WiiUPluginSystem/loader/src/libelf/libelf_convert.c

3466 lines
71 KiB
C

/*-
* Copyright (c) 2006,2008 Joseph Koshy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS `AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: elf_types.m4 321 2009-03-07 16:59:14Z jkoshy $
*/
/*
* ELF types, defined in the "enum Elf_Type" API.
*
* The members of the list form a 2-tuple: (name, C-type-suffix).
* + name is an Elf_Type symbol without the ELF_T_ prefix.
* + C-type-suffix is the suffix for Elf32_ and Elf64_ type names.
*/
/*
* DEFINE_STRUCT(NAME,MEMBERLIST...)
*
* Map a type name to its members.
*
* Each member-list element comprises of pairs of (field name, type),
* in the sequence used in the file representation of NAME.
*
* Each member list element comprises a pair containing a field name
* and a basic type. Basic types include IDENT, HALF, WORD, LWORD,
* ADDR{32,64}, OFF{32,64}, SWORD, XWORD, SXWORD.
*
* The last element of a member list is the null element: _,_.
*/
/*-
* Copyright (c) 2006-2011 Joseph Koshy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS `AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <assert.h>
#include <libelf.h>
#include <string.h>
#include "_libelf.h"
ELFTC_VCSID("$Id: libelf_convert.m4 2361 2011-12-28 12:03:05Z jkoshy $");
/* WARNING: GENERATED FROM libelf_convert.m4. */
/*
* C macros to byte swap integral quantities.
*/
#define SWAP_BYTE(X) do { (void) (X); } while (0)
#define SWAP_IDENT(X) do { (void) (X); } while (0)
#define SWAP_HALF(X) do { \
uint16_t _x = (uint16_t) (X); \
uint16_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_WORD(X) do { \
uint32_t _x = (uint32_t) (X); \
uint32_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR32(X) SWAP_WORD(X)
#define SWAP_OFF32(X) SWAP_WORD(X)
#define SWAP_SWORD(X) SWAP_WORD(X)
#define SWAP_WORD64(X) do { \
uint64_t _x = (uint64_t) (X); \
uint64_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR64(X) SWAP_WORD64(X)
#define SWAP_LWORD(X) SWAP_WORD64(X)
#define SWAP_OFF64(X) SWAP_WORD64(X)
#define SWAP_SXWORD(X) SWAP_WORD64(X)
#define SWAP_XWORD(X) SWAP_WORD64(X)
/*
* C macros to write out various integral values.
*
* Note:
* - The destination pointer could be unaligned.
* - Values are written out in native byte order.
* - The destination pointer is incremented after the write.
*/
#define WRITE_BYTE(P,X) do { \
char *const _p = (char *) (P); \
_p[0] = (char) (X); \
(P) = _p + 1; \
} while (0)
#define WRITE_HALF(P,X) do { \
uint16_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
(P) = _p + 2; \
} while (0)
#define WRITE_WORD(P,X) do { \
uint32_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
(P) = _p + 4; \
} while (0)
#define WRITE_ADDR32(P,X) WRITE_WORD(P,X)
#define WRITE_OFF32(P,X) WRITE_WORD(P,X)
#define WRITE_SWORD(P,X) WRITE_WORD(P,X)
#define WRITE_WORD64(P,X) do { \
uint64_t _t = (X); \
char *const _p = (char *) (P); \
const char *const _q = (char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
_p[4] = _q[4]; \
_p[5] = _q[5]; \
_p[6] = _q[6]; \
_p[7] = _q[7]; \
(P) = _p + 8; \
} while (0)
#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X)
#define WRITE_LWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_OFF64(P,X) WRITE_WORD64(P,X)
#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_XWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_IDENT(P,X) do { \
(void) memcpy((P), (X), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
/*
* C macros to read in various integral values.
*
* Note:
* - The source pointer could be unaligned.
* - Values are read in native byte order.
* - The source pointer is incremented appropriately.
*/
#define READ_BYTE(P,X) do { \
const char *const _p = \
(const char *) (P); \
(X) = _p[0]; \
(P) = (P) + 1; \
} while (0)
#define READ_HALF(P,X) do { \
uint16_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
(P) = (P) + 2; \
(X) = _t; \
} while (0)
#define READ_WORD(P,X) do { \
uint32_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
(P) = (P) + 4; \
(X) = _t; \
} while (0)
#define READ_ADDR32(P,X) READ_WORD(P,X)
#define READ_OFF32(P,X) READ_WORD(P,X)
#define READ_SWORD(P,X) READ_WORD(P,X)
#define READ_WORD64(P,X) do { \
uint64_t _t; \
char *const _q = (char *) &_t; \
const char *const _p = \
(const char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
_q[4] = _p[4]; \
_q[5] = _p[5]; \
_q[6] = _p[6]; \
_q[7] = _p[7]; \
(P) = (P) + 8; \
(X) = _t; \
} while (0)
#define READ_ADDR64(P,X) READ_WORD64(P,X)
#define READ_LWORD(P,X) READ_WORD64(P,X)
#define READ_OFF64(P,X) READ_WORD64(P,X)
#define READ_SXWORD(P,X) READ_WORD64(P,X)
#define READ_XWORD(P,X) READ_WORD64(P,X)
#define READ_IDENT(P,X) do { \
(void) memcpy((X), (P), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1))
/*[*/
static int
_libelf_cvt_ADDR32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Addr t, *s = (Elf32_Addr *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_ADDR32(t);
WRITE_ADDR32(dst,t);
}
return (1);
}
static int
_libelf_cvt_ADDR32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Addr t, *d = (Elf32_Addr *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf32_Addr))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_ADDR32(src,t);
SWAP_ADDR32(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_ADDR64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Addr t, *s = (Elf64_Addr *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_ADDR64(t);
WRITE_ADDR64(dst,t);
}
return (1);
}
static int
_libelf_cvt_ADDR64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Addr t, *d = (Elf64_Addr *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Addr))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_ADDR64(src,t);
SWAP_ADDR64(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_CAP32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Cap t, *s;
size_t c;
(void) dsz;
s = (Elf32_Cap *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Cap */
SWAP_WORD(t.c_tag);
SWAP_WORD(t.c_un.c_val);
/**/
}
/* Write an Elf32_Cap */
WRITE_WORD(dst,t.c_tag);
WRITE_WORD(dst,t.c_un.c_val);
/**/
}
return (1);
}
static int
_libelf_cvt_CAP32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Cap t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_CAP, (size_t) 1, EV_CURRENT);
d = ((Elf32_Cap *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Cap))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Cap */
READ_WORD(s,t.c_tag);
READ_WORD(s,t.c_un.c_val);
/**/
if (byteswap) {
/* Swap an Elf32_Cap */
SWAP_WORD(t.c_tag);
SWAP_WORD(t.c_un.c_val);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_CAP64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Cap t, *s;
size_t c;
(void) dsz;
s = (Elf64_Cap *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Cap */
SWAP_XWORD(t.c_tag);
SWAP_XWORD(t.c_un.c_val);
/**/
}
/* Write an Elf64_Cap */
WRITE_XWORD(dst,t.c_tag);
WRITE_XWORD(dst,t.c_un.c_val);
/**/
}
return (1);
}
static int
_libelf_cvt_CAP64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Cap t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_CAP, (size_t) 1, EV_CURRENT);
d = ((Elf64_Cap *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Cap))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Cap */
READ_XWORD(s,t.c_tag);
READ_XWORD(s,t.c_un.c_val);
/**/
if (byteswap) {
/* Swap an Elf64_Cap */
SWAP_XWORD(t.c_tag);
SWAP_XWORD(t.c_un.c_val);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_DYN32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Dyn t, *s;
size_t c;
(void) dsz;
s = (Elf32_Dyn *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Dyn */
SWAP_SWORD(t.d_tag);
SWAP_WORD(t.d_un.d_ptr);
/**/
}
/* Write an Elf32_Dyn */
WRITE_SWORD(dst,t.d_tag);
WRITE_WORD(dst,t.d_un.d_ptr);
/**/
}
return (1);
}
static int
_libelf_cvt_DYN32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Dyn t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_DYN, (size_t) 1, EV_CURRENT);
d = ((Elf32_Dyn *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Dyn))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Dyn */
READ_SWORD(s,t.d_tag);
READ_WORD(s,t.d_un.d_ptr);
/**/
if (byteswap) {
/* Swap an Elf32_Dyn */
SWAP_SWORD(t.d_tag);
SWAP_WORD(t.d_un.d_ptr);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_DYN64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Dyn t, *s;
size_t c;
(void) dsz;
s = (Elf64_Dyn *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Dyn */
SWAP_SXWORD(t.d_tag);
SWAP_XWORD(t.d_un.d_ptr);
/**/
}
/* Write an Elf64_Dyn */
WRITE_SXWORD(dst,t.d_tag);
WRITE_XWORD(dst,t.d_un.d_ptr);
/**/
}
return (1);
}
static int
_libelf_cvt_DYN64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Dyn t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_DYN, (size_t) 1, EV_CURRENT);
d = ((Elf64_Dyn *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Dyn))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Dyn */
READ_SXWORD(s,t.d_tag);
READ_XWORD(s,t.d_un.d_ptr);
/**/
if (byteswap) {
/* Swap an Elf64_Dyn */
SWAP_SXWORD(t.d_tag);
SWAP_XWORD(t.d_un.d_ptr);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_EHDR32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Ehdr t, *s;
size_t c;
(void) dsz;
s = (Elf32_Ehdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Ehdr */
SWAP_IDENT(t.e_ident);
SWAP_HALF(t.e_type);
SWAP_HALF(t.e_machine);
SWAP_WORD(t.e_version);
SWAP_ADDR32(t.e_entry);
SWAP_OFF32(t.e_phoff);
SWAP_OFF32(t.e_shoff);
SWAP_WORD(t.e_flags);
SWAP_HALF(t.e_ehsize);
SWAP_HALF(t.e_phentsize);
SWAP_HALF(t.e_phnum);
SWAP_HALF(t.e_shentsize);
SWAP_HALF(t.e_shnum);
SWAP_HALF(t.e_shstrndx);
/**/
}
/* Write an Elf32_Ehdr */
WRITE_IDENT(dst,t.e_ident);
WRITE_HALF(dst,t.e_type);
WRITE_HALF(dst,t.e_machine);
WRITE_WORD(dst,t.e_version);
WRITE_ADDR32(dst,t.e_entry);
WRITE_OFF32(dst,t.e_phoff);
WRITE_OFF32(dst,t.e_shoff);
WRITE_WORD(dst,t.e_flags);
WRITE_HALF(dst,t.e_ehsize);
WRITE_HALF(dst,t.e_phentsize);
WRITE_HALF(dst,t.e_phnum);
WRITE_HALF(dst,t.e_shentsize);
WRITE_HALF(dst,t.e_shnum);
WRITE_HALF(dst,t.e_shstrndx);
/**/
}
return (1);
}
static int
_libelf_cvt_EHDR32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Ehdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_EHDR, (size_t) 1, EV_CURRENT);
d = ((Elf32_Ehdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Ehdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Ehdr */
READ_IDENT(s,t.e_ident);
READ_HALF(s,t.e_type);
READ_HALF(s,t.e_machine);
READ_WORD(s,t.e_version);
READ_ADDR32(s,t.e_entry);
READ_OFF32(s,t.e_phoff);
READ_OFF32(s,t.e_shoff);
READ_WORD(s,t.e_flags);
READ_HALF(s,t.e_ehsize);
READ_HALF(s,t.e_phentsize);
READ_HALF(s,t.e_phnum);
READ_HALF(s,t.e_shentsize);
READ_HALF(s,t.e_shnum);
READ_HALF(s,t.e_shstrndx);
/**/
if (byteswap) {
/* Swap an Elf32_Ehdr */
SWAP_IDENT(t.e_ident);
SWAP_HALF(t.e_type);
SWAP_HALF(t.e_machine);
SWAP_WORD(t.e_version);
SWAP_ADDR32(t.e_entry);
SWAP_OFF32(t.e_phoff);
SWAP_OFF32(t.e_shoff);
SWAP_WORD(t.e_flags);
SWAP_HALF(t.e_ehsize);
SWAP_HALF(t.e_phentsize);
SWAP_HALF(t.e_phnum);
SWAP_HALF(t.e_shentsize);
SWAP_HALF(t.e_shnum);
SWAP_HALF(t.e_shstrndx);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_EHDR64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Ehdr t, *s;
size_t c;
(void) dsz;
s = (Elf64_Ehdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Ehdr */
SWAP_IDENT(t.e_ident);
SWAP_HALF(t.e_type);
SWAP_HALF(t.e_machine);
SWAP_WORD(t.e_version);
SWAP_ADDR64(t.e_entry);
SWAP_OFF64(t.e_phoff);
SWAP_OFF64(t.e_shoff);
SWAP_WORD(t.e_flags);
SWAP_HALF(t.e_ehsize);
SWAP_HALF(t.e_phentsize);
SWAP_HALF(t.e_phnum);
SWAP_HALF(t.e_shentsize);
SWAP_HALF(t.e_shnum);
SWAP_HALF(t.e_shstrndx);
/**/
}
/* Write an Elf64_Ehdr */
WRITE_IDENT(dst,t.e_ident);
WRITE_HALF(dst,t.e_type);
WRITE_HALF(dst,t.e_machine);
WRITE_WORD(dst,t.e_version);
WRITE_ADDR64(dst,t.e_entry);
WRITE_OFF64(dst,t.e_phoff);
WRITE_OFF64(dst,t.e_shoff);
WRITE_WORD(dst,t.e_flags);
WRITE_HALF(dst,t.e_ehsize);
WRITE_HALF(dst,t.e_phentsize);
WRITE_HALF(dst,t.e_phnum);
WRITE_HALF(dst,t.e_shentsize);
WRITE_HALF(dst,t.e_shnum);
WRITE_HALF(dst,t.e_shstrndx);
/**/
}
return (1);
}
static int
_libelf_cvt_EHDR64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Ehdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_EHDR, (size_t) 1, EV_CURRENT);
d = ((Elf64_Ehdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Ehdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Ehdr */
READ_IDENT(s,t.e_ident);
READ_HALF(s,t.e_type);
READ_HALF(s,t.e_machine);
READ_WORD(s,t.e_version);
READ_ADDR64(s,t.e_entry);
READ_OFF64(s,t.e_phoff);
READ_OFF64(s,t.e_shoff);
READ_WORD(s,t.e_flags);
READ_HALF(s,t.e_ehsize);
READ_HALF(s,t.e_phentsize);
READ_HALF(s,t.e_phnum);
READ_HALF(s,t.e_shentsize);
READ_HALF(s,t.e_shnum);
READ_HALF(s,t.e_shstrndx);
/**/
if (byteswap) {
/* Swap an Elf64_Ehdr */
SWAP_IDENT(t.e_ident);
SWAP_HALF(t.e_type);
SWAP_HALF(t.e_machine);
SWAP_WORD(t.e_version);
SWAP_ADDR64(t.e_entry);
SWAP_OFF64(t.e_phoff);
SWAP_OFF64(t.e_shoff);
SWAP_WORD(t.e_flags);
SWAP_HALF(t.e_ehsize);
SWAP_HALF(t.e_phentsize);
SWAP_HALF(t.e_phnum);
SWAP_HALF(t.e_shentsize);
SWAP_HALF(t.e_shnum);
SWAP_HALF(t.e_shstrndx);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_HALF_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Half t, *s = (Elf64_Half *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_HALF(t);
WRITE_HALF(dst,t);
}
return (1);
}
static int
_libelf_cvt_HALF_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Half t, *d = (Elf64_Half *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Half))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_HALF(src,t);
SWAP_HALF(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_LWORD_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Lword t, *s = (Elf64_Lword *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_LWORD(t);
WRITE_LWORD(dst,t);
}
return (1);
}
static int
_libelf_cvt_LWORD_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Lword t, *d = (Elf64_Lword *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Lword))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_LWORD(src,t);
SWAP_LWORD(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_MOVE32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Move t, *s;
size_t c;
(void) dsz;
s = (Elf32_Move *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Move */
SWAP_LWORD(t.m_value);
SWAP_WORD(t.m_info);
SWAP_WORD(t.m_poffset);
SWAP_HALF(t.m_repeat);
SWAP_HALF(t.m_stride);
/**/
}
/* Write an Elf32_Move */
WRITE_LWORD(dst,t.m_value);
WRITE_WORD(dst,t.m_info);
WRITE_WORD(dst,t.m_poffset);
WRITE_HALF(dst,t.m_repeat);
WRITE_HALF(dst,t.m_stride);
/**/
}
return (1);
}
static int
_libelf_cvt_MOVE32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Move t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_MOVE, (size_t) 1, EV_CURRENT);
d = ((Elf32_Move *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Move))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Move */
READ_LWORD(s,t.m_value);
READ_WORD(s,t.m_info);
READ_WORD(s,t.m_poffset);
READ_HALF(s,t.m_repeat);
READ_HALF(s,t.m_stride);
/**/
if (byteswap) {
/* Swap an Elf32_Move */
SWAP_LWORD(t.m_value);
SWAP_WORD(t.m_info);
SWAP_WORD(t.m_poffset);
SWAP_HALF(t.m_repeat);
SWAP_HALF(t.m_stride);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_MOVE64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Move t, *s;
size_t c;
(void) dsz;
s = (Elf64_Move *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Move */
SWAP_LWORD(t.m_value);
SWAP_XWORD(t.m_info);
SWAP_XWORD(t.m_poffset);
SWAP_HALF(t.m_repeat);
SWAP_HALF(t.m_stride);
/**/
}
/* Write an Elf64_Move */
WRITE_LWORD(dst,t.m_value);
WRITE_XWORD(dst,t.m_info);
WRITE_XWORD(dst,t.m_poffset);
WRITE_HALF(dst,t.m_repeat);
WRITE_HALF(dst,t.m_stride);
/**/
}
return (1);
}
static int
_libelf_cvt_MOVE64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Move t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_MOVE, (size_t) 1, EV_CURRENT);
d = ((Elf64_Move *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Move))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Move */
READ_LWORD(s,t.m_value);
READ_XWORD(s,t.m_info);
READ_XWORD(s,t.m_poffset);
READ_HALF(s,t.m_repeat);
READ_HALF(s,t.m_stride);
/**/
if (byteswap) {
/* Swap an Elf64_Move */
SWAP_LWORD(t.m_value);
SWAP_XWORD(t.m_info);
SWAP_XWORD(t.m_poffset);
SWAP_HALF(t.m_repeat);
SWAP_HALF(t.m_stride);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_OFF32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Off t, *s = (Elf32_Off *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_OFF32(t);
WRITE_OFF32(dst,t);
}
return (1);
}
static int
_libelf_cvt_OFF32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Off t, *d = (Elf32_Off *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf32_Off))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_OFF32(src,t);
SWAP_OFF32(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_OFF64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Off t, *s = (Elf64_Off *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_OFF64(t);
WRITE_OFF64(dst,t);
}
return (1);
}
static int
_libelf_cvt_OFF64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Off t, *d = (Elf64_Off *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Off))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_OFF64(src,t);
SWAP_OFF64(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_PHDR32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Phdr t, *s;
size_t c;
(void) dsz;
s = (Elf32_Phdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Phdr */
SWAP_WORD(t.p_type);
SWAP_OFF32(t.p_offset);
SWAP_ADDR32(t.p_vaddr);
SWAP_ADDR32(t.p_paddr);
SWAP_WORD(t.p_filesz);
SWAP_WORD(t.p_memsz);
SWAP_WORD(t.p_flags);
SWAP_WORD(t.p_align);
/**/
}
/* Write an Elf32_Phdr */
WRITE_WORD(dst,t.p_type);
WRITE_OFF32(dst,t.p_offset);
WRITE_ADDR32(dst,t.p_vaddr);
WRITE_ADDR32(dst,t.p_paddr);
WRITE_WORD(dst,t.p_filesz);
WRITE_WORD(dst,t.p_memsz);
WRITE_WORD(dst,t.p_flags);
WRITE_WORD(dst,t.p_align);
/**/
}
return (1);
}
static int
_libelf_cvt_PHDR32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Phdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_PHDR, (size_t) 1, EV_CURRENT);
d = ((Elf32_Phdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Phdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Phdr */
READ_WORD(s,t.p_type);
READ_OFF32(s,t.p_offset);
READ_ADDR32(s,t.p_vaddr);
READ_ADDR32(s,t.p_paddr);
READ_WORD(s,t.p_filesz);
READ_WORD(s,t.p_memsz);
READ_WORD(s,t.p_flags);
READ_WORD(s,t.p_align);
/**/
if (byteswap) {
/* Swap an Elf32_Phdr */
SWAP_WORD(t.p_type);
SWAP_OFF32(t.p_offset);
SWAP_ADDR32(t.p_vaddr);
SWAP_ADDR32(t.p_paddr);
SWAP_WORD(t.p_filesz);
SWAP_WORD(t.p_memsz);
SWAP_WORD(t.p_flags);
SWAP_WORD(t.p_align);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_PHDR64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Phdr t, *s;
size_t c;
(void) dsz;
s = (Elf64_Phdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Phdr */
SWAP_WORD(t.p_type);
SWAP_WORD(t.p_flags);
SWAP_OFF64(t.p_offset);
SWAP_ADDR64(t.p_vaddr);
SWAP_ADDR64(t.p_paddr);
SWAP_XWORD(t.p_filesz);
SWAP_XWORD(t.p_memsz);
SWAP_XWORD(t.p_align);
/**/
}
/* Write an Elf64_Phdr */
WRITE_WORD(dst,t.p_type);
WRITE_WORD(dst,t.p_flags);
WRITE_OFF64(dst,t.p_offset);
WRITE_ADDR64(dst,t.p_vaddr);
WRITE_ADDR64(dst,t.p_paddr);
WRITE_XWORD(dst,t.p_filesz);
WRITE_XWORD(dst,t.p_memsz);
WRITE_XWORD(dst,t.p_align);
/**/
}
return (1);
}
static int
_libelf_cvt_PHDR64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Phdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_PHDR, (size_t) 1, EV_CURRENT);
d = ((Elf64_Phdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Phdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Phdr */
READ_WORD(s,t.p_type);
READ_WORD(s,t.p_flags);
READ_OFF64(s,t.p_offset);
READ_ADDR64(s,t.p_vaddr);
READ_ADDR64(s,t.p_paddr);
READ_XWORD(s,t.p_filesz);
READ_XWORD(s,t.p_memsz);
READ_XWORD(s,t.p_align);
/**/
if (byteswap) {
/* Swap an Elf64_Phdr */
SWAP_WORD(t.p_type);
SWAP_WORD(t.p_flags);
SWAP_OFF64(t.p_offset);
SWAP_ADDR64(t.p_vaddr);
SWAP_ADDR64(t.p_paddr);
SWAP_XWORD(t.p_filesz);
SWAP_XWORD(t.p_memsz);
SWAP_XWORD(t.p_align);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_REL32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Rel t, *s;
size_t c;
(void) dsz;
s = (Elf32_Rel *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Rel */
SWAP_ADDR32(t.r_offset);
SWAP_WORD(t.r_info);
/**/
}
/* Write an Elf32_Rel */
WRITE_ADDR32(dst,t.r_offset);
WRITE_WORD(dst,t.r_info);
/**/
}
return (1);
}
static int
_libelf_cvt_REL32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Rel t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_REL, (size_t) 1, EV_CURRENT);
d = ((Elf32_Rel *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Rel))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Rel */
READ_ADDR32(s,t.r_offset);
READ_WORD(s,t.r_info);
/**/
if (byteswap) {
/* Swap an Elf32_Rel */
SWAP_ADDR32(t.r_offset);
SWAP_WORD(t.r_info);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_REL64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Rel t, *s;
size_t c;
(void) dsz;
s = (Elf64_Rel *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Rel */
SWAP_ADDR64(t.r_offset);
SWAP_XWORD(t.r_info);
/**/
}
/* Write an Elf64_Rel */
WRITE_ADDR64(dst,t.r_offset);
WRITE_XWORD(dst,t.r_info);
/**/
}
return (1);
}
static int
_libelf_cvt_REL64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Rel t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_REL, (size_t) 1, EV_CURRENT);
d = ((Elf64_Rel *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Rel))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Rel */
READ_ADDR64(s,t.r_offset);
READ_XWORD(s,t.r_info);
/**/
if (byteswap) {
/* Swap an Elf64_Rel */
SWAP_ADDR64(t.r_offset);
SWAP_XWORD(t.r_info);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_RELA32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Rela t, *s;
size_t c;
(void) dsz;
s = (Elf32_Rela *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Rela */
SWAP_ADDR32(t.r_offset);
SWAP_WORD(t.r_info);
SWAP_SWORD(t.r_addend);
/**/
}
/* Write an Elf32_Rela */
WRITE_ADDR32(dst,t.r_offset);
WRITE_WORD(dst,t.r_info);
WRITE_SWORD(dst,t.r_addend);
/**/
}
return (1);
}
static int
_libelf_cvt_RELA32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Rela t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_RELA, (size_t) 1, EV_CURRENT);
d = ((Elf32_Rela *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Rela))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Rela */
READ_ADDR32(s,t.r_offset);
READ_WORD(s,t.r_info);
READ_SWORD(s,t.r_addend);
/**/
if (byteswap) {
/* Swap an Elf32_Rela */
SWAP_ADDR32(t.r_offset);
SWAP_WORD(t.r_info);
SWAP_SWORD(t.r_addend);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_RELA64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Rela t, *s;
size_t c;
(void) dsz;
s = (Elf64_Rela *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Rela */
SWAP_ADDR64(t.r_offset);
SWAP_XWORD(t.r_info);
SWAP_SXWORD(t.r_addend);
/**/
}
/* Write an Elf64_Rela */
WRITE_ADDR64(dst,t.r_offset);
WRITE_XWORD(dst,t.r_info);
WRITE_SXWORD(dst,t.r_addend);
/**/
}
return (1);
}
static int
_libelf_cvt_RELA64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Rela t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_RELA, (size_t) 1, EV_CURRENT);
d = ((Elf64_Rela *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Rela))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Rela */
READ_ADDR64(s,t.r_offset);
READ_XWORD(s,t.r_info);
READ_SXWORD(s,t.r_addend);
/**/
if (byteswap) {
/* Swap an Elf64_Rela */
SWAP_ADDR64(t.r_offset);
SWAP_XWORD(t.r_info);
SWAP_SXWORD(t.r_addend);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SHDR32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Shdr t, *s;
size_t c;
(void) dsz;
s = (Elf32_Shdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Shdr */
SWAP_WORD(t.sh_name);
SWAP_WORD(t.sh_type);
SWAP_WORD(t.sh_flags);
SWAP_ADDR32(t.sh_addr);
SWAP_OFF32(t.sh_offset);
SWAP_WORD(t.sh_size);
SWAP_WORD(t.sh_link);
SWAP_WORD(t.sh_info);
SWAP_WORD(t.sh_addralign);
SWAP_WORD(t.sh_entsize);
/**/
}
/* Write an Elf32_Shdr */
WRITE_WORD(dst,t.sh_name);
WRITE_WORD(dst,t.sh_type);
WRITE_WORD(dst,t.sh_flags);
WRITE_ADDR32(dst,t.sh_addr);
WRITE_OFF32(dst,t.sh_offset);
WRITE_WORD(dst,t.sh_size);
WRITE_WORD(dst,t.sh_link);
WRITE_WORD(dst,t.sh_info);
WRITE_WORD(dst,t.sh_addralign);
WRITE_WORD(dst,t.sh_entsize);
/**/
}
return (1);
}
static int
_libelf_cvt_SHDR32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Shdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_SHDR, (size_t) 1, EV_CURRENT);
d = ((Elf32_Shdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Shdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Shdr */
READ_WORD(s,t.sh_name);
READ_WORD(s,t.sh_type);
READ_WORD(s,t.sh_flags);
READ_ADDR32(s,t.sh_addr);
READ_OFF32(s,t.sh_offset);
READ_WORD(s,t.sh_size);
READ_WORD(s,t.sh_link);
READ_WORD(s,t.sh_info);
READ_WORD(s,t.sh_addralign);
READ_WORD(s,t.sh_entsize);
/**/
if (byteswap) {
/* Swap an Elf32_Shdr */
SWAP_WORD(t.sh_name);
SWAP_WORD(t.sh_type);
SWAP_WORD(t.sh_flags);
SWAP_ADDR32(t.sh_addr);
SWAP_OFF32(t.sh_offset);
SWAP_WORD(t.sh_size);
SWAP_WORD(t.sh_link);
SWAP_WORD(t.sh_info);
SWAP_WORD(t.sh_addralign);
SWAP_WORD(t.sh_entsize);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SHDR64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Shdr t, *s;
size_t c;
(void) dsz;
s = (Elf64_Shdr *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Shdr */
SWAP_WORD(t.sh_name);
SWAP_WORD(t.sh_type);
SWAP_XWORD(t.sh_flags);
SWAP_ADDR64(t.sh_addr);
SWAP_OFF64(t.sh_offset);
SWAP_XWORD(t.sh_size);
SWAP_WORD(t.sh_link);
SWAP_WORD(t.sh_info);
SWAP_XWORD(t.sh_addralign);
SWAP_XWORD(t.sh_entsize);
/**/
}
/* Write an Elf64_Shdr */
WRITE_WORD(dst,t.sh_name);
WRITE_WORD(dst,t.sh_type);
WRITE_XWORD(dst,t.sh_flags);
WRITE_ADDR64(dst,t.sh_addr);
WRITE_OFF64(dst,t.sh_offset);
WRITE_XWORD(dst,t.sh_size);
WRITE_WORD(dst,t.sh_link);
WRITE_WORD(dst,t.sh_info);
WRITE_XWORD(dst,t.sh_addralign);
WRITE_XWORD(dst,t.sh_entsize);
/**/
}
return (1);
}
static int
_libelf_cvt_SHDR64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Shdr t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_SHDR, (size_t) 1, EV_CURRENT);
d = ((Elf64_Shdr *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Shdr))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Shdr */
READ_WORD(s,t.sh_name);
READ_WORD(s,t.sh_type);
READ_XWORD(s,t.sh_flags);
READ_ADDR64(s,t.sh_addr);
READ_OFF64(s,t.sh_offset);
READ_XWORD(s,t.sh_size);
READ_WORD(s,t.sh_link);
READ_WORD(s,t.sh_info);
READ_XWORD(s,t.sh_addralign);
READ_XWORD(s,t.sh_entsize);
/**/
if (byteswap) {
/* Swap an Elf64_Shdr */
SWAP_WORD(t.sh_name);
SWAP_WORD(t.sh_type);
SWAP_XWORD(t.sh_flags);
SWAP_ADDR64(t.sh_addr);
SWAP_OFF64(t.sh_offset);
SWAP_XWORD(t.sh_size);
SWAP_WORD(t.sh_link);
SWAP_WORD(t.sh_info);
SWAP_XWORD(t.sh_addralign);
SWAP_XWORD(t.sh_entsize);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SWORD_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sword t, *s = (Elf64_Sword *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_SWORD(t);
WRITE_SWORD(dst,t);
}
return (1);
}
static int
_libelf_cvt_SWORD_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sword t, *d = (Elf64_Sword *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Sword))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_SWORD(src,t);
SWAP_SWORD(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_SXWORD_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sxword t, *s = (Elf64_Sxword *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_SXWORD(t);
WRITE_SXWORD(dst,t);
}
return (1);
}
static int
_libelf_cvt_SXWORD_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sxword t, *d = (Elf64_Sxword *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Sxword))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_SXWORD(src,t);
SWAP_SXWORD(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_SYMINFO32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Syminfo t, *s;
size_t c;
(void) dsz;
s = (Elf32_Syminfo *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Syminfo */
SWAP_HALF(t.si_boundto);
SWAP_HALF(t.si_flags);
/**/
}
/* Write an Elf32_Syminfo */
WRITE_HALF(dst,t.si_boundto);
WRITE_HALF(dst,t.si_flags);
/**/
}
return (1);
}
static int
_libelf_cvt_SYMINFO32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Syminfo t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_SYMINFO, (size_t) 1, EV_CURRENT);
d = ((Elf32_Syminfo *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Syminfo))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Syminfo */
READ_HALF(s,t.si_boundto);
READ_HALF(s,t.si_flags);
/**/
if (byteswap) {
/* Swap an Elf32_Syminfo */
SWAP_HALF(t.si_boundto);
SWAP_HALF(t.si_flags);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SYMINFO64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Syminfo t, *s;
size_t c;
(void) dsz;
s = (Elf64_Syminfo *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Syminfo */
SWAP_HALF(t.si_boundto);
SWAP_HALF(t.si_flags);
/**/
}
/* Write an Elf64_Syminfo */
WRITE_HALF(dst,t.si_boundto);
WRITE_HALF(dst,t.si_flags);
/**/
}
return (1);
}
static int
_libelf_cvt_SYMINFO64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Syminfo t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_SYMINFO, (size_t) 1, EV_CURRENT);
d = ((Elf64_Syminfo *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Syminfo))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Syminfo */
READ_HALF(s,t.si_boundto);
READ_HALF(s,t.si_flags);
/**/
if (byteswap) {
/* Swap an Elf64_Syminfo */
SWAP_HALF(t.si_boundto);
SWAP_HALF(t.si_flags);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SYM32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Sym t, *s;
size_t c;
(void) dsz;
s = (Elf32_Sym *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf32_Sym */
SWAP_WORD(t.st_name);
SWAP_ADDR32(t.st_value);
SWAP_WORD(t.st_size);
SWAP_BYTE(t.st_info);
SWAP_BYTE(t.st_other);
SWAP_HALF(t.st_shndx);
/**/
}
/* Write an Elf32_Sym */
WRITE_WORD(dst,t.st_name);
WRITE_ADDR32(dst,t.st_value);
WRITE_WORD(dst,t.st_size);
WRITE_BYTE(dst,t.st_info);
WRITE_BYTE(dst,t.st_other);
WRITE_HALF(dst,t.st_shndx);
/**/
}
return (1);
}
static int
_libelf_cvt_SYM32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Sym t, *d;
char *s,*s0;
size_t fsz;
fsz = elf32_fsize(ELF_T_SYM, (size_t) 1, EV_CURRENT);
d = ((Elf32_Sym *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf32_Sym))
return (0);
while (count--) {
s = s0;
/* Read an Elf32_Sym */
READ_WORD(s,t.st_name);
READ_ADDR32(s,t.st_value);
READ_WORD(s,t.st_size);
READ_BYTE(s,t.st_info);
READ_BYTE(s,t.st_other);
READ_HALF(s,t.st_shndx);
/**/
if (byteswap) {
/* Swap an Elf32_Sym */
SWAP_WORD(t.st_name);
SWAP_ADDR32(t.st_value);
SWAP_WORD(t.st_size);
SWAP_BYTE(t.st_info);
SWAP_BYTE(t.st_other);
SWAP_HALF(t.st_shndx);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_SYM64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sym t, *s;
size_t c;
(void) dsz;
s = (Elf64_Sym *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
/* Swap an Elf64_Sym */
SWAP_WORD(t.st_name);
SWAP_BYTE(t.st_info);
SWAP_BYTE(t.st_other);
SWAP_HALF(t.st_shndx);
SWAP_ADDR64(t.st_value);
SWAP_XWORD(t.st_size);
/**/
}
/* Write an Elf64_Sym */
WRITE_WORD(dst,t.st_name);
WRITE_BYTE(dst,t.st_info);
WRITE_BYTE(dst,t.st_other);
WRITE_HALF(dst,t.st_shndx);
WRITE_ADDR64(dst,t.st_value);
WRITE_XWORD(dst,t.st_size);
/**/
}
return (1);
}
static int
_libelf_cvt_SYM64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Sym t, *d;
char *s,*s0;
size_t fsz;
fsz = elf64_fsize(ELF_T_SYM, (size_t) 1, EV_CURRENT);
d = ((Elf64_Sym *) (uintptr_t) dst) + (count - 1);
s0 = (char *) src + (count - 1) * fsz;
if (dsz < count * sizeof(Elf64_Sym))
return (0);
while (count--) {
s = s0;
/* Read an Elf64_Sym */
READ_WORD(s,t.st_name);
READ_BYTE(s,t.st_info);
READ_BYTE(s,t.st_other);
READ_HALF(s,t.st_shndx);
READ_ADDR64(s,t.st_value);
READ_XWORD(s,t.st_size);
/**/
if (byteswap) {
/* Swap an Elf64_Sym */
SWAP_WORD(t.st_name);
SWAP_BYTE(t.st_info);
SWAP_BYTE(t.st_other);
SWAP_HALF(t.st_shndx);
SWAP_ADDR64(t.st_value);
SWAP_XWORD(t.st_size);
/**/
}
*d-- = t; s0 -= fsz;
}
return (1);
}
static int
_libelf_cvt_WORD_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Word t, *s = (Elf64_Word *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_WORD(t);
WRITE_WORD(dst,t);
}
return (1);
}
static int
_libelf_cvt_WORD_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Word t, *d = (Elf64_Word *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Word))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_WORD(src,t);
SWAP_WORD(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_XWORD_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Xword t, *s = (Elf64_Xword *) (uintptr_t) src;
size_t c;
(void) dsz;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return (1);
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_XWORD(t);
WRITE_XWORD(dst,t);
}
return (1);
}
static int
_libelf_cvt_XWORD_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Xword t, *d = (Elf64_Xword *) (uintptr_t) dst;
size_t c;
if (dsz < count * sizeof(Elf64_Xword))
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return (1);
}
for (c = 0; c < count; c++) {
READ_XWORD(src,t);
SWAP_XWORD(t);
*d++ = t;
}
return (1);
}
static int
_libelf_cvt_VDEF32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Verdef t;
Elf32_Verdaux a;
const size_t verfsz = 20;
const size_t auxfsz = 8;
const size_t vermsz = sizeof(Elf32_Verdef);
const size_t auxmsz = sizeof(Elf32_Verdaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dtmp, *dstaux, *srcaux;
Elf32_Word aux, anext, cnt, vnext;
for (dtmp = dst, vnext = ~0;
vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
dtmp += vnext, src += vnext) {
/* Read in an Elf32_Verdef structure. */
t = *((Elf32_Verdef *) (uintptr_t) src);
aux = t.vd_aux;
cnt = t.vd_cnt;
vnext = t.vd_next;
if (byteswap) {
/* Swap an Elf32_Verdef */
SWAP_HALF(t.vd_version);
SWAP_HALF(t.vd_flags);
SWAP_HALF(t.vd_ndx);
SWAP_HALF(t.vd_cnt);
SWAP_WORD(t.vd_hash);
SWAP_WORD(t.vd_aux);
SWAP_WORD(t.vd_next);
/**/
}
dst = dtmp;
/* Write an Elf32_Verdef */
WRITE_HALF(dst,t.vd_version);
WRITE_HALF(dst,t.vd_flags);
WRITE_HALF(dst,t.vd_ndx);
WRITE_HALF(dst,t.vd_cnt);
WRITE_WORD(dst,t.vd_hash);
WRITE_WORD(dst,t.vd_aux);
WRITE_WORD(dst,t.vd_next);
/**/
if (aux < verfsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dtmp + aux, srcaux = src + aux;
cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
srcaux + auxmsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
/* Read in an Elf32_Verdaux structure. */
a = *((Elf32_Verdaux *) (uintptr_t) srcaux);
anext = a.vda_next;
if (byteswap) {
/* Swap an Elf32_Verdaux */
SWAP_WORD(a.vda_name);
SWAP_WORD(a.vda_next);
/**/
}
dst = dstaux;
/* Write an Elf32_Verdaux */
WRITE_WORD(dst,a.vda_name);
WRITE_WORD(dst,a.vda_next);
/**/
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VDEF32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Verdef t, *dp;
Elf32_Verdaux a, *ap;
const size_t verfsz = 20;
const size_t auxfsz = 8;
const size_t vermsz = sizeof(Elf32_Verdef);
const size_t auxmsz = sizeof(Elf32_Verdaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dstaux, *s, *srcaux, *stmp;
Elf32_Word aux, anext, cnt, vnext;
for (stmp = src, vnext = ~0;
vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
stmp += vnext, dst += vnext) {
/* Read in a VDEF structure. */
s = stmp;
/* Read an Elf32_Verdef */
READ_HALF(s,t.vd_version);
READ_HALF(s,t.vd_flags);
READ_HALF(s,t.vd_ndx);
READ_HALF(s,t.vd_cnt);
READ_WORD(s,t.vd_hash);
READ_WORD(s,t.vd_aux);
READ_WORD(s,t.vd_next);
/**/
if (byteswap) {
/* Swap an Elf32_Verdef */
SWAP_HALF(t.vd_version);
SWAP_HALF(t.vd_flags);
SWAP_HALF(t.vd_ndx);
SWAP_HALF(t.vd_cnt);
SWAP_WORD(t.vd_hash);
SWAP_WORD(t.vd_aux);
SWAP_WORD(t.vd_next);
/**/
}
dp = (Elf32_Verdef *) (uintptr_t) dst;
*dp = t;
aux = t.vd_aux;
cnt = t.vd_cnt;
vnext = t.vd_next;
if (aux < vermsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dst + aux, srcaux = stmp + aux;
cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
srcaux + auxfsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
s = srcaux;
/* Read an Elf32_Verdaux */
READ_WORD(s,a.vda_name);
READ_WORD(s,a.vda_next);
/**/
if (byteswap) {
/* Swap an Elf32_Verdaux */
SWAP_WORD(a.vda_name);
SWAP_WORD(a.vda_next);
/**/
}
anext = a.vda_next;
ap = ((Elf32_Verdaux *) (uintptr_t) dstaux);
*ap = a;
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VDEF64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Verdef t;
Elf64_Verdaux a;
const size_t verfsz = 20;
const size_t auxfsz = 8;
const size_t vermsz = sizeof(Elf64_Verdef);
const size_t auxmsz = sizeof(Elf64_Verdaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dtmp, *dstaux, *srcaux;
Elf64_Word aux, anext, cnt, vnext;
for (dtmp = dst, vnext = ~0;
vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
dtmp += vnext, src += vnext) {
/* Read in an Elf64_Verdef structure. */
t = *((Elf64_Verdef *) (uintptr_t) src);
aux = t.vd_aux;
cnt = t.vd_cnt;
vnext = t.vd_next;
if (byteswap) {
/* Swap an Elf64_Verdef */
SWAP_HALF(t.vd_version);
SWAP_HALF(t.vd_flags);
SWAP_HALF(t.vd_ndx);
SWAP_HALF(t.vd_cnt);
SWAP_WORD(t.vd_hash);
SWAP_WORD(t.vd_aux);
SWAP_WORD(t.vd_next);
/**/
}
dst = dtmp;
/* Write an Elf64_Verdef */
WRITE_HALF(dst,t.vd_version);
WRITE_HALF(dst,t.vd_flags);
WRITE_HALF(dst,t.vd_ndx);
WRITE_HALF(dst,t.vd_cnt);
WRITE_WORD(dst,t.vd_hash);
WRITE_WORD(dst,t.vd_aux);
WRITE_WORD(dst,t.vd_next);
/**/
if (aux < verfsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dtmp + aux, srcaux = src + aux;
cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
srcaux + auxmsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
/* Read in an Elf64_Verdaux structure. */
a = *((Elf64_Verdaux *) (uintptr_t) srcaux);
anext = a.vda_next;
if (byteswap) {
/* Swap an Elf64_Verdaux */
SWAP_WORD(a.vda_name);
SWAP_WORD(a.vda_next);
/**/
}
dst = dstaux;
/* Write an Elf64_Verdaux */
WRITE_WORD(dst,a.vda_name);
WRITE_WORD(dst,a.vda_next);
/**/
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VDEF64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Verdef t, *dp;
Elf64_Verdaux a, *ap;
const size_t verfsz = 20;
const size_t auxfsz = 8;
const size_t vermsz = sizeof(Elf64_Verdef);
const size_t auxmsz = sizeof(Elf64_Verdaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dstaux, *s, *srcaux, *stmp;
Elf64_Word aux, anext, cnt, vnext;
for (stmp = src, vnext = ~0;
vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
stmp += vnext, dst += vnext) {
/* Read in a VDEF structure. */
s = stmp;
/* Read an Elf64_Verdef */
READ_HALF(s,t.vd_version);
READ_HALF(s,t.vd_flags);
READ_HALF(s,t.vd_ndx);
READ_HALF(s,t.vd_cnt);
READ_WORD(s,t.vd_hash);
READ_WORD(s,t.vd_aux);
READ_WORD(s,t.vd_next);
/**/
if (byteswap) {
/* Swap an Elf64_Verdef */
SWAP_HALF(t.vd_version);
SWAP_HALF(t.vd_flags);
SWAP_HALF(t.vd_ndx);
SWAP_HALF(t.vd_cnt);
SWAP_WORD(t.vd_hash);
SWAP_WORD(t.vd_aux);
SWAP_WORD(t.vd_next);
/**/
}
dp = (Elf64_Verdef *) (uintptr_t) dst;
*dp = t;
aux = t.vd_aux;
cnt = t.vd_cnt;
vnext = t.vd_next;
if (aux < vermsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dst + aux, srcaux = stmp + aux;
cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
srcaux + auxfsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
s = srcaux;
/* Read an Elf64_Verdaux */
READ_WORD(s,a.vda_name);
READ_WORD(s,a.vda_next);
/**/
if (byteswap) {
/* Swap an Elf64_Verdaux */
SWAP_WORD(a.vda_name);
SWAP_WORD(a.vda_next);
/**/
}
anext = a.vda_next;
ap = ((Elf64_Verdaux *) (uintptr_t) dstaux);
*ap = a;
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VNEED32_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Verneed t;
Elf32_Vernaux a;
const size_t verfsz = 16;
const size_t auxfsz = 16;
const size_t vermsz = sizeof(Elf32_Verneed);
const size_t auxmsz = sizeof(Elf32_Vernaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dtmp, *dstaux, *srcaux;
Elf32_Word aux, anext, cnt, vnext;
for (dtmp = dst, vnext = ~0;
vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
dtmp += vnext, src += vnext) {
/* Read in an Elf32_Verneed structure. */
t = *((Elf32_Verneed *) (uintptr_t) src);
aux = t.vn_aux;
cnt = t.vn_cnt;
vnext = t.vn_next;
if (byteswap) {
/* Swap an Elf32_Verneed */
SWAP_HALF(t.vn_version);
SWAP_HALF(t.vn_cnt);
SWAP_WORD(t.vn_file);
SWAP_WORD(t.vn_aux);
SWAP_WORD(t.vn_next);
/**/
}
dst = dtmp;
/* Write an Elf32_Verneed */
WRITE_HALF(dst,t.vn_version);
WRITE_HALF(dst,t.vn_cnt);
WRITE_WORD(dst,t.vn_file);
WRITE_WORD(dst,t.vn_aux);
WRITE_WORD(dst,t.vn_next);
/**/
if (aux < verfsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dtmp + aux, srcaux = src + aux;
cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
srcaux + auxmsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
/* Read in an Elf32_Vernaux structure. */
a = *((Elf32_Vernaux *) (uintptr_t) srcaux);
anext = a.vna_next;
if (byteswap) {
/* Swap an Elf32_Vernaux */
SWAP_WORD(a.vna_hash);
SWAP_HALF(a.vna_flags);
SWAP_HALF(a.vna_other);
SWAP_WORD(a.vna_name);
SWAP_WORD(a.vna_next);
/**/
}
dst = dstaux;
/* Write an Elf32_Vernaux */
WRITE_WORD(dst,a.vna_hash);
WRITE_HALF(dst,a.vna_flags);
WRITE_HALF(dst,a.vna_other);
WRITE_WORD(dst,a.vna_name);
WRITE_WORD(dst,a.vna_next);
/**/
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VNEED32_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf32_Verneed t, *dp;
Elf32_Vernaux a, *ap;
const size_t verfsz = 16;
const size_t auxfsz = 16;
const size_t vermsz = sizeof(Elf32_Verneed);
const size_t auxmsz = sizeof(Elf32_Vernaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dstaux, *s, *srcaux, *stmp;
Elf32_Word aux, anext, cnt, vnext;
for (stmp = src, vnext = ~0;
vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
stmp += vnext, dst += vnext) {
/* Read in a VNEED structure. */
s = stmp;
/* Read an Elf32_Verneed */
READ_HALF(s,t.vn_version);
READ_HALF(s,t.vn_cnt);
READ_WORD(s,t.vn_file);
READ_WORD(s,t.vn_aux);
READ_WORD(s,t.vn_next);
/**/
if (byteswap) {
/* Swap an Elf32_Verneed */
SWAP_HALF(t.vn_version);
SWAP_HALF(t.vn_cnt);
SWAP_WORD(t.vn_file);
SWAP_WORD(t.vn_aux);
SWAP_WORD(t.vn_next);
/**/
}
dp = (Elf32_Verneed *) (uintptr_t) dst;
*dp = t;
aux = t.vn_aux;
cnt = t.vn_cnt;
vnext = t.vn_next;
if (aux < vermsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dst + aux, srcaux = stmp + aux;
cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
srcaux + auxfsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
s = srcaux;
/* Read an Elf32_Vernaux */
READ_WORD(s,a.vna_hash);
READ_HALF(s,a.vna_flags);
READ_HALF(s,a.vna_other);
READ_WORD(s,a.vna_name);
READ_WORD(s,a.vna_next);
/**/
if (byteswap) {
/* Swap an Elf32_Vernaux */
SWAP_WORD(a.vna_hash);
SWAP_HALF(a.vna_flags);
SWAP_HALF(a.vna_other);
SWAP_WORD(a.vna_name);
SWAP_WORD(a.vna_next);
/**/
}
anext = a.vna_next;
ap = ((Elf32_Vernaux *) (uintptr_t) dstaux);
*ap = a;
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VNEED64_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Verneed t;
Elf64_Vernaux a;
const size_t verfsz = 16;
const size_t auxfsz = 16;
const size_t vermsz = sizeof(Elf64_Verneed);
const size_t auxmsz = sizeof(Elf64_Vernaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dtmp, *dstaux, *srcaux;
Elf64_Word aux, anext, cnt, vnext;
for (dtmp = dst, vnext = ~0;
vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
dtmp += vnext, src += vnext) {
/* Read in an Elf64_Verneed structure. */
t = *((Elf64_Verneed *) (uintptr_t) src);
aux = t.vn_aux;
cnt = t.vn_cnt;
vnext = t.vn_next;
if (byteswap) {
/* Swap an Elf64_Verneed */
SWAP_HALF(t.vn_version);
SWAP_HALF(t.vn_cnt);
SWAP_WORD(t.vn_file);
SWAP_WORD(t.vn_aux);
SWAP_WORD(t.vn_next);
/**/
}
dst = dtmp;
/* Write an Elf64_Verneed */
WRITE_HALF(dst,t.vn_version);
WRITE_HALF(dst,t.vn_cnt);
WRITE_WORD(dst,t.vn_file);
WRITE_WORD(dst,t.vn_aux);
WRITE_WORD(dst,t.vn_next);
/**/
if (aux < verfsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dtmp + aux, srcaux = src + aux;
cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
srcaux + auxmsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
/* Read in an Elf64_Vernaux structure. */
a = *((Elf64_Vernaux *) (uintptr_t) srcaux);
anext = a.vna_next;
if (byteswap) {
/* Swap an Elf64_Vernaux */
SWAP_WORD(a.vna_hash);
SWAP_HALF(a.vna_flags);
SWAP_HALF(a.vna_other);
SWAP_WORD(a.vna_name);
SWAP_WORD(a.vna_next);
/**/
}
dst = dstaux;
/* Write an Elf64_Vernaux */
WRITE_WORD(dst,a.vna_hash);
WRITE_HALF(dst,a.vna_flags);
WRITE_HALF(dst,a.vna_other);
WRITE_WORD(dst,a.vna_name);
WRITE_WORD(dst,a.vna_next);
/**/
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
static int
_libelf_cvt_VNEED64_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
Elf64_Verneed t, *dp;
Elf64_Vernaux a, *ap;
const size_t verfsz = 16;
const size_t auxfsz = 16;
const size_t vermsz = sizeof(Elf64_Verneed);
const size_t auxmsz = sizeof(Elf64_Vernaux);
char * const dstend = dst + dsz;
char * const srcend = src + count;
char *dstaux, *s, *srcaux, *stmp;
Elf64_Word aux, anext, cnt, vnext;
for (stmp = src, vnext = ~0;
vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
stmp += vnext, dst += vnext) {
/* Read in a VNEED structure. */
s = stmp;
/* Read an Elf64_Verneed */
READ_HALF(s,t.vn_version);
READ_HALF(s,t.vn_cnt);
READ_WORD(s,t.vn_file);
READ_WORD(s,t.vn_aux);
READ_WORD(s,t.vn_next);
/**/
if (byteswap) {
/* Swap an Elf64_Verneed */
SWAP_HALF(t.vn_version);
SWAP_HALF(t.vn_cnt);
SWAP_WORD(t.vn_file);
SWAP_WORD(t.vn_aux);
SWAP_WORD(t.vn_next);
/**/
}
dp = (Elf64_Verneed *) (uintptr_t) dst;
*dp = t;
aux = t.vn_aux;
cnt = t.vn_cnt;
vnext = t.vn_next;
if (aux < vermsz)
return (0);
/* Process AUX entries. */
for (anext = ~0, dstaux = dst + aux, srcaux = stmp + aux;
cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
srcaux + auxfsz <= srcend;
dstaux += anext, srcaux += anext, cnt--) {
s = srcaux;
/* Read an Elf64_Vernaux */
READ_WORD(s,a.vna_hash);
READ_HALF(s,a.vna_flags);
READ_HALF(s,a.vna_other);
READ_WORD(s,a.vna_name);
READ_WORD(s,a.vna_next);
/**/
if (byteswap) {
/* Swap an Elf64_Vernaux */
SWAP_WORD(a.vna_hash);
SWAP_HALF(a.vna_flags);
SWAP_HALF(a.vna_other);
SWAP_WORD(a.vna_name);
SWAP_WORD(a.vna_next);
/**/
}
anext = a.vna_next;
ap = ((Elf64_Vernaux *) (uintptr_t) dstaux);
*ap = a;
}
if (anext || cnt)
return (0);
}
if (vnext)
return (0);
return (1);
}
/*]*/
/*
* Sections of type ELF_T_BYTE are never byteswapped, consequently a
* simple memcpy suffices for both directions of conversion.
*/
static int
_libelf_cvt_BYTE_tox(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
(void) byteswap;
if (dsz < count)
return (0);
if (dst != src)
(void) memcpy(dst, src, count);
return (1);
}
/*
* Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit
* words. Bloom filter data comes next, followed by hash buckets and the
* hash chain.
*
* Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit
* wide on ELFCLASS32 objects. The other objects in this section are 32
* bits wide.
*
* Argument srcsz denotes the number of bytes to be converted. In the
* 32-bit case we need to translate srcsz to a count of 32-bit words.
*/
static int
_libelf_cvt_GNUHASH32_tom(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t),
byteswap));
}
static int
_libelf_cvt_GNUHASH32_tof(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t),
byteswap));
}
static int
_libelf_cvt_GNUHASH64_tom(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
size_t sz;
uint64_t t64, *bloom64;
Elf_GNU_Hash_Header *gh;
uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32;
uint32_t *buckets, *chains;
sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */
if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz)
return (0);
/* Read in the section header and byteswap if needed. */
READ_WORD(src, nbuckets);
READ_WORD(src, symndx);
READ_WORD(src, maskwords);
READ_WORD(src, shift2);
srcsz -= sz;
if (byteswap) {
SWAP_WORD(nbuckets);
SWAP_WORD(symndx);
SWAP_WORD(maskwords);
SWAP_WORD(shift2);
}
/* Check source buffer and destination buffer sizes. */
sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t);
if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header))
return (0);
gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst;
gh->gh_nbuckets = nbuckets;
gh->gh_symndx = symndx;
gh->gh_maskwords = maskwords;
gh->gh_shift2 = shift2;
dsz -= sizeof(Elf_GNU_Hash_Header);
dst += sizeof(Elf_GNU_Hash_Header);
bloom64 = (uint64_t *) (uintptr_t) dst;
/* Copy bloom filter data. */
for (n = 0; n < maskwords; n++) {
READ_XWORD(src, t64);
if (byteswap)
SWAP_XWORD(t64);
bloom64[n] = t64;
}
/* The hash buckets follows the bloom filter. */
dst += maskwords * sizeof(uint64_t);
buckets = (uint32_t *) (uintptr_t) dst;
for (n = 0; n < nbuckets; n++) {
READ_WORD(src, t32);
if (byteswap)
SWAP_WORD(t32);
buckets[n] = t32;
}
dst += nbuckets * sizeof(uint32_t);
/* The hash chain follows the hash buckets. */
dsz -= sz;
srcsz -= sz;
if (dsz < srcsz) /* Destination lacks space. */
return (0);
nchains = srcsz / sizeof(uint32_t);
chains = (uint32_t *) (uintptr_t) dst;
for (n = 0; n < nchains; n++) {
READ_WORD(src, t32);
if (byteswap)
SWAP_WORD(t32);
*chains++ = t32;
}
return (1);
}
static int
_libelf_cvt_GNUHASH64_tof(char *dst, size_t dsz, char *src, size_t srcsz,
int byteswap)
{
uint32_t *s32;
size_t sz, hdrsz;
uint64_t *s64, t64;
Elf_GNU_Hash_Header *gh;
uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32;
hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */
if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header))
return (0);
gh = (Elf_GNU_Hash_Header *) (uintptr_t) src;
t0 = nbuckets = gh->gh_nbuckets;
t1 = gh->gh_symndx;
t2 = maskwords = gh->gh_maskwords;
t3 = gh->gh_shift2;
src += sizeof(Elf_GNU_Hash_Header);
srcsz -= sizeof(Elf_GNU_Hash_Header);
dsz -= hdrsz;
sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords *
sizeof(uint64_t);
if (srcsz < sz || dsz < sz)
return (0);
/* Write out the header. */
if (byteswap) {
SWAP_WORD(t0);
SWAP_WORD(t1);
SWAP_WORD(t2);
SWAP_WORD(t3);
}
WRITE_WORD(dst, t0);
WRITE_WORD(dst, t1);
WRITE_WORD(dst, t2);
WRITE_WORD(dst, t3);
/* Copy the bloom filter and the hash table. */
s64 = (uint64_t *) (uintptr_t) src;
for (n = 0; n < maskwords; n++) {
t64 = *s64++;
if (byteswap)
SWAP_XWORD(t64);
WRITE_WORD64(dst, t64);
}
s32 = (uint32_t *) s64;
for (n = 0; n < nbuckets; n++) {
t32 = *s32++;
if (byteswap)
SWAP_WORD(t32);
WRITE_WORD(dst, t32);
}
srcsz -= sz;
dsz -= sz;
/* Copy out the hash chains. */
if (dsz < srcsz)
return (0);
nchains = srcsz / sizeof(uint32_t);
for (n = 0; n < nchains; n++) {
t32 = *s32++;
if (byteswap)
SWAP_WORD(t32);
WRITE_WORD(dst, t32);
}
return (1);
}
/*
* Elf_Note structures comprise a fixed size header followed by variable
* length strings. The fixed size header needs to be byte swapped, but
* not the strings.
*
* Argument count denotes the total number of bytes to be converted.
* The destination buffer needs to be at least count bytes in size.
*/
static int
_libelf_cvt_NOTE_tom(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz, hdrsz;
if (dsz < count) /* Destination buffer is too small. */
return (0);
hdrsz = 3 * sizeof(uint32_t);
if (count < hdrsz) /* Source too small. */
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count);
return (1);
}
/* Process all notes in the section. */
while (count > hdrsz) {
/* Read the note header. */
READ_WORD(src, namesz);
READ_WORD(src, descsz);
READ_WORD(src, type);
/* Translate. */
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
/* Copy out the translated note header. */
en = (Elf_Note *) (uintptr_t) dst;
en->n_namesz = namesz;
en->n_descsz = descsz;
en->n_type = type;
dsz -= sizeof(Elf_Note);
dst += sizeof(Elf_Note);
count -= hdrsz;
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz || dsz < sz) /* Buffers are too small. */
return (0);
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
dsz -= sz;
}
return (1);
}
static int
_libelf_cvt_NOTE_tof(char *dst, size_t dsz, char *src, size_t count,
int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz;
if (dsz < count)
return (0);
if (!byteswap) {
(void) memcpy(dst, src, count);
return (1);
}
while (count > sizeof(Elf_Note)) {
en = (Elf_Note *) (uintptr_t) src;
namesz = en->n_namesz;
descsz = en->n_descsz;
type = en->n_type;
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
WRITE_WORD(dst, namesz);
WRITE_WORD(dst, descsz);
WRITE_WORD(dst, type);
src += sizeof(Elf_Note);
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz)
sz = count;
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
}
return (1);
}
struct converters {
int (*tof32)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tom32)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tof64)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
int (*tom64)(char *dst, size_t dsz, char *src, size_t cnt,
int byteswap);
};
static struct converters cvt[ELF_T_NUM] = {
/*[*/
[ELF_T_ADDR] = {
.tof32 = _libelf_cvt_ADDR32_tof,
.tom32 = _libelf_cvt_ADDR32_tom,
.tof64 = _libelf_cvt_ADDR64_tof,
.tom64 = _libelf_cvt_ADDR64_tom
},
[ELF_T_CAP] = {
.tof32 = _libelf_cvt_CAP32_tof,
.tom32 = _libelf_cvt_CAP32_tom,
.tof64 = _libelf_cvt_CAP64_tof,
.tom64 = _libelf_cvt_CAP64_tom
},
[ELF_T_DYN] = {
.tof32 = _libelf_cvt_DYN32_tof,
.tom32 = _libelf_cvt_DYN32_tom,
.tof64 = _libelf_cvt_DYN64_tof,
.tom64 = _libelf_cvt_DYN64_tom
},
[ELF_T_EHDR] = {
.tof32 = _libelf_cvt_EHDR32_tof,
.tom32 = _libelf_cvt_EHDR32_tom,
.tof64 = _libelf_cvt_EHDR64_tof,
.tom64 = _libelf_cvt_EHDR64_tom
},
[ELF_T_GNUHASH] = {
.tof32 = _libelf_cvt_GNUHASH32_tof,
.tom32 = _libelf_cvt_GNUHASH32_tom,
.tof64 = _libelf_cvt_GNUHASH64_tof,
.tom64 = _libelf_cvt_GNUHASH64_tom
},
[ELF_T_HALF] = {
.tof32 = _libelf_cvt_HALF_tof,
.tom32 = _libelf_cvt_HALF_tom,
.tof64 = _libelf_cvt_HALF_tof,
.tom64 = _libelf_cvt_HALF_tom
},
[ELF_T_LWORD] = {
.tof32 = _libelf_cvt_LWORD_tof,
.tom32 = _libelf_cvt_LWORD_tom,
.tof64 = _libelf_cvt_LWORD_tof,
.tom64 = _libelf_cvt_LWORD_tom
},
[ELF_T_MOVE] = {
.tof32 = _libelf_cvt_MOVE32_tof,
.tom32 = _libelf_cvt_MOVE32_tom,
.tof64 = _libelf_cvt_MOVE64_tof,
.tom64 = _libelf_cvt_MOVE64_tom
},
[ELF_T_OFF] = {
.tof32 = _libelf_cvt_OFF32_tof,
.tom32 = _libelf_cvt_OFF32_tom,
.tof64 = _libelf_cvt_OFF64_tof,
.tom64 = _libelf_cvt_OFF64_tom
},
[ELF_T_PHDR] = {
.tof32 = _libelf_cvt_PHDR32_tof,
.tom32 = _libelf_cvt_PHDR32_tom,
.tof64 = _libelf_cvt_PHDR64_tof,
.tom64 = _libelf_cvt_PHDR64_tom
},
[ELF_T_REL] = {
.tof32 = _libelf_cvt_REL32_tof,
.tom32 = _libelf_cvt_REL32_tom,
.tof64 = _libelf_cvt_REL64_tof,
.tom64 = _libelf_cvt_REL64_tom
},
[ELF_T_RELA] = {
.tof32 = _libelf_cvt_RELA32_tof,
.tom32 = _libelf_cvt_RELA32_tom,
.tof64 = _libelf_cvt_RELA64_tof,
.tom64 = _libelf_cvt_RELA64_tom
},
[ELF_T_SHDR] = {
.tof32 = _libelf_cvt_SHDR32_tof,
.tom32 = _libelf_cvt_SHDR32_tom,
.tof64 = _libelf_cvt_SHDR64_tof,
.tom64 = _libelf_cvt_SHDR64_tom
},
[ELF_T_SWORD] = {
.tof32 = _libelf_cvt_SWORD_tof,
.tom32 = _libelf_cvt_SWORD_tom,
.tof64 = _libelf_cvt_SWORD_tof,
.tom64 = _libelf_cvt_SWORD_tom
},
[ELF_T_SXWORD] = {
.tof32 = NULL,
.tom32 = NULL,
.tof64 = _libelf_cvt_SXWORD_tof,
.tom64 = _libelf_cvt_SXWORD_tom
},
[ELF_T_SYMINFO] = {
.tof32 = _libelf_cvt_SYMINFO32_tof,
.tom32 = _libelf_cvt_SYMINFO32_tom,
.tof64 = _libelf_cvt_SYMINFO64_tof,
.tom64 = _libelf_cvt_SYMINFO64_tom
},
[ELF_T_SYM] = {
.tof32 = _libelf_cvt_SYM32_tof,
.tom32 = _libelf_cvt_SYM32_tom,
.tof64 = _libelf_cvt_SYM64_tof,
.tom64 = _libelf_cvt_SYM64_tom
},
[ELF_T_VDEF] = {
.tof32 = _libelf_cvt_VDEF32_tof,
.tom32 = _libelf_cvt_VDEF32_tom,
.tof64 = _libelf_cvt_VDEF64_tof,
.tom64 = _libelf_cvt_VDEF64_tom
},
[ELF_T_VNEED] = {
.tof32 = _libelf_cvt_VNEED32_tof,
.tom32 = _libelf_cvt_VNEED32_tom,
.tof64 = _libelf_cvt_VNEED64_tof,
.tom64 = _libelf_cvt_VNEED64_tom
},
[ELF_T_WORD] = {
.tof32 = _libelf_cvt_WORD_tof,
.tom32 = _libelf_cvt_WORD_tom,
.tof64 = _libelf_cvt_WORD_tof,
.tom64 = _libelf_cvt_WORD_tom
},
[ELF_T_XWORD] = {
.tof32 = NULL,
.tom32 = NULL,
.tof64 = _libelf_cvt_XWORD_tof,
.tom64 = _libelf_cvt_XWORD_tom
},
/*]*/
/*
* Types that need hand-coded converters follow.
*/
[ELF_T_BYTE] = {
.tof32 = _libelf_cvt_BYTE_tox,
.tom32 = _libelf_cvt_BYTE_tox,
.tof64 = _libelf_cvt_BYTE_tox,
.tom64 = _libelf_cvt_BYTE_tox
},
[ELF_T_NOTE] = {
.tof32 = _libelf_cvt_NOTE_tof,
.tom32 = _libelf_cvt_NOTE_tom,
.tof64 = _libelf_cvt_NOTE_tof,
.tom64 = _libelf_cvt_NOTE_tom
}
};
int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass))
(char *_dst, size_t dsz, char *_src, size_t _cnt, int _byteswap)
{
assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
if (t >= ELF_T_NUM ||
(elfclass != ELFCLASS32 && elfclass != ELFCLASS64) ||
(direction != ELF_TOFILE && direction != ELF_TOMEMORY))
return (NULL);
return ((elfclass == ELFCLASS32) ?
(direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
(direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
}