cnt3 (cnt3),
.o_cnt7 (cnt7),
.o_cnt_done (cnt_done),
.o_bufreg_en (bufreg_en),
.o_ctrl_pc_en (ctrl_pc_en),
.o_ctrl_jump (jump),
.o_ctrl_trap (trap),
.i_ctrl_misalign(lsb[1]),
.i_sh_done (sh_done),
.i_sh_done_r (sh_done_r),
.o_mem_bytecnt (mem_bytecnt),
.i_mem_misalign (mem_misalign),
//Control
.i_bne_or_bge (bne_or_bge),
.i_cond_branch (cond_branch),
.i_dbus_en (dbus_en),
.i_two_stage_op (two_stage_op),
.i_branch_op (branch_op),
.i_shift_op (shift_op),
.i_sh_right (sh_right),
.i_slt_or_branch (slt_or_branch),
.i_e_op (e_op),
.i_rd_op (rd_op),
//MDU
.i_mdu_op (mdu_op),
.o_mdu_valid (o_mdu_valid),
//Extension
.i_mdu_ready (i_ext_ready),
//External
.o_dbus_cyc (o_dbus_cyc),
.i_dbus_ack (i_dbus_ack),
.o_ibus_cyc (wb_ibus_cyc),
.i_ibus_ack (wb_ibus_ack),
//RF Interface
.o_rf_rreq (o_rf_rreq),
.o_rf_wreq (o_rf_wreq),
.i_rf_ready (i_rf_ready),
.o_rf_rd_en (rd_en));
serv_decode
#(.PRE_REGISTER (PRE_REGISTER),
.MDU(MDU))
decode
(
.clk (clk),
//Input
.i_wb_rdt (i_wb_rdt[31:2]),
.i_wb_en (wb_ibus_ack),
//To state
.o_bne_or_bge (bne_or_bge),
.o_cond_branch (cond_branch),
.o_dbus_en (dbus_en),
.o_e_op (e_op),
.o_ebreak (ebreak),
.o_branch_op (branch_op),
.o_shift_op (shift_op),
.o_slt_or_branch (slt_or_branch),
.o_rd_op (rd_op),
.o_sh_right (sh_right),
.o_mdu_op (mdu_op),
.o_two_stage_op (two_stage_op),
//Extension
.o_ext_funct3 (o_ext_funct3),
//To bufreg
.o_bufreg_rs1_en (bufreg_rs1_en),
.o_bufreg_imm_en (bufreg_imm_en),
.o_bufreg_clr_lsb (bufreg_clr_lsb),
.o_bufreg_sh_signed (bufreg_sh_signed),
//To bufreg2
.o_op_b_source (op_b_sel),
//To ctrl
.o_ctrl_jal_or_jalr (jal_or_jalr),
.o_ctrl_utype (utype),
.o_ctrl_pc_rel (pc_rel),
.o_ctrl_mret (mret),
//To alu
.o_alu_sub (alu_sub),
.o_alu_bool_op (alu_bool_op),
.o_alu_cmp_eq (alu_cmp_eq),
.o_alu_cmp_sig (alu_cmp_sig),
.o_alu_rd_sel (alu_rd_sel),
//To mem IF
.o_mem_cmd (o_dbus_we),
.o_mem_signed (mem_signed),
.o_mem_word (mem_word),
.o_mem_half (mem_half),
//To CSR
.o_csr_en (csr_en),
.o_csr_addr (csr_addr),
.o_csr_mstatus_en (csr_mstatus_en),
.o_csr_mie_en (csr_mie_en),
.o_csr_mcause_en (csr_mcause_en),
.o_csr_source (csr_source),
.o_csr_d_sel (csr_d_sel),
.o_csr_imm_en (csr_imm_en),
.o_mtval_pc (mtval_pc ),
//To top
.o_immdec_ctrl (immdec_ctrl),
.o_immdec_en (immdec_en),
//To RF IF
.o_rd_mem_en (rd_mem_en),
.o_rd_csr_en (rd_csr_en),
.o_rd_alu_en (rd_alu_en));
serv_immdec immdec
(
.i_clk (clk),
//State
.i_cnt_en (cnt_en),
.i_cnt_done (cnt_done),
//Control
.i_immdec_en (immdec_en),
.i_csr_imm_en (csr_imm_en),
.i_ctrl (immdec_ctrl),
.o_rd_addr (rd_addr),
.o_rs1_addr (rs1_addr),
.o_rs2_addr (rs2_addr),
//Data
.o_csr_imm (csr_imm),
.o_imm (imm),
//External
.i_wb_en (wb_ibus_ack),
.i_wb_rdt (i_wb_rdt[31:7]));
serv_bufreg
#(.MDU(MDU))
bufreg
(
.i_clk (clk),
//State
.i_cnt0 (cnt0),
.i_cnt1 (cnt1),
.i_en (bufreg_en),
.i_init (init),
.i_mdu_op (mdu_op),
.o_lsb (lsb),
//Control
.i_sh_signed (bufreg_sh_signed),
.i_rs1_en (bufreg_rs1_en),
.i_imm_en (bufreg_imm_en),
.i_clr_lsb (bufreg_clr_lsb),
//Data
.i_rs1 (rs1),
.i_imm (imm),
.o_q (bufreg_q),
//External
.o_dbus_adr (o_dbus_adr),
.o_ext_rs1 (o_ext_rs1));
serv_bufreg2 bufreg2
(
.i_clk (clk),
//State
.i_en (cnt_en),
.i_init (init),
.i_cnt_done (cnt_done),
.i_lsb (lsb),
.i_byte_valid (byte_valid),
.o_sh_done (sh_done),
.o_sh_done_r (sh_done_r),
//Control
.i_op_b_sel (op_b_sel),
.i_shift_op (shift_op),
//Data
.i_rs2 (rs2),
.i_imm (imm),
.o_op_b (op_b),
.o_q (bufreg2_q),
//External
.o_dat (o_dbus_dat),
.i_load (dbus_ack),
.i_dat (dbus_rdt));
serv_ctrl
#(.RESET_PC (RESET_PC),
.RESET_STRATEGY (RESET_STRATEGY),
.WITH_CSR (WITH_CSR))
ctrl
(
.clk (clk),
.i_rst (i_rst),
//State
.i_pc_en (ctrl_pc_en),
.i_cnt12to31 (cnt12to31),
.i_cnt0 (cnt0),
.i_cnt1 (cnt1),
.i_cnt2 (cnt2),
//Control
.i_jump (jump),
.i_jal_or_jalr (jal_or_jalr),
.i_utype (utype),
.i_pc_rel (pc_rel),
.i_trap (trap | mret),
.i_iscomp (iscomp),
//Data
.i_imm (imm),
.i_buf (bufreg_q),
.i_csr_pc (csr_pc),
.o_rd (ctrl_rd),
.o_bad_pc (bad_pc),
//External
.o_ibus_adr (wb_ibus_adr));
serv_alu alu
(
.clk (clk),
//State
.i_en (cnt_en),
.i_cnt0 (cnt0),
.o_cmp (alu_cmp),
//Control
.i_sub (alu_sub),
.i_bool_op (alu_bool_op),
.i_cmp_eq (alu_cmp_eq),
.i_cmp_sig (alu_cmp_sig),
.i_rd_sel (alu_rd_sel),
//Data
.i_rs1 (rs1),
.i_op_b (op_b),
.i_buf (bufreg_q),
.o_rd (alu_rd));
serv_rf_if
#(.WITH_CSR (WITH_CSR))
rf_if
(//RF interface
.i_cnt_en (cnt_en),
.o_wreg0 (o_wreg0),
.o_wreg1 (o_wreg1),
.o_wen0 (o_wen0),
.o_wen1 (o_wen1),
.o_wdata0 (o_wdata0),
.o_wdata1 (o_wdata1),
.o_rreg0 (o_rreg0),
.o_rreg1 (o_rreg1),
.i_rdata0 (i_rdata0),
.i_rdata1 (i_rdata1),
//Trap interface
.i_trap (trap),
.i_mret (mret),
.i_mepc (wb_ibus_adr[0]),
.i_mtval_pc (mtval_pc),
.i_bufreg_q (bufreg_q),
.i_bad_pc (bad_pc),
.o_csr_pc (csr_pc),
//CSR write port
.i_csr_en (csr_en),
.i_csr_addr (csr_addr),
.i_csr (csr_in),
//RD write port
.i_rd_wen (rd_en),
.i_rd_waddr (rd_addr),
.i_ctrl_rd (ctrl_rd),
.i_alu_rd (alu_rd),
.i_rd_alu_en (rd_alu_en),
.i_csr_rd (csr_rd),
.i_rd_csr_en (rd_csr_en),
.i_mem_rd (mem_rd),
.i_rd_mem_en (rd_mem_en),
//RS1 read port
.i_rs1_raddr (rs1_addr),
.o_rs1 (rs1),
//RS2 read port
.i_rs2_raddr (rs2_addr),
.o_rs2 (rs2),
//CSR read port
.o_csr (rf_csr_out));
serv_mem_if
#(.WITH_CSR (WITH_CSR[0:0]))
mem_if
(
.i_clk (clk),
//State
.i_bytecnt (mem_bytecnt),
.i_lsb (lsb),
.o_byte_valid (byte_valid),
.o_misalign (mem_misalign),
//Control
.i_mdu_op (mdu_op),
.i_signed (mem_signed),
.i_word (mem_word),
.i_half (mem_half),
//Data
.i_bufreg2_q (bufreg2_q),
.o_rd (mem_rd),
//External interface
.o_wb_sel (o_dbus_sel));
generate
if (|WITH_CSR) begin : gen_csr
serv_csr
#(.RESET_STRATEGY (RESET_STRATEGY))
csr
(
.i_clk (clk),
.i_rst (i_rst),
//State
.i_trig_irq (wb_ibus_ack),
.i_en (cnt_en),
.i_cnt0to3 (cnt0to3),
.i_cnt3 (cnt3),
.i_cnt7 (cnt7),
.i_cnt_done (cnt_done),
.i_mem_op (!mtval_pc),
.i_mtip (i_timer_irq),
.i_trap (trap),
.o_new_irq (new_irq),
//Control
.i_e_op (e_op),
.i_ebreak (ebreak),
.i_mem_cmd (o_dbus_we),
.i_mstatus_en (csr_mstatus_en),
.i_mie_en (csr_mie_en ),
.i_mcause_en (csr_mcause_en ),
.i_csr_source (csr_source),
.i_mret (mret),
.i_csr_d_sel (csr_d_sel),
//Data
.i_rf_csr_out (rf_csr_out),
.o_csr_in (csr_in),
.i_csr_imm (csr_imm),
.i_rs1 (rs1),
.o_q (csr_rd));
end else begin : gen_no_csr
assign csr_in = 1'b0;
assign csr_rd = 1'b0;
assign new_irq = 1'b0;
end
endgenerate
`ifdef RISCV_FORMAL
reg [31:0] pc = RESET_PC;
wire rs_en = two_stage_op ? init : ctrl_pc_en;
always @(posedge clk) begin
/* End of instruction */
rvfi_valid <= cnt_done & ctrl_pc_en & !i_rst;
rvfi_order <= rvfi_order + {63'd0,rvfi_valid};
/* Get instruction word when it's fetched from ibus */
if (wb_ibus_cyc & wb_ibus_ack)
rvfi_insn <= i_wb_rdt;
/* Store data written to rd */
if (o_wen0)
rvfi_rd_wdata <= {o_wdata0,rvfi_rd_wdata[31:1]};
if (cnt_done & ctrl_pc_en) begin
rvfi_pc_rdata <= pc;
if (!(rd_en & (|rd_addr))) begin
rvfi_rd_addr <= 5'd0;
rvfi_rd_wdata <= 32'd0;
end
end
rvfi_trap <= trap;
if (rvfi_valid) begin
rvfi_trap <= 1'b0;
pc <= rvfi_pc_wdata;
end
/* Not used */
rvfi_halt <= 1'b0;
rvfi_intr <= 1'b0;
rvfi_mode <= 2'd3;
rvfi_ixl = 2'd1;
/* RS1 not valid during J, U instructions (immdec_en[1]) */
/* RS2 not valid during I, J, U instructions (immdec_en[2]) */
if (i_rf_ready) begin
rvfi_rs1_addr <= !immdec_en[1] ? rs1_addr : 5'd0;
rvfi_rs2_addr <= !immdec_en[2] /*rs2_valid*/ ? rs2_addr : 5'd0;
rvfi_rd_addr <= rd_addr;
end
if (rs_en) begin
rvfi_rs1_rdata <= {!immdec_en[1] & rs1,rvfi_rs1_rdata[31:1]};
rvfi_rs2_rdata <= {!immdec_en[2] & rs2,rvfi_rs2_rdata[31:1]};
end
if (i_dbus_ack) begin
rvfi_mem_addr <= o_dbus_adr;
rvfi_mem_rmask <= o_dbus_we ? 4'b0000 : o_dbus_sel;
rvfi_mem_wmask <= o_dbus_we ? o_dbus_sel : 4'b0000;
rvfi_mem_rdata <= i_dbus_rdt;
rvfi_mem_wdata <= o_dbus_dat;
end
if (wb_ibus_ack) begin
rvfi_mem_rmask <= 4'b0000;
rvfi_mem_wmask <= 4'b0000;
end
end
/* verilator lint_off COMBDLY */
always @(wb_ibus_adr)
rvfi_pc_wdata <= wb_ibus_adr;
/* verilator lint_on COMBDLY */
`endif
generate
if (MDU) begin: gen_mdu
assign dbus_rdt = i_ext_ready ? i_ext_rd:i_dbus_rdt;
assign dbus_ack = i_dbus_ack | i_ext_ready;
end else begin : gen_no_mdu
assign dbus_rdt = i_dbus_rdt;
assign dbus_ack = i_dbus_ack;
end
assign o_ext_rs2 = o_dbus_dat;
endgenerate
endmodule
`default_nettype wire

View File

@ -14,6 +14,9 @@ module top (
input n64_si_clk, input n64_si_clk,
inout n64_si_dq, inout n64_si_dq,
input n64_cic_clk,
inout n64_cic_dq,
input usb_pwrsav, input usb_pwrsav,
output usb_clk, output usb_clk,
output usb_cs, output usb_cs,
@ -48,8 +51,6 @@ module top (
output mcu_miso, output mcu_miso,
// Unused I/O // Unused I/O
output n64_cic_clk,
output n64_cic_dq,
output n64_video_sync output n64_video_sync
); );
@ -137,7 +138,10 @@ module top (
.n64_pi_ad(n64_pi_ad), .n64_pi_ad(n64_pi_ad),
.n64_si_clk(n64_si_clk), .n64_si_clk(n64_si_clk),
.n64_si_dq(n64_si_dq) .n64_si_dq(n64_si_dq),
.n64_cic_clk(n64_cic_clk),
.n64_cic_dq(n64_cic_dq)
); );
@ -272,8 +276,6 @@ module top (
// Unused I/O // Unused I/O
assign n64_cic_clk = 1'bZ;
assign n64_cic_dq = 1'bZ;
assign n64_video_sync = 1'bZ; assign n64_video_sync = 1'bZ;
endmodule endmodule

View File

@ -1,4 +1,4 @@
TOOLCHAIN = mips64-elf- TOOLCHAIN = $(N64_INST)/bin/mips64-elf-
CC = $(TOOLCHAIN)gcc CC = $(TOOLCHAIN)gcc
CXX = $(TOOLCHAIN)g++ CXX = $(TOOLCHAIN)g++
OBJCOPY = $(TOOLCHAIN)objcopy OBJCOPY = $(TOOLCHAIN)objcopy

4
sw/cic/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
*.bin
*.elf
*.lst
*.mem

33
sw/cic/build.sh Executable file
View File

@ -0,0 +1,33 @@
#!/bin/bash
set -e
TOOLCHAIN="riscv32-unknown-elf-"
CFLAGS=" \
-march=rv32i \
-mabi=ilp32 \
-Os \
-Wl,--gc-sections \
-ffunction-sections \
-fdata-sections \
-ffreestanding \
-nostartfiles \
-nostdlib \
-nodefaultlibs \
-fno-builtin \
-mcmodel=medany \
"
case "$1" in
all)
${TOOLCHAIN}gcc $CFLAGS -T cic.ld -o cic.elf startup.S cic.c
echo "Size of cic:"
${TOOLCHAIN}size -B -d cic.elf
${TOOLCHAIN}objdump -S -D cic.elf > cic.lst
${TOOLCHAIN}objcopy -O binary cic.elf cic.bin
python3 ./convert.py cic.bin cic.mem
;;
clean)
rm -f cic.elf cic.lst cic.bin cic.mem
;;
esac

361
sw/cic/cic.c Normal file
View File

@ -0,0 +1,361 @@
// Original code sourced from https://github.com/jago85/UltraCIC_C
// MIT License
// Copyright (c) 2019 Jan Goldacker
// Copyright (c) 2022-2023 Mateusz Faderewski
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
typedef struct {
volatile uint32_t CIC_CONFIG[2];
volatile uint32_t GPIO;
} ext_regs_t;
#define EXT ((ext_regs_t *) (0xC0000000UL))
#define CIC_DQ (1 << 0)
#define CIC_CLK (1 << 1)
#define CIC_RESET (1 << 2)
#define CIC_INVALID_REGION (1 << 3)
#define CIC_IS_RUNNING() (EXT->GPIO & CIC_RESET)
#define CIC_CLK_WAIT_LOW() { while ((EXT->GPIO & (CIC_RESET | CIC_CLK)) == (CIC_RESET | CIC_CLK)); }
#define CIC_CLK_WAIT_HIGH() { while ((EXT->GPIO & (CIC_RESET | CIC_CLK)) == CIC_RESET); }
#define CIC_DQ_GET() (EXT->GPIO & CIC_DQ)
#define CIC_DQ_SET(v) { EXT->GPIO = ((v) ? CIC_DQ : 0); }
#define CIC_CLK_GET() (EXT->GPIO & (CIC_RESET | CIC_CLK))
#define CIC_NOTIFY_INVALID_REGION() { EXT->GPIO = (CIC_INVALID_REGION | CIC_DQ); }
typedef struct {
bool cic_disabled;
bool cic_64dd_mode;
bool cic_region;
uint8_t cic_seed;
uint8_t cic_checksum[6];
} cic_config_t;
static cic_config_t config;
static uint8_t cic_ram[32];
static uint8_t cic_x105_ram[30];
static const uint8_t cic_ram_init[2][32] = {{
0xE, 0x0, 0x9, 0xA, 0x1, 0x8, 0x5, 0xA, 0x1, 0x3, 0xE, 0x1, 0x0, 0xD, 0xE, 0xC,
0x0, 0xB, 0x1, 0x4, 0xF, 0x8, 0xB, 0x5, 0x7, 0xC, 0xD, 0x6, 0x1, 0xE, 0x9, 0x8
}, {
0xE, 0x0, 0x4, 0xF, 0x5, 0x1, 0x2, 0x1, 0x7, 0x1, 0x9, 0x8, 0x5, 0x7, 0x5, 0xA,
0x0, 0xB, 0x1, 0x2, 0x3, 0xF, 0x8, 0x2, 0x7, 0x1, 0x9, 0x8, 0x1, 0x1, 0x5, 0xC
}};
static void cic_die (void) {
while (CIC_IS_RUNNING());
}
static void cic_init (void) {
CIC_DQ_SET(1);
while (!CIC_IS_RUNNING());
uint32_t cic_config[2];
cic_config[0] = EXT->CIC_CONFIG[0];
cic_config[1] = EXT->CIC_CONFIG[1];
config.cic_disabled = (cic_config[0] & (1 << 26));
config.cic_64dd_mode = (cic_config[0] & (1 << 25));
config.cic_region = (cic_config[0] & (1 << 24));
config.cic_seed = ((cic_config[0] >> 16) & 0xFF);
config.cic_checksum[0] = ((cic_config[0] >> 8) & 0xFF);
config.cic_checksum[1] = (cic_config[0] & 0xFF);
config.cic_checksum[2] = ((cic_config[1] >> 24) & 0xFF);
config.cic_checksum[3] = ((cic_config[1] >> 16) & 0xFF);
config.cic_checksum[4] = ((cic_config[1] >> 8) & 0xFF);
config.cic_checksum[5] = (cic_config[1] & 0xFF);
if (config.cic_disabled) {
cic_die();
}
}
static uint8_t cic_read (void) {
uint8_t value;
CIC_CLK_WAIT_LOW();
value = CIC_DQ_GET() ? 1 : 0;
CIC_CLK_WAIT_HIGH();
return value;
}
static void cic_write (uint8_t value) {
CIC_CLK_WAIT_LOW();
CIC_DQ_SET(value);
CIC_CLK_WAIT_HIGH();
CIC_DQ_SET(1);
}
static uint8_t cic_read_nibble (void) {
uint8_t data = 0;
for (int i = 0; i < 4; i++) {
data = ((data << 1) | cic_read());
}
return data;
}
static void cic_write_nibble (uint8_t data) {
cic_write(data & 0x08);
cic_write(data & 0x04);
cic_write(data & 0x02);
cic_write(data & 0x01);
}
static void cic_write_ram_nibbles (uint8_t index) {
do {
cic_write_nibble(cic_ram[index++]);
} while ((index & 0x0F) != 0);
}
static void cic_encode_round (uint8_t index) {
uint8_t data = cic_ram[index++];
do {
data = ((((data + 1) & 0x0F) + cic_ram[index]) & 0x0F);
cic_ram[index++] = data;
} while ((index & 0x0F) != 0);
}
static void cic_write_id (void) {
if (config.cic_64dd_mode) {
CIC_CLK_WAIT_LOW();
while (CIC_CLK_GET() == CIC_RESET) {
if (!CIC_DQ_GET()) {
cic_die();
}
}
} else {
cic_write(0);
}
cic_write(config.cic_region ? 1 : 0);
cic_write(0);
cic_write(1);
}
static void cic_write_seed (void) {
cic_ram[0x0A] = 0x0B;
cic_ram[0x0B] = 0x05;
cic_ram[0x0C] = (config.cic_seed >> 4);
cic_ram[0x0D] = config.cic_seed;
cic_ram[0x0E] = (config.cic_seed >> 4);
cic_ram[0x0F] = config.cic_seed;
cic_encode_round(0x0A);
cic_encode_round(0x0A);
uint32_t timeout = 100000;
do {
if (timeout == 0) {
CIC_NOTIFY_INVALID_REGION();
cic_die();
}
} while (timeout-- && (CIC_CLK_GET() == (CIC_RESET | CIC_CLK)));
cic_write_ram_nibbles(0x0A);
}
static void cic_write_checksum (void) {
for (int i = 0; i < 4; i++) {
cic_ram[i] = 0x00;
}
for (int i = 0; i < 6; i++) {
cic_ram[(i * 2) + 4] = ((config.cic_checksum[i] >> 4) & 0x0F);
cic_ram[(i * 2) + 5] = (config.cic_checksum[i] & 0x0F);
}
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_write(0);
cic_write_ram_nibbles(0x00);
}
static void cic_init_ram (void) {
for (int i = 0; i < 32; i++) {
cic_ram[i] = cic_ram_init[config.cic_region ? 1 : 0][i];
}
cic_ram[0x01] = cic_read_nibble();
cic_ram[0x11] = cic_read_nibble();
}
static void cic_exchange_bytes (uint8_t *a, uint8_t *b) {
uint8_t tmp = *a;
*a = *b;
*b = tmp;
}
static void cic_round (uint8_t *m) {
uint8_t a, b, x;
x = m[15];
a = x;
do {
b = 1;
a += (m[b] + 1);
m[b] = a;
b++;
a += (m[b] + 1);
cic_exchange_bytes(&a, &m[b]);
m[b] = ~(m[b]);
b++;
a &= 0x0F;
a += ((m[b] & 0x0F) + 1);
if (a < 16) {
cic_exchange_bytes(&a, &m[b]);
b++;
}
a += m[b];
m[b] = a;
b++;
a += m[b];
cic_exchange_bytes(&a, &m[b]);
b++;
a &= 0x0F;
a += 8;
if (a < 16) {
a += m[b];
}
cic_exchange_bytes(&a, &m[b]);
b++;
do {
a += (m[b] + 1);
m[b] = a;
b++;
b &= 0x0F;
} while (b != 0);
a = (x + 0x0F);
x = (a & 0x0F);
} while (x != 0x0F);
}
static void cic_compare_mode (void) {
cic_round(&cic_ram[0x10]);
cic_round(&cic_ram[0x10]);
cic_round(&cic_ram[0x10]);
uint8_t index = (cic_ram[0x17] & 0x0F);
if (index == 0) {
index = 1;
}
index |= 0x10;
do {
cic_read();
cic_write(cic_ram[index] & 0x01);
if (config.cic_region) {
index--;
} else {
index++;
}
} while (index & 0x0F);
}
static void cic_x105_algorithm (void) {
uint8_t a = 5;
uint8_t carry = 1;
for (int i = 0; i < 30; ++i) {
if (!(cic_x105_ram[i] & 0x01)) {
a += 8;
}
if (!(a & 0x02)) {
a += 4;
}
a = ((a + cic_x105_ram[i]) & 0x0F);
cic_x105_ram[i] = a;
if (!carry) {
a += 7;
}
a = ((a + cic_x105_ram[i]) & 0x0F);
a = (a + cic_x105_ram[i] + carry);
if (a >= 0x10) {
carry = 1;
a -= 0x10;
} else {
carry = 0;
}
a = (~(a) & 0x0F);
cic_x105_ram[i] = a;
}
}
static void cic_x105_mode (void) {
cic_write_nibble(0x0A);
cic_write_nibble(0x0A);
for (int i = 0; i < 30; i++) {
cic_x105_ram[i] = cic_read_nibble();
}
cic_x105_algorithm();
cic_write(0);
for (int i = 0; i < 30; i++) {
cic_write_nibble(cic_x105_ram[i]);
}
}
static void cic_soft_reset (void) {
volatile uint32_t timeout = 100000;
CIC_CLK_WAIT_LOW();
while ((timeout--) && CIC_IS_RUNNING());
cic_write(0);
}
__attribute__((naked)) void cic_main (void) {
while (true) {
cic_init();
cic_write_id();
cic_write_seed();
cic_write_checksum();
cic_init_ram();
while (CIC_IS_RUNNING()) {
uint8_t cmd = 0;
cmd |= (cic_read() << 1);
cmd |= cic_read();
if (cmd == 0) {
cic_compare_mode();
} else if (cmd == 2) {
cic_x105_mode();
} else if (cmd == 3) {
cic_soft_reset();
} else {
cic_die();
}
}
}
}

51
sw/cic/cic.ld Normal file
View File

@ -0,0 +1,51 @@
OUTPUT_ARCH("riscv")
OUTPUT_FORMAT("elf32-littleriscv")
MEMORY {
ram (rwx) : org = 0x80000000, len = 2k
}
ENTRY(entry_handler)
SECTIONS {
.text : {
*(.text.entry_handler)
*(.text .text.* .gnu.linkonce.t.*)
. = ALIGN(4);
*(.rodata .rodata.* .gnu.linkonce.r.*)
*(.rodata1)
. = ALIGN(4);
} > ram : text
.data : {
. = ALIGN(4);
*(.sdata2 .sdata2.* .gnu.linkonce.s2.*)
*(.data1)
*(.data .data.* .gnu.linkonce.d.*)
. = ALIGN(4);
} > ram : data
.bss : {
. = ALIGN(4);
_sbss = .;
*(.dynsbss)
*(.sbss .sbss.* .gnu.linkonce.sb.*)
*(.sbss2 .sbss2.* .gnu.linkonce.sb2.*)
*(.tbss .tbss.* .gnu.linkonce.tb.*)
*(.tcommon)
*(.scommon)
*(.dynbss)
*(.bss .bss.* .gnu.linkonce.b.*)
*(COMMON)
. = ALIGN(4);
_ebss = .;
} > ram : bss
_sp = ORIGIN(ram) + LENGTH(ram);
}
PHDRS {
text PT_LOAD FLAGS(5);
data PT_LOAD FLAGS(6);
bss PT_LOAD FLAGS(6);
}

21
sw/cic/convert.py Normal file
View File

@ -0,0 +1,21 @@
#!/usr/bin/env python3
import sys
if __name__ == '__main__':
if (len(sys.argv) != 3):
print(f'Usage: python {sys.argv[0]} in_file out_file')
sys.exit(1)
with open(sys.argv[1], 'rb') as f:
output = ''
while True:
file_bytes = f.read(4)
if len(file_bytes) != 4:
break
output += f"{int.from_bytes(file_bytes, 'little'):08X}\n"
with open(sys.argv[2], 'w') as f:
f.write(output)

23
sw/cic/startup.S Normal file
View File

@ -0,0 +1,23 @@
.option norvc
.section .text.entry_handler
entry_handler:
.global entry_handler
init_stack_pointer:
.option push
.option norelax
la sp, _sp
.option pop
init_bss:
la t5, _sbss
la t6, _ebss
beq a0, a1, 2f
1:
sw zero, 0(t5)
addi t5, t5, 4
bltu t5, t6, 1b
2:
run_main:
tail cic_main

View File

@ -6,7 +6,7 @@ OBJDUMP = $(TOOLCHAIN)objdump
SIZE = $(TOOLCHAIN)size SIZE = $(TOOLCHAIN)size
FLAGS = -mcpu=cortex-m0plus -mthumb -DSTM32G030xx $(USER_FLAGS) -g -ggdb3 FLAGS = -mcpu=cortex-m0plus -mthumb -DSTM32G030xx $(USER_FLAGS) -g -ggdb3
CFLAGS = -Os -Wall -ffunction-sections -fdata-sections -ffreestanding -MMD -MP -I./inc CFLAGS = -Os -Wall -ffunction-sections -fdata-sections -ffreestanding -MMD -MP -I. -isystem ./inc
LDFLAGS = -nostartfiles -Wl,--gc-sections LDFLAGS = -nostartfiles -Wl,--gc-sections
SRC_DIR = src SRC_DIR = src

View File

@ -7,7 +7,7 @@
.section .loader, "a", %progbits .section .loader, "a", %progbits
.type loader, %object .type loader, %object
loader: loader:
.incbin "../build/loader/loader.bin" .incbin "build/loader/loader.bin"
.section .text.Reset_Handler .section .text.Reset_Handler

View File

@ -1,5 +1,4 @@
#include "app.h" #include "app.h"
#include "cic.h"
#include "gvr.h" #include "gvr.h"
#include "hw.h" #include "hw.h"
#include "led.h" #include "led.h"
@ -7,20 +6,18 @@
#include "task.h" #include "task.h"
#define CIC_STACK_SIZE (256)
#define RTC_STACK_SIZE (256) #define RTC_STACK_SIZE (256)
#define LED_STACK_SIZE (256) #define LED_STACK_SIZE (256)
#define GVR_STACK_SIZE (2048) #define GVR_STACK_SIZE (2048)
uint8_t cic_stack[CIC_STACK_SIZE] __attribute__((aligned(8)));
uint8_t rtc_stack[RTC_STACK_SIZE] __attribute__((aligned(8))); uint8_t rtc_stack[RTC_STACK_SIZE] __attribute__((aligned(8)));
uint8_t led_stack[LED_STACK_SIZE] __attribute__((aligned(8))); uint8_t led_stack[LED_STACK_SIZE] __attribute__((aligned(8)));
uint8_t gvr_stack[GVR_STACK_SIZE] __attribute__((aligned(8))); uint8_t gvr_stack[GVR_STACK_SIZE] __attribute__((aligned(8)));
void app_get_stack_usage (uint32_t *usage) { void app_get_stack_usage (uint32_t *usage) {
*usage++ = task_get_stack_usage(cic_stack, CIC_STACK_SIZE); *usage++ = 0;
*usage++ = task_get_stack_usage(rtc_stack, RTC_STACK_SIZE); *usage++ = task_get_stack_usage(rtc_stack, RTC_STACK_SIZE);
*usage++ = task_get_stack_usage(led_stack, LED_STACK_SIZE); *usage++ = task_get_stack_usage(led_stack, LED_STACK_SIZE);
*usage++ = task_get_stack_usage(gvr_stack, GVR_STACK_SIZE); *usage++ = task_get_stack_usage(gvr_stack, GVR_STACK_SIZE);
@ -28,9 +25,7 @@ void app_get_stack_usage (uint32_t *usage) {
void app (void) { void app (void) {
hw_init(); hw_init();
cic_hw_init();
task_create(TASK_ID_CIC, cic_task, cic_stack, CIC_STACK_SIZE);
task_create(TASK_ID_RTC, rtc_task, rtc_stack, RTC_STACK_SIZE); task_create(TASK_ID_RTC, rtc_task, rtc_stack, RTC_STACK_SIZE);
task_create(TASK_ID_LED, led_task, led_stack, LED_STACK_SIZE); task_create(TASK_ID_LED, led_task, led_stack, LED_STACK_SIZE);
task_create(TASK_ID_GVR, gvr_task, gvr_stack, GVR_STACK_SIZE); task_create(TASK_ID_GVR, gvr_task, gvr_stack, GVR_STACK_SIZE);

View File

@ -1,34 +1,8 @@
// Original code sourced from https://github.com/jago85/UltraCIC_C
// MIT License
// Copyright (c) 2019 Jan Goldacker
// Copyright (c) 2022 Mateusz Faderewski
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "cic.h" #include "cic.h"
#include "fpga.h"
#include "hw.h" #include "hw.h"
#include "led.h" #include "led.h"
#include "rtc.h" #include "rtc.h"
#include "task.h"
typedef enum { typedef enum {
@ -38,372 +12,78 @@ typedef enum {
} cic_region_t; } cic_region_t;
static volatile bool cic_enabled = false;
static volatile bool cic_detect_enabled;
static volatile uint8_t cic_next_rd;
static volatile uint8_t cic_next_wr;
static volatile bool cic_disabled = false;
static volatile bool cic_dd_mode = false;
static volatile uint8_t cic_seed = 0x3F;
static volatile uint8_t cic_checksum[6] = { 0xA5, 0x36, 0xC0, 0xF1, 0xD8, 0x59 };
static uint8_t cic_ram[32];
static uint8_t cic_x105_ram[30];
static const uint8_t cic_ram_init[2][32] = {{
0x0E, 0x00, 0x09, 0x0A, 0x01, 0x08, 0x05, 0x0A, 0x01, 0x03, 0x0E, 0x01, 0x00, 0x0D, 0x0E, 0x0C,
0x00, 0x0B, 0x01, 0x04, 0x0F, 0x08, 0x0B, 0x05, 0x07, 0x0C, 0x0D, 0x06, 0x01, 0x0E, 0x09, 0x08
}, {
0x0E, 0x00, 0x04, 0x0F, 0x05, 0x01, 0x02, 0x01, 0x07, 0x01, 0x09, 0x08, 0x05, 0x07, 0x05, 0x0A,
0x00, 0x0B, 0x01, 0x02, 0x03, 0x0F, 0x08, 0x02, 0x07, 0x01, 0x09, 0x08, 0x01, 0x01, 0x05, 0x0C
}};
static void cic_irq_reset_falling (void) { static void cic_irq_reset_falling (void) {
cic_enabled = false;
hw_gpio_set(GPIO_ID_N64_CIC_DQ);
led_clear_error(LED_ERROR_CIC); led_clear_error(LED_ERROR_CIC);
} }
static void cic_irq_reset_rising (void) {
if (!cic_disabled) {
cic_enabled = true;
task_set_ready_and_reset(TASK_ID_CIC);
}
}
static void cic_irq_clk_falling (void) {
if (cic_enabled) {
if (!cic_next_wr) {
hw_gpio_reset(GPIO_ID_N64_CIC_DQ);
}
cic_next_rd = hw_gpio_get(GPIO_ID_N64_CIC_DQ) ? 1 : 0;
task_set_ready(TASK_ID_CIC);
}
}
static void cic_irq_clk_rising (void) {
hw_gpio_set(GPIO_ID_N64_CIC_DQ);
if (cic_detect_enabled) {
cic_detect_enabled = false;
if (!hw_gpio_get(GPIO_ID_N64_CIC_DQ)) {
cic_enabled = false;
}
}
}
static uint8_t cic_read (void) {
cic_next_wr = 1;
task_yield();
return cic_next_rd;
}
static void cic_write (uint8_t bit) {
cic_next_wr = bit;
task_yield();
}
static void cic_start_detect (void) {
cic_detect_enabled = cic_dd_mode;
}
static uint8_t cic_read_nibble (void) {
uint8_t data = 0;
for (int i = 0; i < 4; i++) {
data = ((data << 1) | cic_read());
}
return data;
}
static void cic_write_nibble (uint8_t data) {
cic_write(data & 0x08);
cic_write(data & 0x04);
cic_write(data & 0x02);
cic_write(data & 0x01);
}
static void cic_write_ram_nibbles (uint8_t index) {
do {
cic_write_nibble(cic_ram[index++]);
} while ((index & 0x0F) != 0);
}
static void cic_encode_round (uint8_t index) {
uint8_t data = cic_ram[index++];
do {
data = ((((data + 1) & 0x0F) + cic_ram[index]) & 0x0F);
cic_ram[index++] = data;
} while ((index & 0x0F) != 0);
}
static void cic_write_id (cic_region_t region) {
cic_start_detect();
cic_write(cic_dd_mode ? 1 : 0);
cic_write(region == REGION_PAL ? 1 : 0);
cic_write(0);
cic_write(1);
}
static void cic_write_id_failed (void) {
uint8_t current_region = rtc_get_region();
uint8_t next_region = (current_region == REGION_NTSC) ? REGION_PAL : REGION_NTSC;
rtc_set_region(next_region);
led_blink_error(LED_ERROR_CIC);
}
static void cic_write_seed (void) {
cic_ram[0x0A] = 0x0B;
cic_ram[0x0B] = 0x05;
cic_ram[0x0C] = (cic_seed >> 4);
cic_ram[0x0D] = cic_seed;
cic_ram[0x0E] = (cic_seed >> 4);
cic_ram[0x0F] = cic_seed;
cic_encode_round(0x0A);
cic_encode_round(0x0A);
cic_write_ram_nibbles(0x0A);
}
static void cic_write_checksum (void) {
for (int i = 0; i < 4; i++) {
cic_ram[i] = 0x00;
}
for (int i = 0; i < 6; i++) {
cic_ram[(i * 2) + 4] = ((cic_checksum[i] >> 4) & 0x0F);
cic_ram[(i * 2) + 5] = (cic_checksum[i] & 0x0F);
}
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_encode_round(0x00);
cic_write(0);
cic_write_ram_nibbles(0x00);
}
static void cic_init_ram (cic_region_t region) {
if (region < __REGION_MAX) {
for (int i = 0; i < 32; i++) {
cic_ram[i] = cic_ram_init[region][i];
}
}
cic_ram[0x01] = cic_read_nibble();
cic_ram[0x11] = cic_read_nibble();
}
static void cic_exchange_bytes (uint8_t *a, uint8_t *b) {
uint8_t tmp = *a;
*a = *b;
*b = tmp;
}
static void cic_round (uint8_t *m) {
uint8_t a, b, x;
x = m[15];
a = x;
do {
b = 1;
a += (m[b] + 1);
m[b] = a;
b++;
a += (m[b] + 1);
cic_exchange_bytes(&a, &m[b]);
m[b] = ~(m[b]);
b++;
a &= 0x0F;
a += ((m[b] & 0x0F) + 1);
if (a < 16) {
cic_exchange_bytes(&a, &m[b]);
b++;
}
a += m[b];
m[b] = a;
b++;
a += m[b];
cic_exchange_bytes(&a, &m[b]);
b++;
a &= 0x0F;
a += 8;
if (a < 16) {
a += m[b];
}
cic_exchange_bytes(&a, &m[b]);
b++;
do {
a += (m[b] + 1);
m[b] = a;
b++;
b &= 0x0F;
} while (b != 0);
a = (x + 0x0F);
x = (a & 0x0F);
} while (x != 0x0F);
}
static void cic_compare_mode (cic_region_t region) {
cic_round(&cic_ram[0x10]);
cic_round(&cic_ram[0x10]);
cic_round(&cic_ram[0x10]);
uint8_t index = (cic_ram[0x17] & 0x0F);
if (index == 0) {
index = 1;
}
index |= 0x10;
do {
cic_read();
cic_write(cic_ram[index] & 0x01);
if (region == REGION_PAL) {
index--;
} else {
index++;
}
} while (index & 0x0F);
}
static void cic_x105_algorithm (void) {
uint8_t a = 5;
uint8_t carry = 1;
for (int i = 0; i < 30; ++i) {
if (!(cic_x105_ram[i] & 0x01)) {
a += 8;
}
if (!(a & 0x02)) {
a += 4;
}
a = ((a + cic_x105_ram[i]) & 0x0F);
cic_x105_ram[i] = a;
if (!carry) {
a += 7;
}
a = ((a + cic_x105_ram[i]) & 0x0F);
a = (a + cic_x105_ram[i] + carry);
if (a >= 0x10) {
carry = 1;
a -= 0x10;
} else {
carry = 0;
}
a = (~(a) & 0x0F);
cic_x105_ram[i] = a;
}
}
static void cic_x105_mode (void) {
cic_write_nibble(0x0A);
cic_write_nibble(0x0A);
for (int i = 0; i < 30; i++) {
cic_x105_ram[i] = cic_read_nibble();
}
cic_x105_algorithm();
cic_write(0);
for (int i = 0; i < 30; i++) {
cic_write_nibble(cic_x105_ram[i]);
}
}
static void cic_soft_reset_timeout (void) {
hw_gpio_reset(GPIO_ID_N64_CIC_DQ);
task_set_ready(TASK_ID_CIC);
}
static void cic_soft_reset (void) {
cic_read();
hw_tim_setup(TIM_ID_CIC, 500, cic_soft_reset_timeout);
task_yield();
}
void cic_reset_parameters (void) { void cic_reset_parameters (void) {
cic_disabled = false; cic_region_t region = rtc_get_region();
cic_dd_mode = false;
cic_seed = 0x3F; const uint8_t default_seed = 0x3F;
cic_checksum[0] = 0xA5; const uint64_t default_checksum = 0xA536C0F1D859ULL;
cic_checksum[1] = 0x36;
cic_checksum[2] = 0xC0; uint32_t cic_config_0 = (default_seed << CIC_SEED_BIT) | ((default_checksum >> 32) & 0xFFFF);
cic_checksum[3] = 0xF1; uint32_t cic_config_1 = (default_checksum & 0xFFFFFFFFUL);
cic_checksum[4] = 0xD8;
cic_checksum[5] = 0x59; if (region == REGION_PAL) {
cic_config_0 |= CIC_REGION;
}
fpga_reg_set(REG_CIC_0, cic_config_0);
fpga_reg_set(REG_CIC_1, cic_config_1);
} }
void cic_set_parameters (uint32_t *args) { void cic_set_parameters (uint32_t *args) {
cic_disabled = (args[0] >> 24) & (1 << 0); cic_region_t region = rtc_get_region();
cic_seed = (args[0] >> 16) & 0xFF;
cic_checksum[0] = (args[0] >> 8) & 0xFF; uint32_t cic_config_0 = args[0] & (0x00FFFFFF);
cic_checksum[1] = args[0] & 0xFF; uint32_t cic_config_1 = args[1];
cic_checksum[2] = (args[1] >> 24) & 0xFF;
cic_checksum[3] = (args[1] >> 16) & 0xFF; if (region == REGION_PAL) {
cic_checksum[4] = (args[1] >> 8) & 0xFF; cic_config_0 |= CIC_REGION;
cic_checksum[5] = args[1] & 0xFF; }
if (args[0] & (1 << 24)) {
cic_config_0 |= CIC_DISABLED;
}
fpga_reg_set(REG_CIC_0, cic_config_0);
fpga_reg_set(REG_CIC_1, cic_config_1);
} }
void cic_set_dd_mode (bool enabled) { void cic_set_dd_mode (bool enabled) {
cic_dd_mode = enabled; uint32_t cic_config_0 = fpga_reg_get(REG_CIC_0);
if (enabled) {
cic_config_0 |= CIC_64DD_MODE;
} else {
cic_config_0 &= ~(CIC_64DD_MODE);
}
fpga_reg_set(REG_CIC_0, cic_config_0);
} }
void cic_hw_init (void) {
void cic_init (void) {
while (!rtc_is_initialized());
cic_reset_parameters();
hw_gpio_irq_setup(GPIO_ID_N64_RESET, GPIO_IRQ_FALLING, cic_irq_reset_falling); hw_gpio_irq_setup(GPIO_ID_N64_RESET, GPIO_IRQ_FALLING, cic_irq_reset_falling);
hw_gpio_irq_setup(GPIO_ID_N64_RESET, GPIO_IRQ_RISING, cic_irq_reset_rising);
hw_gpio_irq_setup(GPIO_ID_N64_CIC_CLK, GPIO_IRQ_FALLING, cic_irq_clk_falling);
hw_gpio_irq_setup(GPIO_ID_N64_CIC_CLK, GPIO_IRQ_RISING, cic_irq_clk_rising);
} }
void cic_task (void) {
while (!hw_gpio_get(GPIO_ID_N64_RESET)) {
task_yield();
}
cic_region_t region = rtc_get_region(); void cic_process (void) {
if (region >= __REGION_MAX) { uint32_t cic_config_0 = fpga_reg_get(REG_CIC_0);
region = REGION_NTSC;
rtc_set_region(region);
}
cic_write_id(region); if (cic_config_0 & CIC_INVALID_REGION_DETECTED) {
cic_config_0 ^= CIC_REGION;
fpga_reg_set(REG_CIC_0, (cic_config_0 | CIC_INVALID_REGION_RESET));
hw_tim_setup(TIM_ID_CIC, 500, cic_write_id_failed); if (cic_config_0 & CIC_REGION) {
cic_write_seed(); rtc_set_region(REGION_PAL);
hw_tim_stop(TIM_ID_CIC); } else {
rtc_set_region(REGION_NTSC);
cic_write_checksum();
cic_init_ram(region);
while (1) {
uint8_t cmd = 0;
cmd |= (cic_read() << 1);
cmd |= cic_read();
switch (cmd) {
case 0: {
cic_compare_mode(region);
break;
}
case 2: {
cic_x105_mode();
break;
}
case 3: {
cic_soft_reset();
break;
}
case 1:
default: {
while (1) {
task_yield();
}
break;
}
} }
led_blink_error(LED_ERROR_CIC);
} }
} }

View File

@ -9,8 +9,8 @@
void cic_reset_parameters (void); void cic_reset_parameters (void);
void cic_set_parameters (uint32_t *args); void cic_set_parameters (uint32_t *args);
void cic_set_dd_mode (bool enabled); void cic_set_dd_mode (bool enabled);
void cic_hw_init (void); void cic_init (void);
void cic_task (void); void cic_process (void);
#endif #endif

View File

@ -55,6 +55,8 @@ typedef enum {
REG_VENDOR_DATA, REG_VENDOR_DATA,
REG_DEBUG_0, REG_DEBUG_0,
REG_DEBUG_1, REG_DEBUG_1,
REG_CIC_0,
REG_CIC_1,
} fpga_reg_t; } fpga_reg_t;
@ -186,6 +188,13 @@ typedef enum {
#define DD_HEAD_TRACK_MASK (DD_HEAD_MASK | DD_TRACK_MASK) #define DD_HEAD_TRACK_MASK (DD_HEAD_MASK | DD_TRACK_MASK)
#define DD_HEAD_TRACK_INDEX_LOCK (1 << 13) #define DD_HEAD_TRACK_INDEX_LOCK (1 << 13)
#define CIC_SEED_BIT (16)
#define CIC_REGION (1 << 24)
#define CIC_64DD_MODE (1 << 25)
#define CIC_DISABLED (1 << 26)
#define CIC_INVALID_REGION_DETECTED (1 << 27)
#define CIC_INVALID_REGION_RESET (1 << 28)
uint8_t fpga_id_get (void); uint8_t fpga_id_get (void);
uint32_t fpga_reg_get (fpga_reg_t reg); uint32_t fpga_reg_get (fpga_reg_t reg);

View File

@ -1,5 +1,6 @@
#include "button.h" #include "button.h"
#include "cfg.h" #include "cfg.h"
#include "cic.h"
#include "dd.h" #include "dd.h"
#include "flashram.h" #include "flashram.h"
#include "fpga.h" #include "fpga.h"
@ -15,6 +16,7 @@ void gvr_task (void) {
button_init(); button_init();
cfg_init(); cfg_init();
cic_init();
dd_init(); dd_init();
flashram_init(); flashram_init();
isv_init(); isv_init();
@ -25,6 +27,7 @@ void gvr_task (void) {
while (1) { while (1) {
button_process(); button_process();
cfg_process(); cfg_process();
cic_process();
dd_process(); dd_process();
flashram_process(); flashram_process();
isv_process(); isv_process();

View File

@ -83,6 +83,7 @@ static void hw_gpio_init (gpio_id_t id, gpio_mode_t mode, gpio_ot_t ot, gpio_osp
void hw_gpio_irq_setup (gpio_id_t id, gpio_irq_t irq, void (*callback)(void)) { void hw_gpio_irq_setup (gpio_id_t id, gpio_irq_t irq, void (*callback)(void)) {
uint8_t port = ((id >> 4) & 0x07); uint8_t port = ((id >> 4) & 0x07);
uint8_t pin = (id & 0x0F); uint8_t pin = (id & 0x0F);
__disable_irq();
if (irq == GPIO_IRQ_FALLING) { if (irq == GPIO_IRQ_FALLING) {
EXTI->FTSR1 |= (EXTI_FTSR1_FT0 << pin); EXTI->FTSR1 |= (EXTI_FTSR1_FT0 << pin);
gpio_irq_callbacks[pin].falling = callback; gpio_irq_callbacks[pin].falling = callback;
@ -92,6 +93,7 @@ void hw_gpio_irq_setup (gpio_id_t id, gpio_irq_t irq, void (*callback)(void)) {
} }
EXTI->EXTICR[pin / 4] |= (port << (8 * (pin % 4))); EXTI->EXTICR[pin / 4] |= (port << (8 * (pin % 4)));
EXTI->IMR1 |= (EXTI_IMR1_IM0 << pin); EXTI->IMR1 |= (EXTI_IMR1_IM0 << pin);
__enable_irq();
} }
uint32_t hw_gpio_get (gpio_id_t id) { uint32_t hw_gpio_get (gpio_id_t id) {
@ -509,7 +511,7 @@ static void hw_init_crc (void) {
static void hw_init_misc (void) { static void hw_init_misc (void) {
hw_gpio_init(GPIO_ID_N64_RESET, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_DOWN, GPIO_AF_0, 0); hw_gpio_init(GPIO_ID_N64_RESET, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_DOWN, GPIO_AF_0, 0);
hw_gpio_init(GPIO_ID_N64_CIC_CLK, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0); hw_gpio_init(GPIO_ID_N64_CIC_CLK, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0);
hw_gpio_init(GPIO_ID_N64_CIC_DQ, GPIO_OUTPUT, GPIO_OD, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 1); hw_gpio_init(GPIO_ID_N64_CIC_DQ, GPIO_INPUT, GPIO_OD, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 1);
hw_gpio_init(GPIO_ID_FPGA_INT, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0); hw_gpio_init(GPIO_ID_FPGA_INT, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0);
hw_gpio_init(GPIO_ID_RTC_MFP, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0); hw_gpio_init(GPIO_ID_RTC_MFP, GPIO_INPUT, GPIO_PP, GPIO_SPEED_VLOW, GPIO_PULL_UP, GPIO_AF_0, 0);
} }
@ -528,14 +530,14 @@ void hw_init (void) {
hw_init_misc(); hw_init_misc();
NVIC_SetPriority(EXTI0_1_IRQn, 0); NVIC_SetPriority(EXTI0_1_IRQn, 0);
NVIC_SetPriority(EXTI2_3_IRQn, 1); NVIC_SetPriority(EXTI2_3_IRQn, 0);
NVIC_SetPriority(EXTI4_15_IRQn, 2); NVIC_SetPriority(EXTI4_15_IRQn, 0);
NVIC_SetPriority(I2C1_IRQn, 1); NVIC_SetPriority(I2C1_IRQn, 0);
NVIC_SetPriority(TIM14_IRQn, 0); NVIC_SetPriority(TIM14_IRQn, 0);
NVIC_SetPriority(TIM16_IRQn, 1); NVIC_SetPriority(TIM16_IRQn, 0);
NVIC_SetPriority(TIM17_IRQn, 2); NVIC_SetPriority(TIM17_IRQn, 0);
NVIC_SetPriority(TIM3_IRQn, 2); NVIC_SetPriority(TIM3_IRQn, 0);
NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 1); NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 0);
NVIC_EnableIRQ(EXTI0_1_IRQn); NVIC_EnableIRQ(EXTI0_1_IRQn);
NVIC_EnableIRQ(EXTI2_3_IRQn); NVIC_EnableIRQ(EXTI2_3_IRQn);

View File

@ -48,6 +48,7 @@ static rtc_settings_t rtc_settings = {
.led_enabled = true, .led_enabled = true,
}; };
static volatile bool rtc_settings_pending = false; static volatile bool rtc_settings_pending = false;
static volatile bool rtc_initialized = false;
static const uint8_t rtc_regs_bit_mask[7] = { static const uint8_t rtc_regs_bit_mask[7] = {
0b01111111, 0b01111111,
@ -199,9 +200,15 @@ static void rtc_init (void) {
rtc_write(RTC_ADDRESS_SRAM_VERSION, (uint8_t *) (&settings_version), 4); rtc_write(RTC_ADDRESS_SRAM_VERSION, (uint8_t *) (&settings_version), 4);
rtc_write_settings(); rtc_write_settings();
} }
rtc_initialized = true;
} }
bool rtc_is_initialized (void) {
return rtc_initialized;
}
bool rtc_get_time (rtc_time_t *time) { bool rtc_get_time (rtc_time_t *time) {
bool vaild; bool vaild;

View File

@ -21,6 +21,7 @@ typedef struct {
} rtc_settings_t; } rtc_settings_t;
bool rtc_is_initialized (void);
bool rtc_get_time (rtc_time_t *time); bool rtc_get_time (rtc_time_t *time);
void rtc_set_time (rtc_time_t *time); void rtc_set_time (rtc_time_t *time);
uint8_t rtc_get_region (void); uint8_t rtc_get_region (void);

View File

@ -1,3 +1,4 @@
#include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <stm32g0xx.h> #include <stm32g0xx.h>
#include "task.h" #include "task.h"
@ -8,18 +9,9 @@
#define TASK_STACK_FILL_VALUE (0xDEADBEEF) #define TASK_STACK_FILL_VALUE (0xDEADBEEF)
typedef enum {
TASK_FLAG_NONE = 0,
TASK_FLAG_READY = (1 << 0),
TASK_FLAG_RESET = (1 << 1),
} task_flags_t;
typedef struct { typedef struct {
uint32_t initial_pc; volatile uint32_t sp;
uint32_t initial_sp; volatile bool ready;
uint32_t sp;
task_flags_t flags;
} task_t; } task_t;
@ -28,42 +20,21 @@ static volatile task_id_t task_current = 0;
static void task_exit (void) { static void task_exit (void) {
task_table[task_current].flags = TASK_FLAG_NONE; while (1) {
task_yield(); task_yield();
while (1);
}
static void task_initialize (task_id_t id) {
task_t *task = &task_table[id];
uint32_t *sp = ((uint32_t *) (task->initial_sp));
*--sp = TASK_INITIAL_XPSR;
*--sp = task->initial_pc;
*--sp = ((uint32_t) (task_exit));
for (int i = 0; i < 13; i++) {
*--sp = 0;
} }
task->sp = ((uint32_t) (sp));
}
static void task_reset (task_id_t id) {
task_table[id].flags &= ~(TASK_FLAG_RESET);
task_initialize(id);
} }
static uint32_t task_switch_context (uint32_t sp) { static uint32_t task_switch_context (uint32_t sp) {
task_table[task_current].sp = sp; task_table[task_current].sp = sp;
for (task_id_t id = 0; id < __TASK_ID_MAX; id++) { for (task_id_t id = 0; id < __TASK_ID_MAX; id++) {
if (task_table[id].flags & TASK_FLAG_READY) { if (task_table[id].ready) {
task_current = id; task_current = id;
break; break;
} }
} }
if (task_table[task_current].flags & TASK_FLAG_RESET) {
task_reset(task_current);
}
return task_table[task_current].sp; return task_table[task_current].sp;
} }
@ -73,26 +44,30 @@ void task_create (task_id_t id, void (*code)(void), void *stack, size_t stack_si
for (size_t i = 0; i < stack_size; i += sizeof(uint32_t)) { for (size_t i = 0; i < stack_size; i += sizeof(uint32_t)) {
(*(uint32_t *) (stack + i)) = TASK_STACK_FILL_VALUE; (*(uint32_t *) (stack + i)) = TASK_STACK_FILL_VALUE;
} }
uint32_t *sp = ((uint32_t *) ((uint32_t) (stack) + stack_size));
*--sp = TASK_INITIAL_XPSR;
*--sp = (uint32_t) (code);
*--sp = ((uint32_t) (task_exit));
for (int i = 0; i < 13; i++) {
*--sp = 0;
}
task_t *task = &task_table[id]; task_t *task = &task_table[id];
task->initial_pc = (uint32_t) (code); task->sp = ((uint32_t) (sp));
task->initial_sp = (((uint32_t) (stack)) + stack_size); task->ready = true;
task->flags = TASK_FLAG_READY;
task_initialize(id);
} }
} }
void task_yield (void) { void task_yield (void) {
task_table[task_current].flags &= ~(TASK_FLAG_READY); __disable_irq();
task_table[task_current].ready = false;
__enable_irq();
TASK_CONTEXT_SWITCH(); TASK_CONTEXT_SWITCH();
} }
void task_set_ready (task_id_t id) { void task_set_ready (task_id_t id) {
task_table[id].flags |= TASK_FLAG_READY; __disable_irq();
TASK_CONTEXT_SWITCH(); task_table[id].ready = true;
} __enable_irq();
void task_set_ready_and_reset (task_id_t id) {
task_table[id].flags |= (TASK_FLAG_RESET | TASK_FLAG_READY);
TASK_CONTEXT_SWITCH(); TASK_CONTEXT_SWITCH();
} }

View File

@ -6,7 +6,6 @@
typedef enum { typedef enum {
TASK_ID_CIC,
TASK_ID_RTC, TASK_ID_RTC,
TASK_ID_LED, TASK_ID_LED,
TASK_ID_GVR, TASK_ID_GVR,
@ -17,7 +16,6 @@ typedef enum {
void task_create (task_id_t id, void (*code)(void), void *stack, size_t stack_size); void task_create (task_id_t id, void (*code)(void), void *stack, size_t stack_size);
void task_yield (void); void task_yield (void);
void task_set_ready (task_id_t id); void task_set_ready (task_id_t id);
void task_set_ready_and_reset (task_id_t id);
size_t task_get_stack_usage (void *stack, size_t stack_size); size_t task_get_stack_usage (void *stack, size_t stack_size);
void task_scheduler_start (void); void task_scheduler_start (void);

View File

@ -852,9 +852,12 @@ impl TryFrom<Vec<u8>> for McuStackUsage {
impl Display for McuStackUsage { impl Display for McuStackUsage {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.cic > 0 {
f.write_fmt(format_args!("CIC: {}, ", self.cic))?;
}
f.write_fmt(format_args!( f.write_fmt(format_args!(
"CIC: {}, RTC: {}, LED: {}, GVR: {}", "RTC: {}, LED: {}, GVR: {}",
self.cic, self.rtc, self.led, self.gvr self.rtc, self.led, self.gvr
)) ))
} }
} }