#include #include #include #include "mem2.hpp" #include "mem2alloc.hpp" #include "gecko/gecko.h" #include "loader/utils.h" #define MEM2_PRIORITY_SIZE 0x1000 // Forbid the use of MEM2 through malloc u32 MALLOC_MEM2 = 0; void *MEM1_lo_start = (void*)0x80004000; void *MEM1_lo_end = (void*)0x80A00000; void *MEM2_start = (void*)0x90200000; void *MEM2_end = (void*)0x93100000; static CMEM2Alloc g_mem1lo; static CMEM2Alloc g_mem2gp; extern "C" { extern __typeof(malloc) __real_malloc; extern __typeof(calloc) __real_calloc; extern __typeof(realloc) __real_realloc; extern __typeof(memalign) __real_memalign; extern __typeof(free) __real_free; extern __typeof(malloc_usable_size) __real_malloc_usable_size; void MEM_init() { g_mem1lo.init(MEM1_lo_start, MEM1_lo_end); //about 10mb g_mem1lo.clear(); g_mem2gp.init(MEM2_start, MEM2_end); //about 47mb g_mem2gp.clear(); } void *MEM1_lo_alloc(unsigned int s) { return g_mem1lo.allocate(s); } void MEM1_lo_free(void *p) { if(!p) return; g_mem1lo.release(p); } void *MEM1_alloc(unsigned int s) { void *p = g_mem1lo.allocate(s); if(!p) p = __real_malloc(s); return p; } void *MEM1_memalign(unsigned int a, unsigned int s) { void *p = g_mem1lo.allocate(s); if(!p) p = __real_memalign(a, s); return p; } void *MEM1_realloc(void *p, unsigned int s) { if(!p) return NULL; if((u32)p > (u32)MEM1_lo_start && (u32)p < (u32)MEM1_lo_end) return g_mem1lo.reallocate(p, s); return __real_realloc(p, s); } void MEM1_free(void *p) { if(!p) return; if((u32)p > (u32)MEM1_lo_start && (u32)p < (u32)MEM1_lo_end) g_mem1lo.release(p); else __real_free(p); } unsigned int MEM1_freesize() { return SYS_GetArena1Size(); } void MEM2_cleanup(void) { g_mem2gp.cleanup(); } void MEM2_clear(void) { g_mem2gp.clear(); } void MEM2_free(void *p) { if(!p) return; g_mem2gp.release(p); } void *MEM2_alloc(unsigned int s) { return g_mem2gp.allocate(s); } /* Placeholder, will be needed with new memory manager */ void *MEM2_memalign(unsigned int /* alignment */, unsigned int s) { return MEM2_alloc(s); } void *MEM2_realloc(void *p, unsigned int s) { if(!p) return NULL; return g_mem2gp.reallocate(p, s); } unsigned int MEM2_usableSize(void *p) { if(!p) return 0; return g_mem2gp.usableSize(p); } unsigned int MEM2_freesize() { return g_mem2gp.FreeSize(); } void *__wrap_malloc(size_t size) { void *p; if(size >= MEM2_PRIORITY_SIZE) { p = g_mem2gp.allocate(size); if(p != 0) return p; return __real_malloc(size); } p = __real_malloc(size); if(p != 0) return p; return g_mem2gp.allocate(size); } void *__wrap_calloc(size_t n, size_t size) { void *p; if((n * size) >= MEM2_PRIORITY_SIZE) { p = g_mem2gp.allocate(n * size); if (p != 0) { memset(p, 0, n * size); return p; } return __real_calloc(n, size); } p = __real_calloc(n, size); if (p != 0) return p; p = g_mem2gp.allocate(n * size); if (p != 0) memset(p, 0, n * size); return p; } void *__wrap_memalign(size_t a, size_t size) { void *p; if(size >= MEM2_PRIORITY_SIZE) { if(a <= 32 && 32 % a == 0) { p = g_mem2gp.allocate(size); if (p != 0) return p; } return __real_memalign(a, size); } p = __real_memalign(a, size); if(p != 0 || a > 32 || 32 % a != 0) return p; return g_mem2gp.allocate(size); } void __wrap_free(void *p) { if(!p) return; if(((u32)p & 0x10000000) != 0) g_mem2gp.release(p); else MEM1_free(p); } void *__wrap_realloc(void *p, size_t size) { void *n; // ptr from mem2 if (((u32)p & 0x10000000) != 0 || (p == 0 && size > MEM2_PRIORITY_SIZE)) { n = g_mem2gp.reallocate(p, size); if (n != 0) return n; n = __real_malloc(size); if (n == 0) return 0; if (p != 0) { memcpy(n, p, MEM2_usableSize(p) < size ? MEM2_usableSize(p) : size); g_mem2gp.release(p); } return n; } // ptr from malloc n = __real_realloc(p, size); if (n != 0) return n; n = g_mem2gp.allocate(size); if (n == 0) return 0; if (p != 0) { memcpy(n, p, __real_malloc_usable_size(p) < size ? __real_malloc_usable_size(p) : size); __real_free(p); } return n; } size_t __wrap_malloc_usable_size(void *p) { if(((u32)p & 0x10000000) != 0) return CMEM2Alloc::usableSize(p); return __real_malloc_usable_size(p); } } ///extern "C"