mirror of
https://github.com/Fledge68/WiiFlow_Lite.git
synced 2024-11-24 04:09:15 +01:00
827 lines
23 KiB
C
827 lines
23 KiB
C
/* tfm.h
|
|
*
|
|
* Copyright (C) 2006-2019 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
* Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca,
|
|
* http://math.libtomcrypt.com
|
|
*/
|
|
|
|
|
|
/**
|
|
* Edited by Moises Guimaraes (moises.guimaraes@phoebus.com.br)
|
|
* to fit CyaSSL's needs.
|
|
*/
|
|
|
|
/*!
|
|
\file wolfssl/wolfcrypt/tfm.h
|
|
*/
|
|
|
|
#ifndef WOLF_CRYPT_TFM_H
|
|
#define WOLF_CRYPT_TFM_H
|
|
|
|
#include <libwolfssl/wolfcrypt/types.h>
|
|
#ifndef CHAR_BIT
|
|
#include <limits.h>
|
|
#endif
|
|
|
|
#include <libwolfssl/wolfcrypt/random.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_NO_ASM
|
|
#undef TFM_NO_ASM
|
|
#define TFM_NO_ASM
|
|
#endif
|
|
|
|
#ifdef NO_64BIT
|
|
#undef NO_TFM_64BIT
|
|
#define NO_TFM_64BIT
|
|
#endif
|
|
|
|
#ifndef NO_TFM_64BIT
|
|
/* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */
|
|
#if defined(__x86_64__)
|
|
#if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM)
|
|
#error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid!
|
|
#endif
|
|
#if !defined(TFM_X86_64) && !defined(TFM_NO_ASM)
|
|
#define TFM_X86_64
|
|
#endif
|
|
#endif
|
|
#if defined(TFM_X86_64)
|
|
#if !defined(FP_64BIT)
|
|
#define FP_64BIT
|
|
#endif
|
|
#endif
|
|
/* use 64-bit digit even if not using asm on x86_64 */
|
|
#if defined(__x86_64__) && !defined(FP_64BIT)
|
|
#define FP_64BIT
|
|
#endif
|
|
/* if intel compiler doesn't provide 128 bit type don't turn on 64bit */
|
|
#if defined(FP_64BIT) && defined(__INTEL_COMPILER) && !defined(HAVE___UINT128_T)
|
|
#undef FP_64BIT
|
|
#undef TFM_X86_64
|
|
#endif
|
|
#endif /* NO_TFM_64BIT */
|
|
|
|
/* try to detect x86-32 */
|
|
#if defined(__i386__) && !defined(TFM_SSE2)
|
|
#if defined(TFM_X86_64) || defined(TFM_ARM)
|
|
#error x86-32 detected, x86-64/ARM optimizations are not valid!
|
|
#endif
|
|
#if !defined(TFM_X86) && !defined(TFM_NO_ASM)
|
|
#define TFM_X86
|
|
#endif
|
|
#endif
|
|
|
|
/* make sure we're 32-bit for x86-32/sse/arm/ppc32 */
|
|
#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(FP_64BIT)
|
|
#warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining)
|
|
#undef FP_64BIT
|
|
#endif
|
|
|
|
/* multi asms? */
|
|
#ifdef TFM_X86
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_X86_64
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_SSE2
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_ARM
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_PPC32
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_PPC64
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
#ifdef TFM_AVR32
|
|
#ifdef TFM_ASM
|
|
#error TFM_ASM already defined!
|
|
#endif
|
|
#define TFM_ASM
|
|
#endif
|
|
|
|
/* we want no asm? */
|
|
#ifdef TFM_NO_ASM
|
|
#undef TFM_X86
|
|
#undef TFM_X86_64
|
|
#undef TFM_SSE2
|
|
#undef TFM_ARM
|
|
#undef TFM_PPC32
|
|
#undef TFM_PPC64
|
|
#undef TFM_AVR32
|
|
#undef TFM_ASM
|
|
#endif
|
|
|
|
/* ECC helpers */
|
|
#ifdef TFM_ECC192
|
|
#ifdef FP_64BIT
|
|
#define TFM_MUL3
|
|
#define TFM_SQR3
|
|
#else
|
|
#define TFM_MUL6
|
|
#define TFM_SQR6
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TFM_ECC224
|
|
#ifdef FP_64BIT
|
|
#define TFM_MUL4
|
|
#define TFM_SQR4
|
|
#else
|
|
#define TFM_MUL7
|
|
#define TFM_SQR7
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TFM_ECC256
|
|
#ifdef FP_64BIT
|
|
#define TFM_MUL4
|
|
#define TFM_SQR4
|
|
#else
|
|
#define TFM_MUL8
|
|
#define TFM_SQR8
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TFM_ECC384
|
|
#ifdef FP_64BIT
|
|
#define TFM_MUL6
|
|
#define TFM_SQR6
|
|
#else
|
|
#define TFM_MUL12
|
|
#define TFM_SQR12
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TFM_ECC521
|
|
#ifdef FP_64BIT
|
|
#define TFM_MUL9
|
|
#define TFM_SQR9
|
|
#else
|
|
#define TFM_MUL17
|
|
#define TFM_SQR17
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* allow user to define on fp_digit, fp_word types */
|
|
#ifndef WOLFSSL_BIGINT_TYPES
|
|
|
|
/* some default configurations.
|
|
*/
|
|
#if defined(WC_16BIT_CPU)
|
|
typedef unsigned int fp_digit;
|
|
#define SIZEOF_FP_DIGIT 2
|
|
typedef unsigned long fp_word;
|
|
#elif defined(FP_64BIT)
|
|
/* for GCC only on supported platforms */
|
|
typedef unsigned long long fp_digit; /* 64bit, 128 uses mode(TI) below */
|
|
#define SIZEOF_FP_DIGIT 8
|
|
typedef unsigned long fp_word __attribute__ ((mode(TI)));
|
|
#else
|
|
|
|
#ifndef NO_TFM_64BIT
|
|
#if defined(_MSC_VER) || defined(__BORLANDC__)
|
|
typedef unsigned __int64 ulong64;
|
|
#else
|
|
typedef unsigned long long ulong64;
|
|
#endif
|
|
typedef unsigned int fp_digit;
|
|
#define SIZEOF_FP_DIGIT 4
|
|
typedef ulong64 fp_word;
|
|
#define FP_32BIT
|
|
#else
|
|
/* some procs like coldfire prefer not to place multiply into 64bit type
|
|
even though it exists */
|
|
typedef unsigned short fp_digit;
|
|
#define SIZEOF_FP_DIGIT 2
|
|
typedef unsigned int fp_word;
|
|
#endif
|
|
#endif
|
|
|
|
#endif /* WOLFSSL_BIGINT_TYPES */
|
|
|
|
|
|
/* # of digits this is */
|
|
#define DIGIT_BIT ((CHAR_BIT) * SIZEOF_FP_DIGIT)
|
|
|
|
/* Max size of any number in bits. Basically the largest size you will be
|
|
* multiplying should be half [or smaller] of FP_MAX_SIZE-four_digit
|
|
*
|
|
* It defaults to 4096-bits [allowing multiplications up to 2048x2048 bits ]
|
|
*/
|
|
|
|
|
|
#ifndef FP_MAX_BITS
|
|
#define FP_MAX_BITS 4096
|
|
#endif
|
|
#define FP_MAX_SIZE (FP_MAX_BITS+(8*DIGIT_BIT))
|
|
|
|
/* will this lib work? */
|
|
#if (CHAR_BIT & 7)
|
|
#error CHAR_BIT must be a multiple of eight.
|
|
#endif
|
|
#if FP_MAX_BITS % CHAR_BIT
|
|
#error FP_MAX_BITS must be a multiple of CHAR_BIT
|
|
#endif
|
|
|
|
#define FP_MASK (fp_digit)(-1)
|
|
#define FP_DIGIT_MAX FP_MASK
|
|
#define FP_SIZE (FP_MAX_SIZE/DIGIT_BIT)
|
|
|
|
#define FP_MAX_PRIME_SIZE (FP_MAX_BITS/(2*CHAR_BIT))
|
|
/* In terms of FP_MAX_BITS, it is double the size possible for a number
|
|
* to allow for multiplication, divide that 2 out. Also divide by CHAR_BIT
|
|
* to convert from bits to bytes. (Note, FP_PRIME_SIZE is the number of
|
|
* values in the canned prime number list.) */
|
|
|
|
/* signs */
|
|
#define FP_ZPOS 0
|
|
#define FP_NEG 1
|
|
|
|
/* return codes */
|
|
#define FP_OKAY 0
|
|
#define FP_VAL -1
|
|
#define FP_MEM -2
|
|
#define FP_NOT_INF -3
|
|
#define FP_WOULDBLOCK -4
|
|
|
|
/* equalities */
|
|
#define FP_LT -1 /* less than */
|
|
#define FP_EQ 0 /* equal to */
|
|
#define FP_GT 1 /* greater than */
|
|
|
|
/* replies */
|
|
#define FP_YES 1 /* yes response */
|
|
#define FP_NO 0 /* no response */
|
|
|
|
#ifdef HAVE_WOLF_BIGINT
|
|
/* raw big integer */
|
|
typedef struct WC_BIGINT {
|
|
byte* buf;
|
|
word32 len;
|
|
void* heap;
|
|
} WC_BIGINT;
|
|
#define WOLF_BIGINT_DEFINED
|
|
#endif
|
|
|
|
/* a FP type */
|
|
typedef struct fp_int {
|
|
int used;
|
|
int sign;
|
|
#if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT)
|
|
int size;
|
|
#endif
|
|
fp_digit dp[FP_SIZE];
|
|
|
|
#ifdef HAVE_WOLF_BIGINT
|
|
struct WC_BIGINT raw; /* unsigned binary (big endian) */
|
|
#endif
|
|
} fp_int;
|
|
|
|
/* Types */
|
|
typedef fp_digit mp_digit;
|
|
typedef fp_word mp_word;
|
|
typedef fp_int mp_int;
|
|
|
|
|
|
/* wolf big int and common functions */
|
|
#include <libwolfssl/wolfcrypt/wolfmath.h>
|
|
|
|
|
|
/* externally define this symbol to ignore the default settings, useful for changing the build from the make process */
|
|
#ifndef TFM_ALREADY_SET
|
|
|
|
/* do we want the large set of small multiplications ?
|
|
Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC
|
|
Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-)
|
|
*/
|
|
/* need to refactor the function */
|
|
/*#define TFM_SMALL_SET */
|
|
|
|
/* do we want huge code
|
|
Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA)
|
|
Less important on 64-bit machines as 32 digits == 2048 bits
|
|
*/
|
|
#if 0
|
|
#define TFM_MUL3
|
|
#define TFM_MUL4
|
|
#define TFM_MUL6
|
|
#define TFM_MUL7
|
|
#define TFM_MUL8
|
|
#define TFM_MUL9
|
|
#define TFM_MUL12
|
|
#define TFM_MUL17
|
|
#endif
|
|
#ifdef TFM_HUGE_SET
|
|
#define TFM_MUL20
|
|
#define TFM_MUL24
|
|
#define TFM_MUL28
|
|
#define TFM_MUL32
|
|
#if (FP_MAX_BITS >= 6144) && defined(FP_64BIT)
|
|
#define TFM_MUL48
|
|
#endif
|
|
#if (FP_MAX_BITS >= 8192) && defined(FP_64BIT)
|
|
#define TFM_MUL64
|
|
#endif
|
|
#endif
|
|
|
|
#if 0
|
|
#define TFM_SQR3
|
|
#define TFM_SQR4
|
|
#define TFM_SQR6
|
|
#define TFM_SQR7
|
|
#define TFM_SQR8
|
|
#define TFM_SQR9
|
|
#define TFM_SQR12
|
|
#define TFM_SQR17
|
|
#endif
|
|
#ifdef TFM_HUGE_SET
|
|
#define TFM_SQR20
|
|
#define TFM_SQR24
|
|
#define TFM_SQR28
|
|
#define TFM_SQR32
|
|
#define TFM_SQR48
|
|
#define TFM_SQR64
|
|
#endif
|
|
|
|
/* Optional math checks (enable WOLFSSL_DEBUG_MATH to print info) */
|
|
/* #define TFM_CHECK */
|
|
|
|
/* Is the target a P4 Prescott
|
|
*/
|
|
/* #define TFM_PRESCOTT */
|
|
|
|
/* Do we want timing resistant fp_exptmod() ?
|
|
* This makes it slower but also timing invariant with respect to the exponent
|
|
*/
|
|
/* #define TFM_TIMING_RESISTANT */
|
|
|
|
#endif /* TFM_ALREADY_SET */
|
|
|
|
/* functions */
|
|
|
|
/* returns a TFM ident string useful for debugging... */
|
|
/*const char *fp_ident(void);*/
|
|
|
|
/* initialize [or zero] an fp int */
|
|
void fp_init(fp_int *a);
|
|
MP_API void fp_zero(fp_int *a);
|
|
MP_API void fp_clear(fp_int *a); /* uses ForceZero to clear sensitive memory */
|
|
MP_API void fp_forcezero (fp_int * a);
|
|
MP_API void fp_free(fp_int* a);
|
|
|
|
/* zero/even/odd ? */
|
|
#define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO)
|
|
#define fp_isone(a) \
|
|
((((a)->used == 1) && ((a)->dp[0] == 1)) ? FP_YES : FP_NO)
|
|
#define fp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO)
|
|
#define fp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO)
|
|
#define fp_isneg(a) (((a)->sign != 0) ? FP_YES : FP_NO)
|
|
|
|
/* set to a small digit */
|
|
void fp_set(fp_int *a, fp_digit b);
|
|
void fp_set_int(fp_int *a, unsigned long b);
|
|
|
|
/* check if a bit is set */
|
|
int fp_is_bit_set(fp_int *a, fp_digit b);
|
|
/* set the b bit to 1 */
|
|
int fp_set_bit (fp_int * a, fp_digit b);
|
|
|
|
/* copy from a to b */
|
|
void fp_copy(fp_int *a, fp_int *b);
|
|
void fp_init_copy(fp_int *a, fp_int *b);
|
|
|
|
/* clamp digits */
|
|
#define fp_clamp(a) { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; }
|
|
#define mp_clamp(a) fp_clamp(a)
|
|
#define mp_grow(a,s) MP_OKAY
|
|
|
|
/* negate and absolute */
|
|
#define fp_neg(a, b) { fp_copy(a, b); (b)->sign ^= 1; fp_clamp(b); }
|
|
#define fp_abs(a, b) { fp_copy(a, b); (b)->sign = 0; }
|
|
|
|
/* right shift x digits */
|
|
void fp_rshd(fp_int *a, int x);
|
|
|
|
/* right shift x bits */
|
|
void fp_rshb(fp_int *a, int x);
|
|
|
|
/* left shift x digits */
|
|
void fp_lshd(fp_int *a, int x);
|
|
|
|
/* signed comparison */
|
|
int fp_cmp(fp_int *a, fp_int *b);
|
|
|
|
/* unsigned comparison */
|
|
int fp_cmp_mag(fp_int *a, fp_int *b);
|
|
|
|
/* power of 2 operations */
|
|
void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
|
|
void fp_mod_2d(fp_int *a, int b, fp_int *c);
|
|
void fp_mul_2d(fp_int *a, int b, fp_int *c);
|
|
void fp_2expt (fp_int *a, int b);
|
|
void fp_mul_2(fp_int *a, fp_int *c);
|
|
void fp_div_2(fp_int *a, fp_int *c);
|
|
|
|
/* Counts the number of lsbs which are zero before the first zero bit */
|
|
int fp_cnt_lsb(fp_int *a);
|
|
|
|
/* c = a + b */
|
|
void fp_add(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* c = a - b */
|
|
void fp_sub(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* c = a * b */
|
|
int fp_mul(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* b = a*a */
|
|
int fp_sqr(fp_int *a, fp_int *b);
|
|
|
|
/* a/b => cb + d == a */
|
|
int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
int fp_mod(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* compare against a single digit */
|
|
int fp_cmp_d(fp_int *a, fp_digit b);
|
|
|
|
/* c = a + b */
|
|
void fp_add_d(fp_int *a, fp_digit b, fp_int *c);
|
|
|
|
/* c = a - b */
|
|
int fp_sub_d(fp_int *a, fp_digit b, fp_int *c);
|
|
|
|
/* c = a * b */
|
|
void fp_mul_d(fp_int *a, fp_digit b, fp_int *c);
|
|
|
|
/* a/b => cb + d == a */
|
|
/*int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);*/
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
/*int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);*/
|
|
|
|
/* ---> number theory <--- */
|
|
/* d = a + b (mod c) */
|
|
/*int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/
|
|
|
|
/* d = a - b (mod c) */
|
|
/*int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/
|
|
|
|
/* d = a * b (mod c) */
|
|
int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
|
|
|
|
/* d = a - b (mod c) */
|
|
int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
|
|
|
|
/* d = a + b (mod c) */
|
|
int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
|
|
|
|
/* c = a * a (mod b) */
|
|
int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* c = 1/a (mod b) */
|
|
int fp_invmod(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
/* c = (a, b) */
|
|
/*int fp_gcd(fp_int *a, fp_int *b, fp_int *c);*/
|
|
|
|
/* c = [a, b] */
|
|
/*int fp_lcm(fp_int *a, fp_int *b, fp_int *c);*/
|
|
|
|
/* setups the montgomery reduction */
|
|
int fp_montgomery_setup(fp_int *a, fp_digit *mp);
|
|
|
|
/* computes a = B**n mod b without division or multiplication useful for
|
|
* normalizing numbers in a Montgomery system.
|
|
*/
|
|
void fp_montgomery_calc_normalization(fp_int *a, fp_int *b);
|
|
|
|
/* computes x/R == x (mod N) via Montgomery Reduction */
|
|
int fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
|
|
|
|
/* d = a**b (mod c) */
|
|
int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
|
|
int fp_exptmod_ex(fp_int *a, fp_int *b, int minDigits, fp_int *c, fp_int *d);
|
|
|
|
#ifdef WC_RSA_NONBLOCK
|
|
|
|
enum tfmExptModNbState {
|
|
TFM_EXPTMOD_NB_INIT = 0,
|
|
TFM_EXPTMOD_NB_MONT,
|
|
TFM_EXPTMOD_NB_MONT_RED,
|
|
TFM_EXPTMOD_NB_MONT_MUL,
|
|
TFM_EXPTMOD_NB_MONT_MOD,
|
|
TFM_EXPTMOD_NB_MONT_MODCHK,
|
|
TFM_EXPTMOD_NB_NEXT,
|
|
TFM_EXPTMOD_NB_MUL,
|
|
TFM_EXPTMOD_NB_MUL_RED,
|
|
TFM_EXPTMOD_NB_SQR,
|
|
TFM_EXPTMOD_NB_SQR_RED,
|
|
TFM_EXPTMOD_NB_RED,
|
|
TFM_EXPTMOD_NB_COUNT /* last item for total state count only */
|
|
};
|
|
|
|
typedef struct {
|
|
#ifndef WC_NO_CACHE_RESISTANT
|
|
fp_int R[3];
|
|
#else
|
|
fp_int R[2];
|
|
#endif
|
|
fp_digit buf;
|
|
fp_digit mp;
|
|
int bitcnt;
|
|
int digidx;
|
|
int y;
|
|
int state; /* tfmExptModNbState */
|
|
#ifdef WC_RSA_NONBLOCK_TIME
|
|
word32 maxBlockInst; /* maximum instructions to block */
|
|
word32 totalInst; /* tracks total instructions */
|
|
#endif
|
|
} exptModNb_t;
|
|
|
|
#ifdef WC_RSA_NONBLOCK_TIME
|
|
enum {
|
|
TFM_EXPTMOD_NB_STOP = 0, /* stop and return FP_WOULDBLOCK */
|
|
TFM_EXPTMOD_NB_CONTINUE = 1, /* keep blocking */
|
|
};
|
|
#endif
|
|
|
|
/* non-blocking version of timing resistant fp_exptmod function */
|
|
/* supports cache resistance */
|
|
int fp_exptmod_nb(exptModNb_t* nb, fp_int* G, fp_int* X, fp_int* P, fp_int* Y);
|
|
|
|
#endif /* WC_RSA_NONBLOCK */
|
|
|
|
/* primality stuff */
|
|
|
|
/* perform a Miller-Rabin test of a to the base b and store result in "result" */
|
|
/*void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);*/
|
|
|
|
#define FP_PRIME_SIZE 256
|
|
/* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime */
|
|
/*int fp_isprime(fp_int *a);*/
|
|
/* extended version of fp_isprime, do 't' Miller-Rabins instead of only 8 */
|
|
/*int fp_isprime_ex(fp_int *a, int t, int* result);*/
|
|
|
|
/* Primality generation flags */
|
|
/*#define TFM_PRIME_BBS 0x0001 */ /* BBS style prime */
|
|
/*#define TFM_PRIME_SAFE 0x0002 */ /* Safe prime (p-1)/2 == prime */
|
|
/*#define TFM_PRIME_2MSB_OFF 0x0004 */ /* force 2nd MSB to 0 */
|
|
/*#define TFM_PRIME_2MSB_ON 0x0008 */ /* force 2nd MSB to 1 */
|
|
|
|
/* callback for fp_prime_random, should fill dst with random bytes and return how many read [up to len] */
|
|
/*typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);*/
|
|
|
|
/*#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)*/
|
|
|
|
/*int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);*/
|
|
|
|
/* radix conversions */
|
|
int fp_count_bits(fp_int *a);
|
|
int fp_leading_bit(fp_int *a);
|
|
|
|
int fp_unsigned_bin_size(fp_int *a);
|
|
void fp_read_unsigned_bin(fp_int *a, const unsigned char *b, int c);
|
|
int fp_to_unsigned_bin(fp_int *a, unsigned char *b);
|
|
int fp_to_unsigned_bin_len(fp_int *a, unsigned char *b, int c);
|
|
int fp_to_unsigned_bin_at_pos(int x, fp_int *t, unsigned char *b);
|
|
|
|
/*int fp_signed_bin_size(fp_int *a);*/
|
|
/*void fp_read_signed_bin(fp_int *a, const unsigned char *b, int c);*/
|
|
/*void fp_to_signed_bin(fp_int *a, unsigned char *b);*/
|
|
|
|
/*int fp_read_radix(fp_int *a, char *str, int radix);*/
|
|
/*int fp_toradix(fp_int *a, char *str, int radix);*/
|
|
/*int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);*/
|
|
|
|
|
|
/* VARIOUS LOW LEVEL STUFFS */
|
|
void s_fp_add(fp_int *a, fp_int *b, fp_int *c);
|
|
void s_fp_sub(fp_int *a, fp_int *b, fp_int *c);
|
|
void fp_reverse(unsigned char *s, int len);
|
|
|
|
int fp_mul_comba(fp_int *a, fp_int *b, fp_int *c);
|
|
|
|
int fp_mul_comba_small(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba3(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba4(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba6(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba7(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba8(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba9(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba12(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba17(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba20(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba24(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba28(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba32(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba48(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_mul_comba64(fp_int *a, fp_int *b, fp_int *c);
|
|
int fp_sqr_comba(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba_small(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba3(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba4(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba6(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba7(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba8(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba9(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba12(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba17(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba20(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba24(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba28(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba32(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba48(fp_int *a, fp_int *b);
|
|
int fp_sqr_comba64(fp_int *a, fp_int *b);
|
|
|
|
|
|
/**
|
|
* Used by wolfSSL
|
|
*/
|
|
|
|
/* Constants */
|
|
#define MP_LT FP_LT /* less than */
|
|
#define MP_EQ FP_EQ /* equal to */
|
|
#define MP_GT FP_GT /* greater than */
|
|
#define MP_VAL FP_VAL /* invalid */
|
|
#define MP_MEM FP_MEM /* memory error */
|
|
#define MP_NOT_INF FP_NOT_INF /* point not at infinity */
|
|
#define MP_OKAY FP_OKAY /* ok result */
|
|
#define MP_NO FP_NO /* yes/no result */
|
|
#define MP_YES FP_YES /* yes/no result */
|
|
#define MP_ZPOS FP_ZPOS
|
|
#define MP_NEG FP_NEG
|
|
#define MP_MASK FP_MASK
|
|
|
|
/* Prototypes */
|
|
#define mp_zero(a) fp_zero(a)
|
|
#define mp_isone(a) fp_isone(a)
|
|
#define mp_iseven(a) fp_iseven(a)
|
|
#define mp_isneg(a) fp_isneg(a)
|
|
|
|
#define MP_RADIX_BIN 2
|
|
#define MP_RADIX_OCT 8
|
|
#define MP_RADIX_DEC 10
|
|
#define MP_RADIX_HEX 16
|
|
#define MP_RADIX_MAX 64
|
|
|
|
#define mp_tobinary(M, S) mp_toradix((M), (S), MP_RADIX_BIN)
|
|
#define mp_tooctal(M, S) mp_toradix((M), (S), MP_RADIX_OCT)
|
|
#define mp_todecimal(M, S) mp_toradix((M), (S), MP_RADIX_DEC)
|
|
#define mp_tohex(M, S) mp_toradix((M), (S), MP_RADIX_HEX)
|
|
|
|
MP_API int mp_init (mp_int * a);
|
|
MP_API void mp_clear (mp_int * a);
|
|
MP_API void mp_free (mp_int * a);
|
|
MP_API void mp_forcezero (mp_int * a);
|
|
MP_API int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e,
|
|
mp_int* f);
|
|
|
|
MP_API int mp_add (mp_int * a, mp_int * b, mp_int * c);
|
|
MP_API int mp_sub (mp_int * a, mp_int * b, mp_int * c);
|
|
MP_API int mp_add_d (mp_int * a, mp_digit b, mp_int * c);
|
|
|
|
MP_API int mp_mul (mp_int * a, mp_int * b, mp_int * c);
|
|
MP_API int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
|
|
MP_API int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
|
|
MP_API int mp_submod (mp_int* a, mp_int* b, mp_int* c, mp_int* d);
|
|
MP_API int mp_addmod (mp_int* a, mp_int* b, mp_int* c, mp_int* d);
|
|
MP_API int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
|
MP_API int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
|
MP_API int mp_exptmod (mp_int * g, mp_int * x, mp_int * p, mp_int * y);
|
|
MP_API int mp_exptmod_ex (mp_int * g, mp_int * x, int minDigits, mp_int * p,
|
|
mp_int * y);
|
|
MP_API int mp_mul_2d(mp_int *a, int b, mp_int *c);
|
|
MP_API int mp_2expt(mp_int* a, int b);
|
|
|
|
MP_API int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
|
|
|
|
MP_API int mp_cmp(mp_int *a, mp_int *b);
|
|
MP_API int mp_cmp_d(mp_int *a, mp_digit b);
|
|
|
|
MP_API int mp_unsigned_bin_size(mp_int * a);
|
|
MP_API int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c);
|
|
MP_API int mp_to_unsigned_bin_at_pos(int x, mp_int *t, unsigned char *b);
|
|
MP_API int mp_to_unsigned_bin (mp_int * a, unsigned char *b);
|
|
MP_API int mp_to_unsigned_bin_len(mp_int * a, unsigned char *b, int c);
|
|
|
|
MP_API int mp_sub_d(fp_int *a, fp_digit b, fp_int *c);
|
|
MP_API int mp_copy(fp_int* a, fp_int* b);
|
|
MP_API int mp_isodd(mp_int* a);
|
|
MP_API int mp_iszero(mp_int* a);
|
|
MP_API int mp_count_bits(mp_int *a);
|
|
MP_API int mp_leading_bit(mp_int *a);
|
|
MP_API int mp_set_int(mp_int *a, unsigned long b);
|
|
MP_API int mp_is_bit_set (mp_int * a, mp_digit b);
|
|
MP_API int mp_set_bit (mp_int * a, mp_digit b);
|
|
MP_API void mp_rshb(mp_int *a, int x);
|
|
MP_API void mp_rshd(mp_int *a, int x);
|
|
MP_API int mp_toradix (mp_int *a, char *str, int radix);
|
|
MP_API int mp_radix_size (mp_int * a, int radix, int *size);
|
|
|
|
#ifdef WOLFSSL_DEBUG_MATH
|
|
MP_API void mp_dump(const char* desc, mp_int* a, byte verbose);
|
|
#else
|
|
#define mp_dump(desc, a, verbose)
|
|
#endif
|
|
|
|
#if !defined(NO_DSA) || defined(HAVE_ECC)
|
|
MP_API int mp_read_radix(mp_int* a, const char* str, int radix);
|
|
#endif
|
|
|
|
#ifdef HAVE_ECC
|
|
MP_API int mp_sqr(fp_int *a, fp_int *b);
|
|
MP_API int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
|
|
MP_API int mp_montgomery_setup(fp_int *a, fp_digit *rho);
|
|
MP_API int mp_div_2(fp_int * a, fp_int * b);
|
|
MP_API int mp_init_copy(fp_int * a, fp_int * b);
|
|
#endif
|
|
|
|
#if defined(HAVE_ECC) || !defined(NO_RSA) || !defined(NO_DSA) || \
|
|
defined(WOLFSSL_KEY_GEN)
|
|
MP_API int mp_set(fp_int *a, fp_digit b);
|
|
#endif
|
|
|
|
#if defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || !defined(NO_RSA) || \
|
|
!defined(NO_DSA) || !defined(NO_DH)
|
|
MP_API int mp_sqrmod(mp_int* a, mp_int* b, mp_int* c);
|
|
MP_API int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
|
|
#endif
|
|
|
|
#if !defined(NO_DH) || !defined(NO_DSA) || !defined(NO_RSA) || defined(WOLFSSL_KEY_GEN)
|
|
MP_API int mp_prime_is_prime(mp_int* a, int t, int* result);
|
|
MP_API int mp_prime_is_prime_ex(mp_int* a, int t, int* result, WC_RNG* rng);
|
|
#endif /* !NO_DH || !NO_DSA || !NO_RSA || WOLFSSL_KEY_GEN */
|
|
#ifdef WOLFSSL_KEY_GEN
|
|
MP_API int mp_gcd(fp_int *a, fp_int *b, fp_int *c);
|
|
MP_API int mp_lcm(fp_int *a, fp_int *b, fp_int *c);
|
|
MP_API int mp_rand_prime(mp_int* N, int len, WC_RNG* rng, void* heap);
|
|
MP_API int mp_exch(mp_int *a, mp_int *b);
|
|
#endif /* WOLFSSL_KEY_GEN */
|
|
|
|
MP_API int mp_cnt_lsb(fp_int *a);
|
|
MP_API int mp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
|
|
MP_API int mp_mod_d(fp_int* a, fp_digit b, fp_digit* c);
|
|
MP_API int mp_lshd (mp_int * a, int b);
|
|
MP_API int mp_abs(mp_int* a, mp_int* b);
|
|
|
|
WOLFSSL_API word32 CheckRunTimeFastMath(void);
|
|
|
|
/* If user uses RSA, DH, DSA, or ECC math lib directly then fast math FP_SIZE
|
|
must match, return 1 if a match otherwise 0 */
|
|
#define CheckFastMathSettings() (FP_SIZE == CheckRunTimeFastMath())
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* WOLF_CRYPT_TFM_H */
|
|
|