#include #include #include #include "mem2.hpp" #include "mem2alloc.hpp" #include "gecko.h" #include "utils.h" // Forbid the use of MEM2 through malloc u32 MALLOC_MEM2 = 0; static CMEM2Alloc g_mem1gp; static CMEM2Alloc g_mem2gp; extern "C" { extern __typeof(malloc) __real_malloc; extern __typeof(calloc) __real_calloc; extern __typeof(realloc) __real_realloc; extern __typeof(memalign) __real_memalign; extern __typeof(free) __real_free; extern __typeof(malloc_usable_size) __real_malloc_usable_size; void MEM1_init(void *addr, void *end) { g_mem1gp.init(addr, end); g_mem1gp.clear(); } void MEM1_cleanup(void) { g_mem1gp.cleanup(); } void MEM1_clear(void) { g_mem1gp.clear(); } void *MEM1_alloc(unsigned int s) { return g_mem1gp.allocate(s); } void *MEM1_memalign(unsigned int a, unsigned int s) { return g_mem1gp.allocate(ALIGN(a, s)); } void *MEM1_realloc(void *p, unsigned int s) { return g_mem1gp.reallocate(p, s); } void MEM1_free(void *p) { g_mem1gp.release(p); } unsigned int MEM1_usableSize(void *p) { return g_mem1gp.usableSize(p); } unsigned int MEM1_freesize() { return g_mem1gp.FreeSize(); } void MEM2_init(unsigned int mem2Size) { g_mem2gp.init(mem2Size); g_mem2gp.clear(); } void MEM2_cleanup(void) { g_mem2gp.cleanup(); } void MEM2_clear(void) { g_mem2gp.clear(); } void MEM2_free(void *p) { g_mem2gp.release(p); } void *MEM2_alloc(unsigned int s) { return g_mem2gp.allocate(s); } void *MEM2_memalign(unsigned int a, unsigned int s) { return g_mem2gp.allocate(ALIGN(a, s)); } void *MEM2_realloc(void *p, unsigned int s) { return g_mem2gp.reallocate(p, s); } unsigned int MEM2_usableSize(void *p) { return g_mem2gp.usableSize(p); } unsigned int MEM2_freesize() { return g_mem2gp.FreeSize(); } void *__wrap_malloc(size_t size) { void *p; if ((SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO) || size >= MEM2_PRIORITY_SIZE) { p = g_mem2gp.allocate(size); if(p != 0) return p; return __real_malloc(size); } p = __real_malloc(size); if(p != 0) return p; return g_mem2gp.allocate(size); } void *__wrap_calloc(size_t n, size_t size) { void *p; if ((SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO) || (n * size) >= MEM2_PRIORITY_SIZE) { p = g_mem2gp.allocate(n * size); if (p != 0) { memset(p, 0, n * size); return p; } return __real_calloc(n, size); } p = __real_calloc(n, size); if (p != 0) return p; p = g_mem2gp.allocate(n * size); if (p != 0) memset(p, 0, n * size); return p; } void *__wrap_memalign(size_t a, size_t size) { void *p; if ((SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO) || size >= MEM2_PRIORITY_SIZE) { if (a <= 32 && 32 % a == 0) { p = g_mem2gp.allocate(size); if (p != 0) return p; } return __real_memalign(a, size); } p = __real_memalign(a, size); if(p != 0) return p; return g_mem2gp.allocate(size); } void __wrap_free(void *p) { if(!p) return; if (((u32)p & 0x10000000) != 0) g_mem2gp.release(p); else __real_free(p); } void *__wrap_realloc(void *p, size_t size) { void *n; // ptr from mem2 if (((u32)p & 0x10000000) != 0 || (p == 0 && size > MEM2_PRIORITY_SIZE)) { n = g_mem2gp.reallocate(p, size); if (n != 0) return n; n = __real_malloc(size); if (n == 0) return 0; if (p != 0) { memcpy(n, p, MEM2_usableSize(p) < size ? MEM2_usableSize(p) : size); g_mem2gp.release(p); } return n; } // ptr from malloc n = __real_realloc(p, size); if (n != 0) return n; n = g_mem2gp.allocate(size); if (n == 0) return 0; if (p != 0) { memcpy(n, p, __real_malloc_usable_size(p) < size ? __real_malloc_usable_size(p) : size); __real_free(p); } return n; } size_t __wrap_malloc_usable_size(void *p) { if(((u32)p & 0x10000000) != 0) return CMEM2Alloc::usableSize(p); return __real_malloc_usable_size(p); } } ///extern "C"