mirror of
https://github.com/Fledge68/WiiFlow_Lite.git
synced 2024-11-27 21:54:15 +01:00
6b663fe2d9
-only use the internal wii aes hardware if we do have hardware access (should fix dolphin-emu and neek2o) -(hopefully) made the gc installer and the wait message display safer -code cleanup, removed some unneeded stuff -increased our usable mem2 by 1mb
446 lines
9.5 KiB
C
446 lines
9.5 KiB
C
/* Rijndael Block Cipher - rijndael.c
|
|
|
|
Written by Mike Scott 21st April 1999
|
|
mike@compapp.dcu.ie
|
|
|
|
Permission for free direct or derivative use is granted subject
|
|
to compliance with any conditions that the originators of the
|
|
algorithm place on its exploitation.
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "gecko/gecko.hpp"
|
|
#include "loader/utils.h"
|
|
#define u8 unsigned char /* 8 bits */
|
|
#define u32 unsigned long /* 32 bits */
|
|
#define u64 unsigned long long
|
|
|
|
/* rotates x one bit to the left */
|
|
|
|
#define ROTL(x) (((x)>>7)|((x)<<1))
|
|
|
|
/* Rotates 32-bit word left by 1, 2 or 3 byte */
|
|
|
|
#define ROTL8(x) (((x)<<8)|((x)>>24))
|
|
#define ROTL16(x) (((x)<<16)|((x)>>16))
|
|
#define ROTL24(x) (((x)<<24)|((x)>>8))
|
|
|
|
/* Fixed Data */
|
|
|
|
static u8 InCo[4] = { 0xB, 0xD, 0x9, 0xE }; /* Inverse Coefficients */
|
|
|
|
static u8 fbsub[256];
|
|
static u8 rbsub[256];
|
|
static u8 ptab[256], ltab[256];
|
|
static u32 ftable[256];
|
|
static u32 rtable[256];
|
|
static u32 rco[30];
|
|
|
|
/* Parameter-dependent data */
|
|
|
|
int Nk, Nb, Nr;
|
|
u8 fi[24], ri[24];
|
|
u32 fkey[120];
|
|
u32 rkey[120];
|
|
|
|
static u32 pack(u8 *b)
|
|
{ /* pack bytes into a 32-bit Word */
|
|
return ((u32 ) b[3] << 24) | ((u32 ) b[2] << 16) | ((u32 ) b[1] << 8) | (u32 ) b[0];
|
|
}
|
|
|
|
static void unpack(u32 a, u8 *b)
|
|
{ /* unpack bytes from a word */
|
|
b[0] = (u8 ) a;
|
|
b[1] = (u8 ) (a >> 8);
|
|
b[2] = (u8 ) (a >> 16);
|
|
b[3] = (u8 ) (a >> 24);
|
|
}
|
|
|
|
static u8 xtime(u8 a)
|
|
{
|
|
u8 b;
|
|
if (a & 0x80)
|
|
b = 0x1B;
|
|
else b = 0;
|
|
a <<= 1;
|
|
a ^= b;
|
|
return a;
|
|
}
|
|
|
|
static u8 bmul(u8 x, u8 y)
|
|
{ /* x.y= AntiLog(Log(x) + Log(y)) */
|
|
if (x && y)
|
|
return ptab[(ltab[x] + ltab[y]) % 255];
|
|
else return 0;
|
|
}
|
|
|
|
static u32 SubByte(u32 a)
|
|
{
|
|
u8 b[4];
|
|
unpack(a, b);
|
|
b[0] = fbsub[b[0]];
|
|
b[1] = fbsub[b[1]];
|
|
b[2] = fbsub[b[2]];
|
|
b[3] = fbsub[b[3]];
|
|
return pack(b);
|
|
}
|
|
|
|
static u8 product(u32 x, u32 y)
|
|
{ /* dot product of two 4-byte arrays */
|
|
u8 xb[4], yb[4];
|
|
unpack(x, xb);
|
|
unpack(y, yb);
|
|
return bmul(xb[0], yb[0]) ^ bmul(xb[1], yb[1]) ^ bmul(xb[2], yb[2]) ^ bmul(xb[3], yb[3]);
|
|
}
|
|
|
|
static u32 InvMixCol(u32 x)
|
|
{ /* matrix Multiplication */
|
|
u32 y, m;
|
|
u8 b[4];
|
|
|
|
m = pack(InCo);
|
|
b[3] = product(m, x);
|
|
m = ROTL24( m );
|
|
b[2] = product(m, x);
|
|
m = ROTL24( m );
|
|
b[1] = product(m, x);
|
|
m = ROTL24( m );
|
|
b[0] = product(m, x);
|
|
y = pack(b);
|
|
return y;
|
|
}
|
|
|
|
u8 ByteSub(u8 x)
|
|
{
|
|
u8 y = ptab[255 - ltab[x]]; /* multiplicative inverse */
|
|
x = y;
|
|
x = ROTL( x );
|
|
y ^= x;
|
|
x = ROTL( x );
|
|
y ^= x;
|
|
x = ROTL( x );
|
|
y ^= x;
|
|
x = ROTL( x );
|
|
y ^= x;
|
|
y ^= 0x63;
|
|
return y;
|
|
}
|
|
|
|
void gentables(void)
|
|
{ /* generate tables */
|
|
int i;
|
|
u8 y, b[4];
|
|
|
|
/* use 3 as primitive root to generate power and log tables */
|
|
|
|
ltab[0] = 0;
|
|
ptab[0] = 1;
|
|
ltab[1] = 0;
|
|
ptab[1] = 3;
|
|
ltab[3] = 1;
|
|
for (i = 2; i < 256; i++)
|
|
{
|
|
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
|
|
ltab[ptab[i]] = i;
|
|
}
|
|
|
|
/* affine transformation:- each bit is xored with itself shifted one bit */
|
|
|
|
fbsub[0] = 0x63;
|
|
rbsub[0x63] = 0;
|
|
for (i = 1; i < 256; i++)
|
|
{
|
|
y = ByteSub((u8 ) i);
|
|
fbsub[i] = y;
|
|
rbsub[y] = i;
|
|
}
|
|
|
|
for (i = 0, y = 1; i < 30; i++)
|
|
{
|
|
rco[i] = y;
|
|
y = xtime(y);
|
|
}
|
|
|
|
/* calculate forward and reverse tables */
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
y = fbsub[i];
|
|
b[3] = y ^ xtime(y);
|
|
b[2] = y;
|
|
b[1] = y;
|
|
b[0] = xtime(y);
|
|
ftable[i] = pack(b);
|
|
|
|
y = rbsub[i];
|
|
b[3] = bmul(InCo[0], y);
|
|
b[2] = bmul(InCo[1], y);
|
|
b[1] = bmul(InCo[2], y);
|
|
b[0] = bmul(InCo[3], y);
|
|
rtable[i] = pack(b);
|
|
}
|
|
}
|
|
|
|
void gkey(int nb, int nk, char *key)
|
|
{ /* blocksize=32*nb bits. Key=32*nk bits */
|
|
/* currently nb,bk = 4, 6 or 8 */
|
|
/* key comes as 4*Nk bytes */
|
|
/* Key Scheduler. Create expanded encryption key */
|
|
int i, j, k, m, N;
|
|
int C1, C2, C3;
|
|
u32 CipherKey[8];
|
|
|
|
Nb = nb;
|
|
Nk = nk;
|
|
|
|
/* Nr is number of rounds */
|
|
if (Nb >= Nk)
|
|
Nr = 6 + Nb;
|
|
else Nr = 6 + Nk;
|
|
|
|
C1 = 1;
|
|
if (Nb < 8)
|
|
{
|
|
C2 = 2;
|
|
C3 = 3;
|
|
}
|
|
else
|
|
{
|
|
C2 = 3;
|
|
C3 = 4;
|
|
}
|
|
|
|
/* pre-calculate forward and reverse increments */
|
|
for (m = j = 0; j < nb; j++, m += 3)
|
|
{
|
|
fi[m] = (j + C1) % nb;
|
|
fi[m + 1] = (j + C2) % nb;
|
|
fi[m + 2] = (j + C3) % nb;
|
|
ri[m] = (nb + j - C1) % nb;
|
|
ri[m + 1] = (nb + j - C2) % nb;
|
|
ri[m + 2] = (nb + j - C3) % nb;
|
|
}
|
|
|
|
N = Nb * (Nr + 1);
|
|
|
|
for (i = j = 0; i < Nk; i++, j += 4)
|
|
{
|
|
CipherKey[i] = pack((u8 *) &key[j]);
|
|
}
|
|
for (i = 0; i < Nk; i++)
|
|
fkey[i] = CipherKey[i];
|
|
for (j = Nk, k = 0; j < N; j += Nk, k++)
|
|
{
|
|
fkey[j] = fkey[j - Nk] ^ SubByte(ROTL24( fkey[j-1] )) ^ rco[k];
|
|
if (Nk <= 6)
|
|
{
|
|
for (i = 1; i < Nk && (i + j) < N; i++)
|
|
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
|
|
}
|
|
else
|
|
{
|
|
for (i = 1; i < 4 && (i + j) < N; i++)
|
|
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
|
|
if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ SubByte(fkey[j + 3]);
|
|
for (i = 5; i < Nk && (i + j) < N; i++)
|
|
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
|
|
}
|
|
|
|
}
|
|
|
|
/* now for the expanded decrypt key in reverse order */
|
|
|
|
for (j = 0; j < Nb; j++)
|
|
rkey[j + N - Nb] = fkey[j];
|
|
for (i = Nb; i < N - Nb; i += Nb)
|
|
{
|
|
k = N - Nb - i;
|
|
for (j = 0; j < Nb; j++)
|
|
rkey[k + j] = InvMixCol(fkey[i + j]);
|
|
}
|
|
for (j = N - Nb; j < N; j++)
|
|
rkey[j - N + Nb] = fkey[j];
|
|
}
|
|
|
|
/* There is an obvious time/space trade-off possible here. *
|
|
* Instead of just one ftable[], I could have 4, the other *
|
|
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
|
|
|
|
void encrypt(char *buff)
|
|
{
|
|
int i, j, k, m;
|
|
u32 a[8], b[8], *x, *y, *t;
|
|
|
|
for (i = j = 0; i < Nb; i++, j += 4)
|
|
{
|
|
a[i] = pack((u8 *) &buff[j]);
|
|
a[i] ^= fkey[i];
|
|
}
|
|
k = Nb;
|
|
x = a;
|
|
y = b;
|
|
|
|
/* State alternates between a and b */
|
|
for (i = 1; i < Nr; i++)
|
|
{ /* Nr is number of rounds. May be odd. */
|
|
|
|
/* if Nb is fixed - unroll this next
|
|
loop and hard-code in the values of fi[] */
|
|
|
|
for (m = j = 0; j < Nb; j++, m += 3)
|
|
{ /* deal with each 32-bit element of the State */
|
|
/* This is the time-critical bit */
|
|
y[j] = fkey[k++] ^ ftable[(u8 ) x[j]] ^ ROTL8( ftable[( u8 )( x[fi[m]] >> 8 )] )
|
|
^ ROTL16( ftable[( u8 )( x[fi[m+1]] >> 16 )] ) ^ ROTL24( ftable[x[fi[m+2]] >> 24] );
|
|
}
|
|
t = x;
|
|
x = y;
|
|
y = t; /* swap pointers */
|
|
}
|
|
|
|
/* Last Round - unroll if possible */
|
|
for (m = j = 0; j < Nb; j++, m += 3)
|
|
{
|
|
y[j] = fkey[k++] ^ (u32 ) fbsub[(u8 ) x[j]] ^ ROTL8( ( u32 )fbsub[( u8 )( x[fi[m]] >> 8 )] )
|
|
^ ROTL16( ( u32 )fbsub[( u8 )( x[fi[m+1]] >> 16 )] ) ^ ROTL24( ( u32 )fbsub[x[fi[m+2]] >> 24] );
|
|
}
|
|
for (i = j = 0; i < Nb; i++, j += 4)
|
|
{
|
|
unpack(y[i], (u8 *) &buff[j]);
|
|
x[i] = y[i] = 0; /* clean up stack */
|
|
}
|
|
return;
|
|
}
|
|
|
|
void decrypt(char *buff)
|
|
{
|
|
int i, j, k, m;
|
|
u32 a[8], b[8], *x, *y, *t;
|
|
|
|
for (i = j = 0; i < Nb; i++, j += 4)
|
|
{
|
|
a[i] = pack((u8 *) &buff[j]);
|
|
a[i] ^= rkey[i];
|
|
}
|
|
k = Nb;
|
|
x = a;
|
|
y = b;
|
|
|
|
/* State alternates between a and b */
|
|
for (i = 1; i < Nr; i++)
|
|
{ /* Nr is number of rounds. May be odd. */
|
|
|
|
/* if Nb is fixed - unroll this next
|
|
loop and hard-code in the values of ri[] */
|
|
|
|
for (m = j = 0; j < Nb; j++, m += 3)
|
|
{ /* This is the time-critical bit */
|
|
y[j] = rkey[k++] ^ rtable[(u8 ) x[j]] ^ ROTL8( rtable[( u8 )( x[ri[m]] >> 8 )] )
|
|
^ ROTL16( rtable[( u8 )( x[ri[m+1]] >> 16 )] ) ^ ROTL24( rtable[x[ri[m+2]] >> 24] );
|
|
}
|
|
t = x;
|
|
x = y;
|
|
y = t; /* swap pointers */
|
|
}
|
|
|
|
/* Last Round - unroll if possible */
|
|
for (m = j = 0; j < Nb; j++, m += 3)
|
|
{
|
|
y[j] = rkey[k++] ^ (u32 ) rbsub[(u8 ) x[j]] ^ ROTL8( ( u32 )rbsub[( u8 )( x[ri[m]] >> 8 )] )
|
|
^ ROTL16( ( u32 )rbsub[( u8 )( x[ri[m+1]] >> 16 )] ) ^ ROTL24( ( u32 )rbsub[x[ri[m+2]] >> 24] );
|
|
}
|
|
for (i = j = 0; i < Nb; i++, j += 4)
|
|
{
|
|
unpack(y[i], (u8 *) &buff[j]);
|
|
x[i] = y[i] = 0; /* clean up stack */
|
|
}
|
|
return;
|
|
}
|
|
|
|
void aes_set_key(const u8 *key)
|
|
{
|
|
gentables();
|
|
gkey(4, 4, (char*) key);
|
|
}
|
|
|
|
// CBC mode decryption
|
|
void aes_decrypt(u8 *iv, u8 *inbuf, u8 *outbuf, u64 len)
|
|
{
|
|
u8 block[16];
|
|
u32 blockno = 0, i;
|
|
|
|
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
|
|
|
|
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
|
|
{
|
|
u32 fraction;
|
|
if (blockno == (len / sizeof(block))) // last block
|
|
{
|
|
fraction = len % sizeof(block);
|
|
if (fraction == 0) break;
|
|
memset(block, 0, sizeof(block));
|
|
}
|
|
else fraction = 16;
|
|
|
|
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
|
|
memcpy(block, inbuf + blockno * sizeof(block), fraction);
|
|
decrypt((char*) block);
|
|
u8 *ctext_ptr;
|
|
if (blockno == 0)
|
|
ctext_ptr = iv;
|
|
else ctext_ptr = inbuf + (blockno - 1) * sizeof(block);
|
|
|
|
for (i = 0; i < fraction; i++)
|
|
outbuf[blockno * sizeof(block) + i] = ctext_ptr[i] ^ block[i];
|
|
// debug_printf("Block %d output: ", blockno);
|
|
// hexdump(outbuf + blockno*sizeof(block), 16);
|
|
}
|
|
}
|
|
|
|
// CBC mode encryption
|
|
void aes_encrypt(u8 *iv, u8 *inbuf, u8 *outbuf, u64 len)
|
|
{
|
|
u8 block[16];
|
|
u32 blockno = 0, i;
|
|
|
|
// debug_printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
|
|
|
|
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
|
|
{
|
|
u32 fraction;
|
|
if (blockno == (len / sizeof(block))) // last block
|
|
{
|
|
fraction = len % sizeof(block);
|
|
if (fraction == 0) break;
|
|
memset(block, 0, sizeof(block));
|
|
}
|
|
else fraction = 16;
|
|
|
|
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
|
|
memcpy(block, inbuf + blockno * sizeof(block), fraction);
|
|
|
|
for (i = 0; i < fraction; i++)
|
|
block[i] = inbuf[blockno * sizeof(block) + i] ^ iv[i];
|
|
|
|
encrypt((char*) block);
|
|
memcpy(iv, block, sizeof(block));
|
|
memcpy(outbuf + blockno * sizeof(block), block, sizeof(block));
|
|
// debug_printf("Block %d output: ", blockno);
|
|
// hexdump(outbuf + blockno*sizeof(block), 16);
|
|
}
|
|
}
|
|
|
|
|
|
// CBC mode decryption
|
|
#define WAD_BUF 0x10000
|
|
|
|
void aes_decrypt_partial(u8 *inbuf, u8 *outbuf, u8 block[16], u8 *ctext_ptr, u32 tmp_blockno)
|
|
{
|
|
memcpy(block, inbuf + tmp_blockno * 16, 16);
|
|
decrypt((char*)block);
|
|
u32 i;
|
|
for(i = 0; i < 16; i++)
|
|
outbuf[tmp_blockno * 16 + i] = ctext_ptr[i] ^ block[i];
|
|
}
|