272 lines
4.9 KiB
C++

#include <malloc.h>
#include <string.h>
#include <ogc/system.h>
#include <ogc/machine/processor.h>
#include "mem2.hpp"
#include "mem_manager.hpp"
#include "gecko/gecko.hpp"
#include "loader/utils.h"
static const u32 MEM2_PRIORITY_SIZE = 0x1000;// 4k or 4096
// Forbid the use of MEM2 through malloc by setting MALLOC_MEM2 = 0; if not 0 then malloc can use mem2
// calls to malloc, memalign, calloc, free are handled below by the wrappers which decide whether to use mem1 or mem2.
u32 MALLOC_MEM2 = 0;
u8 *MEM1_lo_start = (u8*)0x80004000;
u8 *MEM1_lo_end = (u8*)0x8061ff00;
u8 *MEM1_lo_list = (u8*)0x90080800;
u8 *MEM2_lo_start = (u8*)0x90200000;
u8 *MEM2_lo_end = (u8*)0x905fff00;
u8 *MEM2_lo_list = (u8*)0x900a0800;
u8 *MEM2_start = (u8*)0x90600000;
u8 *MEM2_end = (u8*)0x932fff00;
u8 *MEM2_list = (u8*)0x90000800;
static MemManager g_mem1lo;
static MemManager g_mem2lo;
static MemManager g_mem2gp;
extern "C"
{
extern __typeof(malloc) __real_malloc;
extern __typeof(calloc) __real_calloc;
extern __typeof(realloc) __real_realloc;
extern __typeof(memalign) __real_memalign;
extern __typeof(free) __real_free;
extern __typeof(malloc_usable_size) __real_malloc_usable_size;
void MEM_init()
{
g_mem1lo.Init(MEM1_lo_start, MEM1_lo_list, (u32)(MEM1_lo_end-MEM1_lo_start)); //about 6mb
g_mem1lo.ClearMem();
g_mem2lo.Init(MEM2_lo_start, MEM2_lo_list, (u32)(MEM2_lo_end-MEM2_lo_start)); //about 4mb
g_mem2lo.ClearMem();
g_mem2gp.Init(MEM2_start, MEM2_list, (u32)(MEM2_end-MEM2_start)); //about 45mb
g_mem2gp.ClearMem();
}
void *MEM1_lo_alloc(unsigned int s)
{
return g_mem1lo.Alloc(s);
}
void MEM1_lo_free(void *p)
{
if(!p)
return;
g_mem1lo.Free(p);
}
unsigned int MEM1_lo_freesize()
{
return g_mem1lo.FreeSize();
}
void *MEM1_alloc(unsigned int s)
{
return __real_malloc(s);
}
void *MEM1_memalign(unsigned int a, unsigned int s)
{
return __real_memalign(a, s);
}
void *MEM1_realloc(void *p, unsigned int s)
{
return __real_realloc(p, s);
}
void MEM1_free(void *p)
{
if(!p)
return;
__real_free(p);
}
unsigned int MEM1_freesize()
{
return SYS_GetArena1Size();
}
void MEM2_lo_free(void *p)
{
if(!p)
return;
g_mem2lo.Free(p);
}
void *MEM2_lo_alloc(unsigned int s)
{
return g_mem2lo.Alloc(s);
}
void MEM2_free(void *p)
{
if(!p)
return;
g_mem2gp.Free(p);
}
void *MEM2_alloc(unsigned int s)
{
return g_mem2gp.Alloc(s);
}
/* Placeholder, will be needed with new memory manager */
void *MEM2_memalign(unsigned int /* alignment */, unsigned int s)
{
return g_mem2gp.Alloc(s);
}
void *MEM2_realloc(void *p, unsigned int s)
{
return g_mem2gp.ReAlloc(p, s);
}
unsigned int MEM2_usableSize(void *p)
{
return g_mem2gp.MemBlockSize(p);
}
unsigned int MEM2_freesize()
{
return g_mem2gp.FreeSize();
}
// these wrap's are used when malloc, calloc, memalign, free are called in wiiflow.
// they decide based on if the size >= mem2_prio_size (4k) to use mem2 or mem1. using the __real means to use mem1 because MALLOC_MEM2 = 0.
void *__wrap_malloc(size_t size)
{
void *p;
if(size >= MEM2_PRIORITY_SIZE)
{
p = g_mem2gp.Alloc(size);
if(p != 0)
return p;
return __real_malloc(size);
}
p = __real_malloc(size);
if(p != 0)
return p;
return g_mem2gp.Alloc(size);
}
void *__wrap_calloc(size_t n, size_t size)
{
void *p;
if((n * size) >= MEM2_PRIORITY_SIZE)
{
p = g_mem2gp.Alloc(n * size);
if (p != 0)
{
memset(p, 0, n * size);
return p;
}
return __real_calloc(n, size);
}
p = __real_calloc(n, size);
if (p != 0) return p;
p = g_mem2gp.Alloc(n * size);
if (p != 0)
memset(p, 0, n * size);
return p;
}
void *__wrap_memalign(size_t a, size_t size)
{
void *p;
if(size >= MEM2_PRIORITY_SIZE)
{
if(a <= 32 && 32 % a == 0)
{
p = g_mem2gp.Alloc(size);
if (p != 0)
return p;
}
return __real_memalign(a, size);
}
p = __real_memalign(a, size);
if(p != 0 || a > 32 || 32 % a != 0)
return p;
return g_mem2gp.Alloc(size);
}
void __wrap_free(void *p)
{
if(!p)
return;
if(((u32)p & 0x10000000) != 0)
{
if(p > MEM2_start)
g_mem2gp.Free(p);
else
g_mem2lo.Free(p);
}
else
MEM1_free(p);
}
void *__wrap_realloc(void *p, size_t size)
{
void *n;
// ptr from mem2
if(((u32)p & 0x10000000) != 0 || (p == 0 && size > MEM2_PRIORITY_SIZE))
{
n = g_mem2gp.ReAlloc(p, size);
if(n != 0)
return n;
n = __real_malloc(size);
if(n == 0)
return 0;
if(p != 0)
{
memcpy(n, p, MEM2_usableSize(p) < size ? MEM2_usableSize(p) : size);
g_mem2gp.Free(p);
}
return n;
}
// ptr from malloc
n = __real_realloc(p, size);
if(n != 0)
return n;
n = g_mem2gp.Alloc(size);
if(n == 0)
return 0;
if(p != 0)
{
memcpy(n, p, __real_malloc_usable_size(p) < size ? __real_malloc_usable_size(p) : size);
__real_free(p);
}
return n;
}
size_t __wrap_malloc_usable_size(void *p)
{
if(((u32)p & 0x10000000) != 0)
{
if(p > MEM2_start)
return g_mem2gp.MemBlockSize(p);
else
return g_mem2lo.MemBlockSize(p);
}
return __real_malloc_usable_size(p);
}
} ///extern "C"