SummerCart64/sw/controller/src/sd.c

474 lines
12 KiB
C

#include <stdbool.h>
#include <stdint.h>
#include "fpga.h"
#include "hw.h"
#include "led.h"
#include "sd.h"
#define SD_INIT_BUFFER_ADDRESS (0x05002800UL)
#define CMD6_ARG_CHECK_HS (0x00FFFFF1UL)
#define CMD6_ARG_SWITCH_HS (0x80FFFFF1UL)
#define CMD8_ARG_SUPPLY_VOLTAGE_27_36_V (1 << 8)
#define CMD8_ARG_CHECK_PATTERN (0xAA << 0)
#define ACMD6_ARG_BUS_WIDTH_4BIT (2 << 0)
#define ACMD41_ARG_OCR (0x300000 << 0)
#define ACMD41_ARG_HCS (1 << 30)
#define R3_OCR (0x300000 << 0)
#define R3_CCS (1 << 30)
#define R3_BUSY (1 << 31)
#define R6_RCA_MASK (0xFFFF0000UL)
#define R7_SUPPLY_VOLTAGE_27_36_V (1 << 8)
#define R7_CHECK_PATTERN (0xAA << 0)
#define SWITCH_FUNCTION_CURRENT_LIMIT (SD_INIT_BUFFER_ADDRESS + 0)
#define SWITCH_FUNCTION_GROUP_1 (SD_INIT_BUFFER_ADDRESS + 12)
#define SWITCH_FUNCTION_GROUP_1_HS (1 << 1)
#define DAT_BLOCK_MAX_COUNT (256)
#define DAT_TIMEOUT_INIT_MS (2000)
#define DAT_TIMEOUT_DATA_MS (5000)
typedef enum {
CLOCK_STOP,
CLOCK_400KHZ,
CLOCK_25MHZ,
CLOCK_50MHZ,
} sd_clock_t;
typedef enum {
RSP_NONE,
RSP_R1,
RSP_R1b,
RSP_R2,
RSP_R3,
RSP_R6,
RSP_R7,
} rsp_type_t;
typedef enum {
DAT_READ,
DAT_WRITE,
} dat_mode_t;
struct process {
bool card_initialized;
bool card_type_block;
uint32_t rca;
uint8_t csd[16];
uint8_t cid[16];
volatile bool timeout;
};
static struct process p;
static void sd_trigger_timeout (void) {
p.timeout = true;
}
static void sd_prepare_timeout (uint16_t value) {
p.timeout = false;
hw_tim_setup(TIM_ID_SD, value, sd_trigger_timeout);
}
static bool sd_did_timeout (void) {
return p.timeout;
}
static void sd_clear_timeout (void) {
hw_tim_stop(TIM_ID_SD);
p.timeout = false;
}
static void sd_set_clock (sd_clock_t mode) {
fpga_reg_set(REG_SD_SCR, SD_SCR_CLOCK_MODE_OFF);
switch (mode) {
case CLOCK_400KHZ:
fpga_reg_set(REG_SD_SCR, SD_SCR_CLOCK_MODE_400KHZ);
break;
case CLOCK_25MHZ:
fpga_reg_set(REG_SD_SCR, SD_SCR_CLOCK_MODE_25MHZ);
break;
case CLOCK_50MHZ:
fpga_reg_set(REG_SD_SCR, SD_SCR_CLOCK_MODE_50MHZ);
break;
default:
break;
}
}
static bool sd_cmd (uint8_t cmd, uint32_t arg, rsp_type_t rsp_type, void *rsp) {
uint32_t scr;
uint32_t cmd_data;
cmd_data = ((cmd << SD_CMD_INDEX_BIT) & SD_CMD_INDEX_MASK);
switch (rsp_type) {
case RSP_NONE:
cmd_data |= SD_CMD_SKIP_RESPONSE;
break;
case RSP_R2:
cmd_data |= (SD_CMD_LONG_RESPONSE | SD_CMD_RESERVED_RESPONSE);
break;
case RSP_R3:
cmd_data |= (SD_CMD_IGNORE_CRC | SD_CMD_RESERVED_RESPONSE);
break;
default:
break;
}
fpga_reg_set(REG_SD_ARG, arg);
fpga_reg_set(REG_SD_CMD, cmd_data);
do {
scr = fpga_reg_get(REG_SD_SCR);
} while (scr & SD_SCR_CMD_BUSY);
if (rsp != NULL) {
if (cmd_data & SD_CMD_LONG_RESPONSE) {
uint8_t *rsp_8 = (uint8_t *) (rsp);
for (int i = 0; i < 4; i++) {
uint32_t rsp_data = fpga_reg_get(REG_SD_RSP_3 - i);
uint8_t *rsp_data_8 = (uint8_t *) (&rsp_data);
rsp_data = SWAP32(rsp_data);
for (int i = 0; i < 4; i++) {
*rsp_8++ = *rsp_data_8++;
}
}
} else {
(*(uint32_t *) (rsp)) = fpga_reg_get(REG_SD_RSP_0);
}
}
if (rsp_type == RSP_R1b) {
do {
scr = fpga_reg_get(REG_SD_SCR);
} while (scr & SD_SCR_CARD_BUSY);
}
return (scr & SD_SCR_CMD_ERROR);
}
static bool sd_acmd (uint8_t acmd, uint32_t arg, rsp_type_t rsp_type, void *rsp) {
if (sd_cmd(55, p.rca, RSP_R1, NULL)) {
return true;
}
if (sd_cmd(acmd, arg, rsp_type, rsp)) {
return true;
}
return false;
}
static void sd_dat_prepare (uint32_t address, uint32_t count, dat_mode_t mode) {
uint32_t length = (count * SD_SECTOR_SIZE);
uint32_t sd_dat = (((count - 1) << SD_DAT_BLOCKS_BIT) | SD_DAT_FIFO_FLUSH);
uint32_t sd_dma_scr = DMA_SCR_START;
if (mode == DAT_READ) {
sd_dat |= SD_DAT_START_READ;
sd_dma_scr |= DMA_SCR_DIRECTION;
} else {
sd_dat |= SD_DAT_START_WRITE;
}
fpga_reg_set(REG_SD_DAT, sd_dat);
fpga_reg_set(REG_SD_DMA_ADDRESS, address);
fpga_reg_set(REG_SD_DMA_LENGTH, length);
fpga_reg_set(REG_SD_DMA_SCR, sd_dma_scr);
}
static void sd_dat_abort (void) {
fpga_reg_set(REG_SD_DMA_SCR, DMA_SCR_STOP);
fpga_reg_set(REG_SD_DAT, SD_DAT_STOP | SD_DAT_FIFO_FLUSH);
}
static bool sd_dat_wait (uint16_t timeout) {
sd_prepare_timeout(timeout);
do {
uint32_t sd_dat = fpga_reg_get(REG_SD_DAT);
uint32_t sd_dma_scr = fpga_reg_get(REG_SD_DMA_SCR);
led_blink_act();
if ((!(sd_dat & SD_DAT_BUSY)) && (!(sd_dma_scr & DMA_SCR_BUSY))) {
sd_clear_timeout();
return (sd_dat & SD_DAT_ERROR);
}
} while (!sd_did_timeout());
sd_dat_abort();
return true;
}
bool sd_card_init (void) {
uint32_t arg;
uint32_t rsp;
uint16_t tmp;
if (p.card_initialized) {
return false;
}
p.card_initialized = true;
p.rca = 0;
led_blink_act();
sd_set_clock(CLOCK_400KHZ);
sd_cmd(0, 0, RSP_NONE, NULL);
arg = (CMD8_ARG_SUPPLY_VOLTAGE_27_36_V | CMD8_ARG_CHECK_PATTERN);
if (sd_cmd(8, arg, RSP_R7, &rsp)) {
arg = ACMD41_ARG_OCR;
} else {
if (rsp != (R7_SUPPLY_VOLTAGE_27_36_V | R7_CHECK_PATTERN)) {
sd_card_deinit();
return true;
}
arg = (ACMD41_ARG_HCS | ACMD41_ARG_OCR);
}
sd_prepare_timeout(1000);
do {
if (sd_did_timeout()) {
sd_card_deinit();
return true;
}
if (sd_acmd(41, arg, RSP_R3, &rsp)) {
sd_card_deinit();
return true;
}
if (rsp & R3_BUSY) {
if ((rsp & R3_OCR) == 0) {
sd_card_deinit();
return true;
}
p.card_type_block = (rsp & R3_CCS);
break;
}
} while (1);
sd_clear_timeout();
if (sd_cmd(2, 0, RSP_R2, NULL)) {
sd_card_deinit();
return true;
}
if (sd_cmd(3, 0, RSP_R6, &rsp)) {
sd_card_deinit();
return true;
}
p.rca = (rsp & R6_RCA_MASK);
if (sd_cmd(9, p.rca, RSP_R2, p.csd)) {
sd_card_deinit();
return true;
}
if (sd_cmd(10, p.rca, RSP_R2, p.cid)) {
sd_card_deinit();
return true;
}
if (sd_cmd(7, p.rca, RSP_R1b, NULL)) {
sd_card_deinit();
return true;
}
sd_set_clock(CLOCK_25MHZ);
if (sd_acmd(6, ACMD6_ARG_BUS_WIDTH_4BIT, RSP_R1, NULL)) {
sd_card_deinit();
return true;
}
sd_dat_prepare(SD_INIT_BUFFER_ADDRESS, 1, DAT_READ);
if (sd_cmd(6, CMD6_ARG_CHECK_HS, RSP_R1, NULL)) {
sd_dat_abort();
sd_card_deinit();
return true;
}
sd_dat_wait(DAT_TIMEOUT_INIT_MS);
if (sd_did_timeout()) {
sd_card_deinit();
return true;
}
fpga_mem_read(SWITCH_FUNCTION_CURRENT_LIMIT, 2, (uint8_t *) (&tmp));
if (SWAP16(tmp) == 0) {
sd_card_deinit();
return true;
}
fpga_mem_read(SWITCH_FUNCTION_GROUP_1, 2, (uint8_t *) (&tmp));
if (SWAP16(tmp) & SWITCH_FUNCTION_GROUP_1_HS) {
sd_dat_prepare(SD_INIT_BUFFER_ADDRESS, 1, DAT_READ);
if (sd_cmd(6, CMD6_ARG_SWITCH_HS, RSP_R1, NULL)) {
sd_dat_abort();
sd_card_deinit();
return true;
}
sd_dat_wait(DAT_TIMEOUT_INIT_MS);
if (sd_did_timeout()) {
sd_card_deinit();
return true;
}
fpga_mem_read(SWITCH_FUNCTION_GROUP_1, 2, (uint8_t *) (&tmp));
if (SWAP16(tmp) & SWITCH_FUNCTION_GROUP_1_HS) {
sd_set_clock(CLOCK_50MHZ);
}
}
return false;
}
void sd_card_deinit (void) {
if (p.card_initialized) {
p.card_initialized = false;
sd_set_clock(CLOCK_400KHZ);
sd_cmd(0, 0, RSP_NONE, NULL);
sd_set_clock(CLOCK_STOP);
}
}
bool sd_card_is_inserted (void) {
return (fpga_reg_get(REG_SD_SCR) & SD_SCR_CARD_INSERTED);
}
uint32_t sd_card_get_status (void) {
uint32_t scr = fpga_reg_get(REG_SD_SCR);
uint32_t clock_mode_50mhz = ((scr & SD_SCR_CLOCK_MODE_MASK) == SD_SCR_CLOCK_MODE_50MHZ) ? 1 : 0;
uint32_t card_type_block = p.card_type_block ? 1 : 0;
uint32_t card_initialized = p.card_initialized ? 1 : 0;
uint32_t card_inserted = (scr & SD_SCR_CARD_INSERTED) ? 1 : 0;
return (
(clock_mode_50mhz << 3) |
(card_type_block << 2) |
(card_initialized << 1) |
(card_inserted << 0)
);
}
bool sd_card_get_info (uint32_t address) {
if (!p.card_initialized) {
return true;
}
fpga_mem_write(address, sizeof(p.csd), p.csd);
address += sizeof(p.csd);
fpga_mem_write(address, sizeof(p.cid), p.cid);
address += sizeof(p.cid);
return false;
}
bool sd_write_sectors (uint32_t address, uint32_t sector, uint32_t count) {
if (!p.card_initialized || (count == 0)) {
return true;
}
if (!p.card_type_block) {
sector *= SD_SECTOR_SIZE;
}
while (count > 0) {
uint32_t blocks = ((count > DAT_BLOCK_MAX_COUNT) ? DAT_BLOCK_MAX_COUNT : count);
led_blink_act();
if (sd_cmd(25, sector, RSP_R1, NULL)) {
return true;
}
sd_dat_prepare(address, blocks, DAT_WRITE);
if (sd_dat_wait(DAT_TIMEOUT_DATA_MS)) {
sd_dat_abort();
sd_cmd(12, 0, RSP_R1b, NULL);
return true;
}
sd_cmd(12, 0, RSP_R1b, NULL);
address += (blocks * SD_SECTOR_SIZE);
sector += (blocks * (p.card_type_block ? 1 : SD_SECTOR_SIZE));
count -= blocks;
}
return false;
}
bool sd_read_sectors (uint32_t address, uint32_t sector, uint32_t count) {
if (!p.card_initialized || (count == 0)) {
return true;
}
if (!p.card_type_block) {
sector *= SD_SECTOR_SIZE;
}
while (count > 0) {
uint32_t blocks = ((count > DAT_BLOCK_MAX_COUNT) ? DAT_BLOCK_MAX_COUNT : count);
led_blink_act();
sd_dat_prepare(address, blocks, DAT_READ);
if (sd_cmd(18, sector, RSP_R1, NULL)) {
sd_dat_abort();
return true;
}
if (sd_dat_wait(DAT_TIMEOUT_DATA_MS)) {
if (sd_did_timeout()) {
sd_cmd(12, 0, RSP_R1b, NULL);
}
return true;
}
sd_cmd(12, 0, RSP_R1b, NULL);
address += (blocks * SD_SECTOR_SIZE);
sector += (blocks * (p.card_type_block ? 1 : SD_SECTOR_SIZE));
count -= blocks;
}
return false;
}
bool sd_optimize_sectors (uint32_t address, uint32_t *sector_table, uint32_t count, sd_process_sectors_t sd_process_sectors) {
uint32_t starting_sector = 0;
uint32_t sectors_to_process = 0;
if (count == 0) {
return true;
}
for (uint32_t i = 0; i < count; i++) {
if (sector_table[i] == 0) {
return true;
}
sectors_to_process += 1;
if ((i < (count - 1)) && ((sector_table[i] + 1) == sector_table[i + 1])) {
continue;
}
bool error = sd_process_sectors(address, sector_table[starting_sector], sectors_to_process);
if (error) {
return true;
}
address += (sectors_to_process * SD_SECTOR_SIZE);
starting_sector += sectors_to_process;
sectors_to_process = 0;
}
return false;
}
void sd_init (void) {
p.card_initialized = false;
sd_set_clock(CLOCK_STOP);
}
void sd_process (void) {
if (!sd_card_is_inserted()) {
sd_card_deinit();
}
}