#include "mem2alloc.hpp" #include #include #include #include #include "lockMutex.hpp" void CMEM2Alloc::init(void *addr, void *end) { m_baseAddress = (SBlock *)(((u32)addr + 31) & ~31); m_endAddress = (SBlock *)((u32)end & ~31); LWP_MutexInit(&m_mutex, 0); } void CMEM2Alloc::cleanup(void) { LWP_MutexDestroy(m_mutex); m_mutex = 0; m_first = 0; // Try to release the range we took through SYS functions /*if (SYS_GetArena2Lo() == m_endAddress) SYS_SetArena2Lo(m_baseAddress);*/ m_baseAddress = 0; m_endAddress = 0; } void CMEM2Alloc::clear(void) { m_first = 0; u32 Size = (u32)m_endAddress - (u32)m_baseAddress; memset(m_baseAddress, 0, Size); DCFlushRange(m_baseAddress, Size); } unsigned int CMEM2Alloc::usableSize(void *p) { return p == 0 ? 0 : ((SBlock *)p - 1)->s * sizeof (SBlock); } void *CMEM2Alloc::allocate(unsigned int s) { if (s == 0) s = 1; // LockMutex lock(m_mutex); // s = (s - 1) / sizeof (SBlock) + 1; // First block if (m_first == 0) { if (m_baseAddress + s + 1 >= m_endAddress) return 0; m_first = m_baseAddress; m_first->next = 0; m_first->prev = 0; m_first->s = s; m_first->f = false; return (void *)(m_first + 1); } // Search for a free block SBlock *i; SBlock *j = m_first; for (i = m_first; i != 0; i = i->next) { if (i->f && i->s >= s) break; j = i; } // Create a new block if (i == 0) { i = j + j->s + 1; if (i + s + 1 >= m_endAddress) return 0; j->next = i; i->prev = j; i->next = 0; i->s = s; i->f = false; return (void *)(i + 1); } // Reuse a free block i->f = false; // Split it if (i->s > s + 1) { j = i + s + 1; j->f = true; j->s = i->s - s - 1; i->s = s; j->next = i->next; j->prev = i; i->next = j; if((((u32)j->next) & 0xf0000000) != 0) j->next->prev = j; } return (void *)(i + 1); } void CMEM2Alloc::release(void *p) { if (p == 0) return; LockMutex lock(m_mutex); SBlock *i = (SBlock *)p - 1; i->f = true; // If there are no other blocks following yet, // set the remaining size to free size. - Dimok if((((u32)i->next) & 0xf0000000) == 0) i->s = m_endAddress - i - 1; // Merge with previous block if ((((u32)i->prev) & 0xf0000000) != 0 && i->prev->f) { i = i->prev; i->s += i->next->s + 1; i->next = i->next->next; if((((u32)i->next) & 0xf0000000) != 0) i->next->prev = i; } // Merge with next block if ((((u32)i->next) & 0xf0000000) != 0 && i->next->f) { i->s += i->next->s + 1; i->next = i->next->next; if((((u32)i->next) & 0xf0000000) != 0) i->next->prev = i; } } void *CMEM2Alloc::reallocate(void *p, unsigned int s) { SBlock *i; SBlock *j; void *n; if (s == 0) s = 1; if (p == 0) return allocate(s); i = (SBlock *)p - 1; s = (s - 1) / sizeof (SBlock) + 1; LockMutex lock(m_mutex); //out of memory /* Dimok */ if (i + s + 1 >= m_endAddress) { return 0; } // Last block if (((((u32)i->next) & 0xf0000000) == 0) && i + s + 1 < m_endAddress) { i->s = s; return p; } // Size <= current size + next block if ((((u32)i->next) & 0xf0000000) != 0 && i->s < s && i->next->f && i->s + i->next->s + 1 >= s) { // Merge i->s += i->next->s + 1; i->next = i->next->next; if((((u32)i->next) & 0xf0000000) != 0) i->next->prev = i; } // Size <= current size if (i->s >= s) { // Split if (i->s > s + 1) { j = i + s + 1; j->f = true; j->s = i->s - s - 1; i->s = s; j->next = i->next; j->prev = i; i->next = j; if((((u32)j->next) & 0xf0000000) != 0) j->next->prev = j; } return p; } // Size > current size n = allocate(s * sizeof (SBlock)); if (n == 0) return 0; memcpy(n, p, i->s * sizeof (SBlock)); release(p); return n; } unsigned int CMEM2Alloc::FreeSize() { LockMutex lock(m_mutex); if (m_first == 0) return (u32)m_endAddress - (u32)m_baseAddress; SBlock *i; unsigned int size = 0; for(i = m_first; i != 0; i = i->next) { if(i->f && (((u32)i->next) & 0xf0000000) != 0) size += i->s; else if(i->f && (((u32)i->next) & 0xf0000000) == 0) size += m_endAddress - i - 1; else if(!i->f && (((u32)i->next) & 0xf0000000) == 0) size += m_endAddress - i - i->s - 1; } return size*sizeof(SBlock); }