WiiFlow_Lite/source/gui/texture.cpp
2012-11-16 22:40:20 +00:00

729 lines
19 KiB
C++

#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <ogcsys.h>
#include <malloc.h>
#include <cmath>
#include "texture.hpp"
#include "coverflow.hpp"
#include "memory/mem2.hpp"
#include "pngu.h"
#include "gcvid.h"
using namespace std;
static u32 upperPower(u32 width)
{
u32 i = 8;
u32 maxWidth = 1090;
while (i < width && i < maxWidth)
i <<= 1;
return i;
}
u32 fixGX_GetTexBufferSize(u16 wd, u16 ht, u32 fmt, u8 mipmap, u8 maxlod)
{
if (mipmap) return GX_GetTexBufferSize(wd, ht, fmt, mipmap, maxlod + 1);
return GX_GetTexBufferSize(wd, ht, fmt, mipmap, maxlod);
}
static inline u32 coordsRGBA8(u32 x, u32 y, u32 w)
{
return ((((y >> 2) * (w >> 2) + (x >> 2)) << 5) + ((y & 3) << 2) + (x & 3)) << 1;
}
static inline u32 coordsRGB565(u32 x, u32 y, u32 w)
{
return (((y >> 2) * (w >> 2) + (x >> 2)) << 4) + ((y & 3) << 2) + (x & 3);
}
static inline void _convertToFlippedRGBA(u8 *dst, const u8 *src, u32 width, u32 height)
{
for(u32 block = 0; block < height; block += 4)
{
for(u32 i = 0; i < width; i += 4)
{
for(u32 c = 0; c < 4; ++c)
{
for(u32 rgb = 0; rgb < 4; ++rgb)
{
u32 y = height - 1 - (c + block);
u32 x = rgb + i;
u32 dst_offset = (x + y * width) * 4;
u32 src_offset = (x + ((block + c) * width)) * 3;
/* RGB */
memcpy(&dst[dst_offset], &src[src_offset], 3);
/* Alpha */
dst[dst_offset + 3] = 0xFF;
}
}
}
}
}
static inline void _convertToRGBA(u8 *dst, const u8 *src, u32 width, u32 height)
{
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
u32 i = (x + y * width) * 4;
dst[i] = src[coordsRGBA8(x, y, width) + 1];
dst[i + 1] = src[coordsRGBA8(x, y, width) + 32];
dst[i + 2] = src[coordsRGBA8(x, y, width) + 33];
dst[i + 3] = src[coordsRGBA8(x, y, width)];
}
}
}
static inline void _convertToRGBA8(u8 *dst, const u8 *src, u32 width, u32 height)
{
for (u32 y = 0; y < height; ++y)
for (u32 x = 0; x < width; ++x)
{
u32 i = (x + y * width) * 4;
dst[coordsRGBA8(x, y, width) + 1] = src[i];
dst[coordsRGBA8(x, y, width) + 32] = src[i + 1];
dst[coordsRGBA8(x, y, width) + 33] = src[i + 2];
dst[coordsRGBA8(x, y, width)] = src[i + 3];
}
}
static inline void _convertToRGB565(u8 *dst, const u8 *src, u32 width, u32 height)
{
u16 *dst16 = (u16 *)dst;
for (u32 y = 0; y < height; ++y)
for (u32 x = 0; x < width; ++x)
{
u32 i = (x + y * width) * 4;
dst16[coordsRGB565(x, y, width)] = ((src[i] & 0xF8) << 8) | ((src[i + 1] & 0xFC) << 3) | (src[i + 2] >> 3);
}
}
static inline u16 rgb8ToRGB565(u8 *color)
{
return ((color[0] >> 3) << 11) | ((color[1] >> 2) << 5) | (color[2] >> 3);
}
static int colorDistance(const u8 *c0, const u8 *c1)
{
return (c1[0] - c0[0]) * (c1[0] - c0[0]) + (c1[1] - c0[1]) * (c1[1] - c0[1]) + (c1[2] - c0[2]) * (c1[2] - c0[2]);
}
static void getBaseColors(u8 *color0, u8 *color1, const u8 *srcBlock)
{
int maxDistance = -1;
for (int i = 0; i < 15; ++i)
for (int j = i + 1; j < 16; ++j)
{
int distance = colorDistance(srcBlock + i * 4, srcBlock + j * 4);
if (distance > maxDistance)
{
maxDistance = distance;
*(u32 *)color0 = ((u32 *)srcBlock)[i];
*(u32 *)color1 = ((u32 *)srcBlock)[j];
}
}
if (rgb8ToRGB565(color0) < rgb8ToRGB565(color1))
{
u32 tmp;
tmp = *(u32 *)color0;
*(u32 *)color0 = *(u32 *)color1;
*(u32 *)color1 = tmp;
}
}
static u32 colorIndices(const u8 *color0, const u8 *color1, const u8 *srcBlock)
{
u16 colors[4][4];
u32 res = 0;
// Make the 4 colors available in the block
colors[0][0] = (color0[0] & 0xF8) | (color0[0] >> 5);
colors[0][1] = (color0[1] & 0xFC) | (color0[1] >> 6);
colors[0][2] = (color0[2] & 0xF8) | (color0[2] >> 5);
colors[1][0] = (color1[0] & 0xF8) | (color1[0] >> 5);
colors[1][1] = (color1[1] & 0xFC) | (color1[1] >> 6);
colors[1][2] = (color1[2] & 0xF8) | (color1[2] >> 5);
colors[2][0] = (2 * colors[0][0] + 1 * colors[1][0]) / 3;
colors[2][1] = (2 * colors[0][1] + 1 * colors[1][1]) / 3;
colors[2][2] = (2 * colors[0][2] + 1 * colors[1][2]) / 3;
colors[3][0] = (1 * colors[0][0] + 2 * colors[1][0]) / 3;
colors[3][1] = (1 * colors[0][1] + 2 * colors[1][1]) / 3;
colors[3][2] = (1 * colors[0][2] + 2 * colors[1][2]) / 3;
for (int i = 15; i >= 0; --i)
{
int c0 = srcBlock[i * 4 + 0];
int c1 = srcBlock[i * 4 + 1];
int c2 = srcBlock[i * 4 + 2];
int d0 = abs(colors[0][0] - c0) + abs(colors[0][1] - c1) + abs(colors[0][2] - c2);
int d1 = abs(colors[1][0] - c0) + abs(colors[1][1] - c1) + abs(colors[1][2] - c2);
int d2 = abs(colors[2][0] - c0) + abs(colors[2][1] - c1) + abs(colors[2][2] - c2);
int d3 = abs(colors[3][0] - c0) + abs(colors[3][1] - c1) + abs(colors[3][2] - c2);
int b0 = d0 > d3;
int b1 = d1 > d2;
int b2 = d0 > d2;
int b3 = d1 > d3;
int b4 = d2 > d3;
int x0 = b1 & b2;
int x1 = b0 & b3;
int x2 = b0 & b4;
res |= (x2 | ((x0 | x1) << 1)) << ((15 - i) << 1);
}
return res;
}
static inline void _convertToCMPR(u8 *dst, const u8 *src, u32 width, u32 height)
{
u8 srcBlock[16 * 4];
u8 color0[4];
u8 color1[4];
for (u32 jj = 0; jj < height; jj += 8)
for (u32 ii = 0; ii < width; ii += 8)
for (u32 k = 0; k < 4; ++k)
{
int i = ii + ((k & 1) << 2);
int j = jj + ((k >> 1) << 2);
memcpy(srcBlock, src + (j * width + i) * 4, 16);
memcpy(srcBlock + 4 * 4, src + ((j + 1) * width + i) * 4, 16);
memcpy(srcBlock + 8 * 4, src + ((j + 2) * width + i) * 4, 16);
memcpy(srcBlock + 12 * 4, src + ((j + 3) * width + i) * 4, 16);
getBaseColors(color0, color1, srcBlock);
*(u16 *)dst = rgb8ToRGB565(color0);
dst += 2;
*(u16 *)dst = rgb8ToRGB565(color1);
dst += 2;
*(u32 *)dst = colorIndices(color0, color1, srcBlock);
dst += 4;
}
}
void STexture::Cleanup(void)
{
if(data != NULL)
free(data);
data = NULL;
dataSize = 0;
width = 0;
height = 0;
format = -1;
maxLOD = 0;
}
bool STexture::CopyTexture(const STexture &tex)
{
if(tex.data == NULL || tex.dataSize == 0 || tex.data == data)
return false;
if(dataSize != tex.dataSize)
Cleanup();
if(data == NULL)
data = (u8*)MEM2_alloc(tex.dataSize);
if(data == NULL)
return false;
dataSize = tex.dataSize;
memcpy(data, tex.data, dataSize);
DCFlushRange(data, dataSize);
width = tex.width;
height = tex.height;
format = tex.format;
maxLOD = tex.maxLOD;
return true;
}
TexErr STexture::fromImageFile(const char *filename, u8 f, u32 minMipSize, u32 maxMipSize)
{
Cleanup();
FILE *file = fopen(filename, "rb");
if(file == NULL)
{
strncpy((char*)filename+(strlen(filename)-3), "jp", 2);
file = fopen(filename, "rb");
}
if(file == NULL)
return TE_ERROR;
fseek(file, 0, SEEK_END);
u32 fileSize = ftell(file);
fseek(file, 0, SEEK_SET);
u8 *Image = NULL;
if(fileSize)
{
Image = (u8*)MEM2_alloc(fileSize);
if(Image != NULL)
fread(Image, 1, fileSize, file);
}
fclose(file);
TexErr result = TE_NOMEM;
if(Image != NULL)
{
if(strstr(filename, ".png") != NULL)
result = fromPNG(Image, f, minMipSize, maxMipSize);
else
result = fromJPG(Image, fileSize, f, minMipSize, maxMipSize);
free(Image);
}
return result;
}
TexErr STexture::fromTHP(const u8 *src, u32 w, u32 h)
{
width = w;
height = h;
format = GX_TF_RGBA8;
dataSize = GX_GetTexBufferSize(width, height, format, GX_FALSE, 0);
data = (u8*)MEM2_alloc(dataSize);
if(data == NULL)
{
Cleanup();
return TE_NOMEM;
}
for(u32 block = 0; block < height; block += 4)
{
for(u32 i = 0; i < width; i += 4)
{
for(u32 c = 0; c < 4; ++c)
{
for(u32 argb = 0; argb < 4; ++argb)
{
u32 y = h - 1 - (c + block);
u32 x = argb + i;
u32 src_offset = ((i + argb) + ((block + c) * width)) * 3;
u32 dst_offset = coordsRGBA8(x, y, width);
/* Alpha */
data[dst_offset] = 0xFF;
/* RGB */
data[dst_offset + 1] = src[src_offset];
data[dst_offset + 32] = src[src_offset + 1];
data[dst_offset + 33] = src[src_offset + 2];
}
}
}
}
DCFlushRange(data, dataSize);
return TE_OK;
}
TexErr STexture::fromJPG(const u8 *buffer, const u32 buffer_size, u8 f, u32 minMipSize, u32 maxMipSize)
{
Cleanup();
// Decode our JPG to raw
VideoFrame VideoF;
decodeRealJpeg(buffer, buffer_size, VideoF, true);
if(!VideoF.getData())
return TE_ERROR;
data = VideoF.getData();
width = VideoF.getWidth();
height = VideoF.getHeight();
// Convert our raw stuff to a usable format
u8 *rawData = (u8*)MEM2_alloc(width * height * 4);
if(rawData == NULL)
{
Cleanup();
return TE_NOMEM;
}
_convertToFlippedRGBA(rawData, data, width, height);
//Free our raw stuff
VideoF.dealloc();
data = NULL;
//Let the real work begin
u8 maxLODTmp = 0;
u8 minLODTmp = 0;
u32 baseWidth;
u32 baseHeight;
switch(f)
{
case GX_TF_RGBA8:
case GX_TF_RGB565:
case GX_TF_CMPR:
break;
default:
f = GX_TF_RGBA8;
}
format = f;
if (minMipSize > 0 || maxMipSize > 0)
_calcMipMaps(maxLODTmp, minLODTmp, baseWidth, baseHeight, width, height, minMipSize, maxMipSize);
if (maxLODTmp > 0)
{
rawData = _genMipMaps(rawData, width, height, maxLODTmp, baseWidth, baseHeight);
if(rawData == NULL)
{
Cleanup();
return TE_NOMEM;
}
u32 newWidth = baseWidth;
u32 newHeight = baseHeight;
for(int i = 0; i < minLODTmp; ++i)
{
newWidth >>= 1;
newHeight >>= 1;
}
dataSize = fixGX_GetTexBufferSize(newWidth, newHeight, f, GX_TRUE, maxLODTmp - minLODTmp);
data = (u8*)MEM2_alloc(dataSize);
if(data == NULL)
{
Cleanup();
free(rawData);
return TE_NOMEM;
}
u32 nWidth = newWidth;
u32 nHeight = newHeight;
u8 *pSrc = rawData;
if (minLODTmp > 0)
pSrc += fixGX_GetTexBufferSize(baseWidth, baseHeight, f, minLODTmp > 1 ? GX_TRUE : GX_FALSE, minLODTmp - 1);
u8 *pDst = data;
for (u8 i = minLODTmp; i <= maxLODTmp; ++i)
{
switch(f)
{
case GX_TF_RGBA8:
_convertToRGBA8(pDst, pSrc, nWidth, nHeight);
break;
case GX_TF_RGB565:
_convertToRGB565(pDst, pSrc, nWidth, nHeight);
break;
case GX_TF_CMPR:
_convertToCMPR(pDst, pSrc, nWidth, nHeight);
break;
}
pSrc += nWidth * nHeight * 4;
pDst += GX_GetTexBufferSize(nWidth, nHeight, f, GX_FALSE, 0);
nWidth >>= 1;
nHeight >>= 1;
}
maxLOD = maxLODTmp - minLODTmp;
width = newWidth;
height = newHeight;
}
else
{
dataSize = GX_GetTexBufferSize(width, height, format, GX_FALSE, 0);
data = (u8*)MEM2_alloc(dataSize);
if(data == NULL)
{
Cleanup();
free(rawData);
return TE_NOMEM;
}
switch(f)
{
case GX_TF_RGBA8:
_convertToRGBA8(data, rawData, width, height);
break;
case GX_TF_RGB565:
_convertToRGB565(data, rawData, width, height);
break;
case GX_TF_CMPR:
_convertToCMPR(data, rawData, width, height);
break;
}
}
DCFlushRange(data, dataSize);
free(rawData);
return TE_OK;
}
TexErr STexture::fromPNG(const u8 *buffer, u8 f, u32 minMipSize, u32 maxMipSize)
{
Cleanup();
u8 maxLODTmp = 0;
u8 minLODTmp = 0;
u32 baseWidth;
u32 baseHeight;
IMGCTX ctx = PNGU_SelectImageFromBuffer(buffer);
if(ctx == 0)
return TE_ERROR;
PNGUPROP imgProp;
if(PNGU_GetImageProperties(ctx, &imgProp) != PNGU_OK)
{
PNGU_ReleaseImageContext(ctx);
return TE_ERROR;
}
if(imgProp.imgWidth > 1090 || imgProp.imgHeight > 1090)
{
PNGU_ReleaseImageContext(ctx);
return TE_ERROR;
}
switch (f)
{
case GX_TF_RGBA8:
case GX_TF_RGB565:
case GX_TF_CMPR:
break;
default:
f = (imgProp.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA || imgProp.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) ? GX_TF_RGBA8 : GX_TF_RGB565;
}
u32 pngWidth = imgProp.imgWidth & (f == GX_TF_CMPR ? ~7u : ~3u);
u32 pngHeight = imgProp.imgHeight & (f == GX_TF_CMPR ? ~7u : ~3u);
if(minMipSize > 0 || maxMipSize > 0)
_calcMipMaps(maxLODTmp, minLODTmp, baseWidth, baseHeight, imgProp.imgWidth, imgProp.imgHeight, minMipSize, maxMipSize);
if (maxLODTmp > 0)
{
u32 newWidth = baseWidth;
u32 newHeight = baseHeight;
for (int i = 0; i < minLODTmp; ++i)
{
newWidth >>= 1;
newHeight >>= 1;
}
u32 Size2 = imgProp.imgWidth * imgProp.imgHeight * 4;
u8 *tmpData2 = (u8*)MEM2_alloc(Size2);
if(tmpData2 == NULL)
{
PNGU_ReleaseImageContext(ctx);
return TE_NOMEM;
}
memset(tmpData2, 0, Size2);
PNGU_DecodeToRGBA8(ctx, imgProp.imgWidth, imgProp.imgHeight, tmpData2, 0, 0xFF);
PNGU_ReleaseImageContext(ctx);
if((imgProp.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA
|| imgProp.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA)
&& imgProp.imgWidth <= 640 && imgProp.imgHeight <= 480 && thread)
{
format = GX_TF_RGBA8;
width = imgProp.imgWidth;
height = imgProp.imgHeight;
dataSize = GX_GetTexBufferSize(width, height, format, GX_FALSE, 0);
data = (u8*)MEM2_alloc(dataSize);
_convertToRGBA8(data, tmpData2, width, height);
DCFlushRange(data, dataSize);
CoverFlow.setRenderTex(true);
while(CoverFlow.getRenderTex())
usleep(50);
_convertToRGBA(tmpData2, data, width, height);
DCFlushRange(tmpData2, Size2);
Cleanup();
}
tmpData2 = _genMipMaps(tmpData2, imgProp.imgWidth, imgProp.imgHeight, maxLODTmp, baseWidth, baseHeight);
if(tmpData2 == NULL)
{
Cleanup();
return TE_NOMEM;
}
u32 nWidth = newWidth;
u32 nHeight = newHeight;
u8 *pSrc = tmpData2;
if(minLODTmp > 0)
pSrc += fixGX_GetTexBufferSize(baseWidth, baseHeight, f, minLODTmp > 1 ? GX_TRUE : GX_FALSE, minLODTmp - 1);
dataSize = fixGX_GetTexBufferSize(newWidth, newHeight, f, GX_TRUE, maxLODTmp - minLODTmp);
data = (u8*)MEM2_alloc(dataSize);
if(data == NULL)
{
Cleanup();
free(tmpData2);
return TE_NOMEM;
}
memset(data, 0, dataSize);
u8 *pDst = data;
for(u8 i = minLODTmp; i <= maxLODTmp; ++i)
{
switch(f)
{
case GX_TF_RGBA8:
_convertToRGBA8(pDst, pSrc, nWidth, nHeight);
break;
case GX_TF_RGB565:
_convertToRGB565(pDst, pSrc, nWidth, nHeight);
break;
case GX_TF_CMPR:
_convertToCMPR(pDst, pSrc, nWidth, nHeight);
break;
}
pSrc += nWidth * nHeight * 4;
pDst += GX_GetTexBufferSize(nWidth, nHeight, f, GX_FALSE, 0);
nWidth >>= 1;
nHeight >>= 1;
}
free(tmpData2);
maxLOD = maxLODTmp - minLODTmp;
format = f;
width = newWidth;
height = newHeight;
}
else
{
dataSize = GX_GetTexBufferSize(pngWidth, pngHeight, f, GX_FALSE, 0);
data = (u8*)MEM2_alloc(dataSize);
if(data == NULL)
{
Cleanup();
PNGU_ReleaseImageContext(ctx);
return TE_NOMEM;
}
memset(data, 0, dataSize);
format = f;
width = pngWidth;
height = pngHeight;
maxLOD = 0;
switch (f)
{
case GX_TF_RGBA8:
PNGU_DecodeTo4x4RGBA8(ctx, imgProp.imgWidth, imgProp.imgHeight, data, 0xFF);
break;
case GX_TF_RGB565:
PNGU_DecodeTo4x4RGB565(ctx, imgProp.imgWidth, imgProp.imgHeight, data);
break;
case GX_TF_CMPR:
PNGU_DecodeToCMPR(ctx, imgProp.imgWidth, imgProp.imgHeight, data);
break;
}
PNGU_ReleaseImageContext(ctx);
}
DCFlushRange(data, dataSize);
return TE_OK;
}
void STexture::_resize(u8 *dst, u32 dstWidth, u32 dstHeight, const u8 *src, u32 srcWidth, u32 srcHeight)
{
float wc = (float)srcWidth / (float)dstWidth;
float hc = (float)srcHeight / (float)dstHeight;
float ax1;
float ay1;
for (u32 y = 0; y < dstHeight; ++y)
{
for (u32 x = 0; x < dstWidth; ++x)
{
float xf = ((float)x + 0.5f) * wc - 0.5f;
float yf = ((float)y + 0.5f) * hc - 0.5f;
u32 x0 = (int)xf;
u32 y0 = (int)yf;
if (x0 >= srcWidth - 1)
{
x0 = srcWidth - 2;
ax1 = 1.f;
}
else
ax1 = xf - (float)x0;
float ax0 = 1.f - ax1;
if (y0 >= srcHeight - 1)
{
y0 = srcHeight - 2;
ay1 = 1.f;
}
else
ay1 = yf - (float)y0;
float ay0 = 1.f - ay1;
u8 *pdst = dst + (x + y * dstWidth) * 4;
const u8 *psrc0 = src + (x0 + y0 * srcWidth) * 4;
const u8 *psrc1 = psrc0 + srcWidth * 4;
for (int c = 0; c < 3; ++c)
pdst[c] = (u8)((((float)psrc0[c] * ax0) + ((float)psrc0[4 + c] * ax1)) * ay0 + (((float)psrc1[c] * ax0) + ((float)psrc1[4 + c] * ax1)) * ay1 + 0.5f);
pdst[3] = 0xFF; // Alpha not handled, it would require using it in the weights for color channels, easy but slower and useless so far.
}
}
}
// For powers of two
void STexture::_resizeD2x2(u8 *dst, const u8 *src, u32 srcWidth, u32 srcHeight)
{
#if 0
u32 *dst32 = (u32 *)dst;
const u32 *src32 = (const u32 *)src;
u32 i = 0, i0 = 0, i1 = 1, i2 = srcWidth, i3 = srcWidth + 1, dstWidth = srcWidth >> 1, dstHeight = srcHeight >> 1;
for (u32 y = 0; y < dstHeight; ++y)
{
for (u32 x = 0; x < dstWidth; ++x)
{
dst32[i] = (((src32[i0] & 0xFCFCFCFC) >> 2)
+ ((src32[i1] & 0xFCFCFCFC) >> 2)
+ ((src32[i2] & 0xFCFCFCFC) >> 2)
+ ((src32[i3] & 0xFCFCFCFC) >> 2)) | 0x000000FF;
++i;
i0 += 2;
i1 += 2;
i2 += 2;
i3 += 2;
}
i0 += srcWidth;
i1 += srcWidth;
i2 += srcWidth;
i3 += srcWidth;
}
#else
u32 i = 0, i0 = 0, i1 = 4, i2 = srcWidth * 4, i3 = (srcWidth + 1) * 4, dstWidth = srcWidth >> 1, dstHeight = srcHeight >> 1, w4 = srcWidth * 4;
for (u32 y = 0; y < dstHeight; ++y)
{
for (u32 x = 0; x < dstWidth; ++x)
{
dst[i] = ((u32)src[i0] + src[i1] + src[i2] + src[i3]) >> 2;
dst[i + 1] = ((u32)src[i0 + 1] + src[i1 + 1] + src[i2 + 1] + src[i3 + 1]) >> 2;
dst[i + 2] = ((u32)src[i0 + 2] + src[i1 + 2] + src[i2 + 2] + src[i3 + 2]) >> 2;
dst[i + 3] = ((u32)src[i0 + 3] + src[i1 + 3] + src[i2 + 3] + src[i3 + 3]) >> 2;
i += 4;
i0 += 8;
i1 += 8;
i2 += 8;
i3 += 8;
}
i0 += w4;
i1 += w4;
i2 += w4;
i3 += w4;
}
#endif
}
void STexture::_calcMipMaps(u8 &maxLOD, u8 &minLOD, u32 &lod0Width, u32 &lod0Height, u32 width, u32 height, u32 minSize, u32 maxSize)
{
if (minSize < 8) minSize = 8;
lod0Width = upperPower(width);
lod0Height = upperPower(height);
if (width - (lod0Width >> 1) < lod0Width >> 3 && minSize <= lod0Width >> 1)
lod0Width >>= 1;
if (height - (lod0Height >> 1) < lod0Height >> 3 && minSize <= lod0Height >> 1)
lod0Height >>= 1;
maxLOD = 0;
for (u32 i = min(lod0Width, lod0Height); i > minSize; i >>= 1)
++maxLOD;
minLOD = 0;
if (maxSize > 8)
for (u32 i = max(lod0Width, lod0Height); i > maxSize; i >>= 1)
++minLOD;
if (minLOD > maxLOD)
maxLOD = minLOD;
}
u8 *STexture::_genMipMaps(u8 *src, u32 width, u32 height, u8 maxLOD, u32 lod0Width, u32 lod0Height)
{
u32 bufSize = fixGX_GetTexBufferSize(lod0Width, lod0Height, GX_TF_RGBA8, GX_TRUE, maxLOD);
u8 *dst = (u8*)MEM2_alloc(bufSize);
if(dst == NULL)
{
Cleanup();
return NULL;
}
memset(dst, 0, bufSize);
_resize(dst, lod0Width, lod0Height, src, width, height);
DCFlushRange(dst, lod0Width * lod0Height * 4);
free(src);
src = NULL;
u32 nWidth = lod0Width;
u32 nHeight = lod0Height;
u8 *pDst = dst;
for(u8 i = 0; i < maxLOD; ++i)
{
u8 *pSrc = pDst;
pDst += nWidth * nHeight * 4;
_resizeD2x2(pDst, pSrc, nWidth, nHeight);
DCFlushRange(pDst, nWidth * nWidth);
nWidth >>= 1;
nHeight >>= 1;
}
return dst;
}