#include "flash.h" #include "fpga.h" #include "hw.h" #include "update.h" #include "usb.h" #include "vendor.h" #define SDRAM_ADDRESS (0x00000000UL) #define SDRAM_LENGTH (64 * 1024 * 1024) #define FLASH_USABLE_LENGTH (14 * 1024 * 1024) #define UPDATE_ADDRESS_END (SDRAM_ADDRESS + SDRAM_LENGTH + FLASH_USABLE_LENGTH) #define UPDATE_MAGIC_START (0x54535055UL) #define BOOTLOADER_ADDRESS (0x04E00000UL) #define BOOTLOADER_LENGTH (0x001E0000UL) typedef enum { UPDATE_STATUS_MCU = 1, UPDATE_STATUS_FPGA = 2, UPDATE_STATUS_BOOTLOADER = 3, UPDATE_STATUS_DONE = 0x80, UPDATE_STATUS_ERROR = 0xFF, } update_status_t; typedef enum { CHUNK_ID_UPDATE_INFO = 1, CHUNK_ID_MCU_DATA = 2, CHUNK_ID_FPGA_DATA = 3, CHUNK_ID_BOOTLOADER_DATA = 4, CHUNK_ID_PRIMER_DATA = 5, } chunk_id_t; static loader_parameters_t parameters; static const uint8_t update_token[16] = "SC64 Update v2.0"; static uint8_t status_data[12] = { 'P', 'K', 'T', PACKET_CMD_UPDATE_STATUS, 0, 0, 0, 4, 0, 0, 0, UPDATE_STATUS_ERROR, }; static uint32_t update_align (uint32_t value) { if ((value % 16) != 0) { value += (16 - (value % 16)); } return value; } static uint32_t update_checksum (uint32_t address, uint32_t length) { uint8_t buffer[128]; uint32_t block_size; uint32_t checksum = 0; hw_crc32_reset(); while (length > 0) { block_size = (length > sizeof(buffer)) ? sizeof(buffer) : length; fpga_mem_read(address, block_size, buffer); checksum = hw_crc32_calculate(buffer, block_size); address += block_size; length -= block_size; } return checksum; } static uint32_t update_write_token (uint32_t *address) { uint32_t length = sizeof(update_token); fpga_mem_write(*address, sizeof(update_token), (uint8_t *) (update_token)); *address += length; return length; } static uint32_t update_prepare_chunk (uint32_t *address, chunk_id_t chunk_id) { uint32_t id = (uint32_t) (chunk_id); uint32_t length = (4 * sizeof(uint32_t)); fpga_mem_write(*address, sizeof(id), (uint8_t *) (&id)); *address += length; return length; } static uint32_t update_finalize_chunk (uint32_t *address, uint32_t length) { uint32_t chunk_length = ((4 * sizeof(uint32_t)) + length); uint32_t aligned_chunk_length = update_align(chunk_length); uint32_t aligned_length = aligned_chunk_length - (2 * sizeof(uint32_t)); uint32_t checksum = update_checksum(*address, length); fpga_mem_write(*address - (3 * sizeof(uint32_t)), sizeof(aligned_length), (uint8_t *) (&aligned_length)); fpga_mem_write(*address - (2 * sizeof(uint32_t)), sizeof(checksum), (uint8_t *) (&checksum)); fpga_mem_write(*address - sizeof(uint32_t), sizeof(length), (uint8_t *) (&length)); length += (aligned_chunk_length - chunk_length); *address += length; return length; } static bool update_check_token (uint32_t *address) { uint8_t buffer[sizeof(update_token)]; fpga_mem_read(*address, sizeof(update_token), buffer); for (int i = 0; i < sizeof(update_token); i++) { if (buffer[i] != update_token[i]) { return true; } } *address += sizeof(update_token); return false; } static bool update_get_chunk (uint32_t *address, chunk_id_t *chunk_id, uint32_t *data_address, uint32_t *data_length) { uint32_t id; uint32_t chunk_length; uint32_t checksum; fpga_mem_read(*address, sizeof(id), (uint8_t *) (&id)); *chunk_id = (chunk_id_t) (id); *address += sizeof(id); fpga_mem_read(*address, sizeof(chunk_length), (uint8_t *) (&chunk_length)); *address += sizeof(chunk_length); fpga_mem_read(*address, sizeof(checksum), (uint8_t *) (&checksum)); *address += sizeof(checksum); fpga_mem_read(*address, sizeof(*data_length), (uint8_t *) (data_length)); *address += sizeof(*data_length); *data_address = *address; *address += (chunk_length - (2 * sizeof(uint32_t))); if (checksum != update_checksum(*data_address, *data_length)) { return true; } return false; } static void update_blink_led (uint32_t on, uint32_t off, int repeat) { for (int i = 0; i < repeat; i++) { hw_gpio_set(GPIO_ID_LED); hw_delay_ms(on); hw_gpio_reset(GPIO_ID_LED); hw_delay_ms(off); } } static void update_status_notify (update_status_t status) { status_data[sizeof(status_data) - 1] = (uint8_t) (status); for (int i = 0; i < sizeof(status_data); i++) { while (!(fpga_usb_status_get() & USB_STATUS_TXE)); fpga_usb_push(status_data[i]); } fpga_reg_set(REG_USB_SCR, USB_SCR_WRITE_FLUSH); if (status == UPDATE_STATUS_DONE) { update_blink_led(15, 85, 10); } else if (status == UPDATE_STATUS_ERROR) { update_blink_led(1000, 1000, 30); } else { update_blink_led(15, 185, 2); hw_delay_ms(500); } } static bool mcu_update (uint32_t address, uint32_t length) { hw_flash_t buffer; hw_flash_erase(); for (uint32_t offset = 0; offset < length; offset += sizeof(hw_flash_t)) { fpga_mem_read(address + offset, sizeof(hw_flash_t), (uint8_t *) (&buffer)); hw_flash_program(offset, buffer); if (hw_flash_read(offset) != buffer) { return true; } } return false; } static bool bootloader_update (uint32_t address, uint32_t length) { uint8_t update_buffer[FPGA_MAX_MEM_TRANSFER]; uint8_t verify_buffer[FPGA_MAX_MEM_TRANSFER]; for (uint32_t offset = 0; offset < BOOTLOADER_LENGTH; offset += FLASH_ERASE_BLOCK_SIZE) { if (flash_erase_block(BOOTLOADER_ADDRESS + offset)) { return true; } } if (flash_program(address, BOOTLOADER_ADDRESS, length)) { return true; } for (uint32_t offset = 0; offset < length; offset += sizeof(verify_buffer)) { fpga_mem_read(address + offset, sizeof(update_buffer), update_buffer); fpga_mem_read(BOOTLOADER_ADDRESS + offset, sizeof(verify_buffer), verify_buffer); for (int i = 0; i < sizeof(verify_buffer); i++) { if ((offset + i) >= length) { break; } if (update_buffer[i] != verify_buffer[i]) { return true; } } } return false; } update_error_t update_backup (uint32_t address, uint32_t *length) { uint32_t mcu_length; uint32_t fpga_length; uint32_t bootloader_length; if (address >= (SDRAM_ADDRESS + SDRAM_LENGTH)) { return UPDATE_ERROR_ADDRESS; } *length = update_write_token(&address); *length += update_prepare_chunk(&address, CHUNK_ID_MCU_DATA); mcu_length = hw_flash_size(); for (uint32_t offset = 0; offset < mcu_length; offset += sizeof(hw_flash_t)) { hw_flash_t buffer = hw_flash_read(offset); fpga_mem_write(address + offset, sizeof(hw_flash_t), (uint8_t *) (&buffer)); } *length += update_finalize_chunk(&address, mcu_length); *length += update_prepare_chunk(&address, CHUNK_ID_FPGA_DATA); if (vendor_backup(address, &fpga_length) != VENDOR_OK) { return UPDATE_ERROR_READ; } *length += update_finalize_chunk(&address, fpga_length); *length += update_prepare_chunk(&address, CHUNK_ID_BOOTLOADER_DATA); bootloader_length = BOOTLOADER_LENGTH; for (uint32_t offset = 0; offset < bootloader_length; offset += FPGA_MAX_MEM_TRANSFER) { fpga_mem_copy(BOOTLOADER_ADDRESS + offset, address + offset, FPGA_MAX_MEM_TRANSFER); } *length += update_finalize_chunk(&address, bootloader_length); if ((address + *length) > (SDRAM_ADDRESS + SDRAM_LENGTH)) { return UPDATE_ERROR_ADDRESS; } return UPDATE_OK; } update_error_t update_prepare (uint32_t address, uint32_t length) { uint32_t end_address = (address + length); chunk_id_t id; uint32_t data_address; uint32_t data_length; if ((address >= UPDATE_ADDRESS_END) || (length > (SDRAM_LENGTH + FLASH_USABLE_LENGTH))) { return UPDATE_ERROR_ADDRESS; } if (end_address > UPDATE_ADDRESS_END) { return UPDATE_ERROR_ADDRESS; } if (update_check_token(&address)) { return UPDATE_ERROR_TOKEN; } parameters.flags = 0; parameters.mcu_address = 0; parameters.fpga_address = 0; parameters.bootloader_address = 0; while (address < end_address) { if (update_get_chunk(&address, &id, &data_address, &data_length)) { return UPDATE_ERROR_CHECKSUM; } switch (id) { case CHUNK_ID_UPDATE_INFO: break; case CHUNK_ID_MCU_DATA: if (data_length > hw_flash_size()) { return UPDATE_ERROR_SIZE; } parameters.flags |= LOADER_FLAGS_UPDATE_MCU; parameters.mcu_address = data_address; break; case CHUNK_ID_FPGA_DATA: if (data_length > vendor_flash_size()) { return UPDATE_ERROR_SIZE; } parameters.flags |= LOADER_FLAGS_UPDATE_FPGA; parameters.fpga_address = data_address; break; case CHUNK_ID_BOOTLOADER_DATA: if (data_length > BOOTLOADER_LENGTH) { return UPDATE_ERROR_SIZE; } parameters.flags |= LOADER_FLAGS_UPDATE_BOOTLOADER; parameters.bootloader_address = data_address; break; case CHUNK_ID_PRIMER_DATA: break; default: return UPDATE_ERROR_UNKNOWN_CHUNK; } } return UPDATE_OK; } void update_start (void) { parameters.magic = UPDATE_MAGIC_START; hw_reset(¶meters); } bool update_check (void) { hw_loader_get_parameters(¶meters); return (parameters.magic == UPDATE_MAGIC_START); } void update_perform (void) { uint32_t length; if (parameters.flags & LOADER_FLAGS_UPDATE_MCU) { update_status_notify(UPDATE_STATUS_MCU); fpga_mem_read(parameters.mcu_address - 4, sizeof(length), (uint8_t *) (&length)); if (mcu_update(parameters.mcu_address, length)) { update_status_notify(UPDATE_STATUS_ERROR); while (true); } } if (parameters.flags & LOADER_FLAGS_UPDATE_FPGA) { update_status_notify(UPDATE_STATUS_FPGA); fpga_mem_read(parameters.fpga_address - 4, sizeof(length), (uint8_t *) (&length)); if (vendor_update(parameters.fpga_address, length) != VENDOR_OK) { update_status_notify(UPDATE_STATUS_ERROR); while (true); } } if (parameters.flags & LOADER_FLAGS_UPDATE_BOOTLOADER) { update_status_notify(UPDATE_STATUS_BOOTLOADER); fpga_mem_read(parameters.bootloader_address - 4, sizeof(length), (uint8_t *) (&length)); if (bootloader_update(parameters.bootloader_address, length)) { update_status_notify(UPDATE_STATUS_ERROR); while (true); } } update_status_notify(UPDATE_STATUS_DONE); vendor_reconfigure(); parameters.magic = 0; hw_reset(¶meters); }