632 lines
26 KiB
C++

#ifdef _WIN32
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <fstream>
#include <filesystem>
#include "rt64_layer.h"
#include "rt64_render_hooks.h"
#include "rt64_render_interface_builders.h"
#include "RmlUi/Core.h"
#include "RmlUi/Debugger.h"
#include "RmlUi_Platform_SDL.h"
#include "InterfaceVS.hlsl.spirv.h"
#include "InterfacePS.hlsl.spirv.h"
#ifdef _WIN32
# include "InterfaceVS.hlsl.dxil.h"
# include "InterfacePS.hlsl.dxil.h"
#endif
#ifdef _WIN32
# define GET_SHADER_BLOB(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? name##BlobSPIRV : \
(format) == RT64::RenderShaderFormat::DXIL ? name##BlobDXIL : nullptr)
# define GET_SHADER_SIZE(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? std::size(name##BlobSPIRV) : \
(format) == RT64::RenderShaderFormat::DXIL ? std::size(name##BlobDXIL) : 0)
#else
# define GET_SHADER_BLOB(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? name##BlobSPIRV : nullptr)
# define GET_SHADER_SIZE(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? std::size(name##BlobSPIRV) : 0)
#endif
struct UIRenderContext {
RT64::RenderInterface* interface;
RT64::RenderDevice* device;
};
// TODO deduplicate from rt64_common.h
void CalculateTextureRowWidthPadding(uint32_t rowPitch, uint32_t &rowWidth, uint32_t &rowPadding) {
const int RowMultiple = 256;
rowWidth = rowPitch;
rowPadding = (rowWidth % RowMultiple) ? RowMultiple - (rowWidth % RowMultiple) : 0;
rowWidth += rowPadding;
}
struct RmlRenderInterfaceHeapBase : public RT64::RenderDescriptorHeapBase {
uint32_t gSampler;
uint32_t gTexture;
RmlRenderInterfaceHeapBase(const RT64::RenderSampler* linear_sampler) {
assert(linear_sampler != nullptr);
builder.begin();
builder.beginSet();
gSampler = builder.addImmutableSampler(1, linear_sampler);
gTexture = builder.addTexture(2);
builder.endSet();
builder.end();
}
};
struct RmlPushConstants {
Rml::Matrix4f transform;
Rml::Vector2f translation;
};
struct TextureHandle {
std::unique_ptr<RT64::RenderTexture> texture;
std::unique_ptr<RT64::RenderDescriptorHeap> heap;
};
std::vector<char> read_file(const std::filesystem::path& filepath) {
std::vector<char> ret{};
std::ifstream input_file{ filepath, std::ios::binary };
if (!input_file) {
return ret;
}
input_file.seekg(0, std::ios::end);
std::streampos filesize = input_file.tellg();
input_file.seekg(0, std::ios::beg);
ret.resize(filesize);
input_file.read(ret.data(), filesize);
return ret;
}
template <typename T>
T from_bytes_le(const char* input) {
return *reinterpret_cast<const T*>(input);
}
class RmlRenderInterface_RT64 : public Rml::RenderInterface {
static constexpr uint32_t per_frame_descriptor_set = 0;
static constexpr uint32_t per_draw_descriptor_set = 1;
static constexpr uint32_t initial_upload_buffer_size = 1024 * 1024;
static constexpr uint32_t initial_vertex_buffer_size = 512 * sizeof(Rml::Vertex);
static constexpr uint32_t initial_index_buffer_size = 1024 * sizeof(int);
static constexpr RT64::RenderFormat RmlTextureFormat = RT64::RenderFormat::B8G8R8A8_UNORM;
static constexpr uint32_t RmlTextureFormatBytesPerPixel = RenderFormatSize(RmlTextureFormat);
struct UIRenderContext* render_context_;
int scissor_x_ = 0;
int scissor_y_ = 0;
int scissor_width_ = 0;
int scissor_height_ = 0;
Rml::Matrix4f projection_mtx_ = Rml::Matrix4f::Identity();
Rml::Matrix4f transform_ = Rml::Matrix4f::Identity();
Rml::Matrix4f mvp_ = Rml::Matrix4f::Identity();
std::unordered_map<Rml::TextureHandle, TextureHandle> textures_{};
Rml::TextureHandle texture_count_ = 0;
std::unique_ptr<RT64::RenderBuffer> upload_buffer_{};
std::unique_ptr<RT64::RenderBuffer> vertex_buffer_{};
std::unique_ptr<RT64::RenderBuffer> index_buffer_{};
std::unique_ptr<RT64::RenderSampler> nearestSampler_{};
std::unique_ptr<RT64::RenderSampler> linearSampler_{};
std::unique_ptr<RT64::RenderShader> vertex_shader_{};
std::unique_ptr<RT64::RenderShader> pixel_shader_{};
std::unique_ptr<RmlRenderInterfaceHeapBase> heap_base_{};
std::unique_ptr<RT64::RenderPipelineLayout> layout_{};
std::unique_ptr<RT64::RenderPipeline> pipeline_{};
uint32_t upload_buffer_size_ = 0;
uint32_t upload_buffer_bytes_used_ = 0;
uint8_t* upload_buffer_mapped_data_ = nullptr;
uint32_t vertex_buffer_size_ = 0;
uint32_t index_buffer_size_ = 0;
RT64::RenderInputSlot vertex_slot_{ 0, sizeof(Rml::Vertex) };
RT64::RenderCommandList* list_ = nullptr;
bool scissor_enabled_ = false;
std::vector<std::unique_ptr<RT64::RenderBuffer>> stale_buffers_{};
public:
RmlRenderInterface_RT64(struct UIRenderContext* render_context) {
render_context_ = render_context;
// Create the texture upload buffer, vertex buffer and index buffer
resize_upload_buffer(initial_upload_buffer_size, false);
resize_vertex_buffer(initial_vertex_buffer_size);
resize_index_buffer(initial_index_buffer_size);
// Describe the vertex format
std::vector<RT64::RenderInputElement> vertex_elements{};
vertex_elements.emplace_back(RT64::RenderInputElement{ "POSITION", 0, 0, RT64::RenderFormat::R32G32_FLOAT, 0, offsetof(Rml::Vertex, position) });
vertex_elements.emplace_back(RT64::RenderInputElement{ "COLOR", 0, 1, RT64::RenderFormat::R8G8B8A8_UNORM, 0, offsetof(Rml::Vertex, colour) });
vertex_elements.emplace_back(RT64::RenderInputElement{ "TEXCOORD", 0, 2, RT64::RenderFormat::R32G32_FLOAT, 0, offsetof(Rml::Vertex, tex_coord) });
// Create a nearest sampler and a linear sampler
RT64::RenderSamplerDesc samplerDesc;
samplerDesc.minFilter = RT64::RenderFilter::NEAREST;
samplerDesc.magFilter = RT64::RenderFilter::NEAREST;
samplerDesc.addressU = RT64::RenderTextureAddressMode::CLAMP;
samplerDesc.addressV = RT64::RenderTextureAddressMode::CLAMP;
samplerDesc.addressW = RT64::RenderTextureAddressMode::CLAMP;
nearestSampler_ = render_context->device->createSampler(samplerDesc);
samplerDesc.minFilter = RT64::RenderFilter::LINEAR;
samplerDesc.magFilter = RT64::RenderFilter::LINEAR;
linearSampler_ = render_context->device->createSampler(samplerDesc);
// Create the shaders
RT64::RenderShaderFormat shaderFormat = render_context->interface->getCapabilities().shaderFormat;
vertex_shader_ = render_context->device->createShader(GET_SHADER_BLOB(InterfaceVS, shaderFormat), GET_SHADER_SIZE(InterfaceVS, shaderFormat), "VSMain", shaderFormat);
pixel_shader_ = render_context->device->createShader(GET_SHADER_BLOB(InterfacePS, shaderFormat), GET_SHADER_SIZE(InterfacePS, shaderFormat), "PSMain", shaderFormat);
// Create the descriptor heap
heap_base_ = std::make_unique<RmlRenderInterfaceHeapBase>(linearSampler_.get());
// Create the pipeline layout
RT64::RenderPipelineLayoutBuilder layout_builder{};
layout_builder.begin(false, true);
layout_builder.addPushConstant(0, 0, sizeof(RmlPushConstants), RT64::RenderShaderStageFlag::VERTEX);
// Add the descriptor set for descriptors changed once per frame.
layout_builder.addDescriptorSetsFromHeap(heap_base_->builder);
layout_builder.end();
layout_ = layout_builder.create(render_context->device);
// Create the pipeline description
RT64::RenderGraphicsPipelineDesc pipeline_desc{};
pipeline_desc.renderTargetBlend[0] = RT64::RenderBlendDesc::AlphaBlend();
pipeline_desc.renderTargetFormat[0] = RT64::RenderFormat::B8G8R8A8_UNORM; // TODO: Use whatever format the swap chain was created with.
pipeline_desc.renderTargetCount = 1;
pipeline_desc.cullMode = RT64::RenderCullMode::NONE;
pipeline_desc.inputSlots = &vertex_slot_;
pipeline_desc.inputSlotsCount = 1;
pipeline_desc.inputElements = vertex_elements.data();
pipeline_desc.inputElementsCount = uint32_t(vertex_elements.size());
pipeline_desc.pipelineLayout = layout_.get();
pipeline_desc.primitiveTopology = RT64::RenderPrimitiveTopology::TRIANGLE_LIST;
pipeline_desc.vertexShader = vertex_shader_.get();
pipeline_desc.pixelShader = pixel_shader_.get();
pipeline_ = render_context->device->createGraphicsPipeline(pipeline_desc);
}
void resize_upload_buffer(uint32_t new_size, bool map = true) {
// Unmap the upload buffer if it's mapped
if (upload_buffer_mapped_data_ != nullptr) {
upload_buffer_->unmap();
}
// If there's already an upload buffer, move it into the stale buffers so it persists until the start of next frame.
if (upload_buffer_) {
stale_buffers_.emplace_back(std::move(upload_buffer_));
}
// Create the new upload buffer, update the size and map it.
upload_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::UploadBuffer(new_size));
upload_buffer_size_ = new_size;
upload_buffer_bytes_used_ = 0;
if (map) {
upload_buffer_mapped_data_ = reinterpret_cast<uint8_t*>(upload_buffer_->map());
}
else {
upload_buffer_mapped_data_ = nullptr;
}
}
uint32_t allocate_upload_data(uint32_t num_bytes) {
// Check if there's enough remaining room in the upload buffer to allocate the requested bytes.
uint32_t total_bytes = num_bytes + upload_buffer_bytes_used_;
if (total_bytes > upload_buffer_size_) {
// There isn't, so mark the current upload buffer as stale and allocate a new one with 50% more space than the required amount.
resize_upload_buffer(total_bytes + total_bytes / 2);
}
// Record the current end of the upload buffer to return.
uint32_t offset = upload_buffer_bytes_used_;
// Bump the upload buffer's end forward by the number of bytes allocated.
upload_buffer_bytes_used_ += num_bytes;
return offset;
}
uint32_t allocate_upload_data_aligned(uint32_t num_bytes, uint32_t alignment) {
uint32_t padding_bytes = ((upload_buffer_bytes_used_ + alignment - 1) / alignment) * alignment - upload_buffer_bytes_used_;
return allocate_upload_data(padding_bytes + num_bytes) + padding_bytes;
}
void resize_vertex_buffer(uint32_t new_size) {
if (vertex_buffer_) {
stale_buffers_.emplace_back(std::move(vertex_buffer_));
}
vertex_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::VertexBuffer(new_size, RT64::RenderHeapType::DEFAULT));
vertex_buffer_size_ = new_size;
}
void resize_index_buffer(uint32_t new_size) {
if (index_buffer_) {
stale_buffers_.emplace_back(std::move(index_buffer_));
}
index_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::IndexBuffer(new_size, RT64::RenderHeapType::DEFAULT));
index_buffer_size_ = new_size;
}
void RenderGeometry(Rml::Vertex* vertices, int num_vertices, int* indices, int num_indices, Rml::TextureHandle texture, const Rml::Vector2f& translation) override {
uint32_t vert_size_bytes = num_vertices * sizeof(*vertices);
uint32_t index_size_bytes = num_indices * sizeof(*indices);
uint32_t total_bytes = vert_size_bytes + index_size_bytes;
uint32_t index_bytes_start = vert_size_bytes;
if (textures_.size() == 0) {
// Create a 1x1 pixel white texture as the first handle
Rml::byte white_pixel[] = { 255, 255, 255, 255 };
Rml::TextureHandle dummy_handle;
GenerateTexture(dummy_handle, white_pixel, Rml::Vector2i{ 1,1 });
}
uint32_t upload_buffer_offset = allocate_upload_data(total_bytes);
//uint32_t upload_buffer_offset = 0;
//std::unique_ptr<RT64::RenderBuffer> cur_upload_buffer = render_context_->device->createBuffer(RT64::RenderBufferDesc::UploadBuffer(total_bytes));
if (vert_size_bytes > vertex_buffer_size_) {
resize_vertex_buffer(vert_size_bytes + vert_size_bytes / 2);
}
if (index_size_bytes > index_buffer_size_) {
resize_index_buffer(index_size_bytes + index_size_bytes / 2);
}
// Copy the vertex and index data into the mapped upload buffer.
memcpy(upload_buffer_mapped_data_ + upload_buffer_offset, vertices, vert_size_bytes);
memcpy(upload_buffer_mapped_data_ + upload_buffer_offset + vert_size_bytes, indices, index_size_bytes);
//uint8_t* buffer_data = reinterpret_cast<uint8_t*>(cur_upload_buffer->map());
//memcpy(buffer_data, vertices, vert_size_bytes);
//memcpy(buffer_data + vert_size_bytes, indices, index_size_bytes);
//cur_upload_buffer->unmap();
// Prepare the vertex and index buffers for being copied to.
RT64::RenderBufferBarrier copy_barriers[] = {
RT64::RenderBufferBarrier::Transition(vertex_buffer_.get(), RT64::RenderBufferState::COPY_DEST),
RT64::RenderBufferBarrier::Transition(index_buffer_.get(), RT64::RenderBufferState::COPY_DEST)
};
list_->barriers(copy_barriers, uint32_t(std::size(copy_barriers)));
// Copy from the upload buffer to the vertex and index buffers.
list_->copyBufferRegion(vertex_buffer_->at(0), upload_buffer_->at(upload_buffer_offset), vert_size_bytes);
list_->copyBufferRegion(index_buffer_->at(0), upload_buffer_->at(upload_buffer_offset + index_bytes_start), index_size_bytes);
//list_->copyBufferRegion(vertex_buffer_->at(0), cur_upload_buffer->at(0), vert_size_bytes);
//list_->copyBufferRegion(index_buffer_->at(0), cur_upload_buffer->at(0 + index_bytes_start), index_size_bytes);
//stale_buffers_.emplace_back(std::move(cur_upload_buffer));
// Prepare the vertex and index buffers for being used for rendering.
RT64::RenderBufferBarrier usage_barriers[] = {
RT64::RenderBufferBarrier::Transition(vertex_buffer_.get(), RT64::RenderBufferState::VERTEX_AND_CONSTANT_BUFFER),
RT64::RenderBufferBarrier::Transition(index_buffer_.get(), RT64::RenderBufferState::INDEX_BUFFER)
};
list_->barriers(usage_barriers, uint32_t(std::size(usage_barriers)));
// TODO set scissor, viewport
//if (scissor_enabled_) {
list_->setViewports(RT64::RenderViewport{ 0, 0, float(scissor_width_), float(scissor_height_) });
list_->setScissors(RT64::RenderRect{ 0, 0, scissor_width_, scissor_height_ });
//}
RT64::RenderIndexBufferView index_view{index_buffer_->at(0), index_size_bytes, RT64::RenderFormat::R32_UINT};
list_->setIndexBuffer(&index_view);
RT64::RenderVertexBufferView vertex_view{vertex_buffer_->at(0), vert_size_bytes};
list_->setVertexBuffers(0, &vertex_view, 1, &vertex_slot_);
list_->setGraphicsDescriptorHeap(textures_[texture].heap.get());
RmlPushConstants constants{
.transform = mvp_,
.translation = translation
};
list_->setGraphicsPushConstants(0, &constants);
list_->drawIndexedInstanced(num_indices, 1, 0, 0, 0);
}
void EnableScissorRegion(bool enable) override {
scissor_enabled_ = enable;
}
void SetScissorRegion(int x, int y, int width, int height) override {
scissor_x_ = x;
scissor_y_ = y;
scissor_width_ = width;
scissor_height_ = height;
}
bool LoadTexture(Rml::TextureHandle& texture_handle, Rml::Vector2i& texture_dimensions, const Rml::String& source) override {
std::filesystem::path image_path{ source.c_str() };
if (image_path.extension() == ".tga") {
printf("Opening TGA image: %s\n", image_path.u8string().c_str());
std::vector<char> file_data = read_file(image_path);
if (file_data.empty()) {
printf(" File not found or empty\n");
return false;
}
// Make sure ID length is zero
if (file_data[0] != 0) {
printf(" Nonzero ID length not supported\n");
return false;
}
// Make sure no color map is used
if (file_data[1] != 0) {
printf(" Color maps not supported\n");
return false;
}
// Make sure the image is uncompressed
if (file_data[2] != 2) {
printf(" Only uncompressed tga files supported\n");
return false;
}
uint16_t origin_x = from_bytes_le<uint16_t>(file_data.data() + 8);
uint16_t origin_y = from_bytes_le<uint16_t>(file_data.data() + 10);
uint16_t size_x = from_bytes_le<uint16_t>(file_data.data() + 12);
uint16_t size_y = from_bytes_le<uint16_t>(file_data.data() + 14);
// Nonzero origin not supported
if (origin_x != 0 || origin_y != 0) {
printf(" Nonzero origin not supported\n");
return false;
}
uint8_t pixel_depth = file_data[16];
if (pixel_depth != 32) {
printf(" Only 32bpp images supported\n");
return false;
}
uint8_t image_descriptor = file_data[17];
if ((image_descriptor & 0b1111) != 8) {
printf(" Only 8bpp alpha supported\n");
}
if (image_descriptor & 0b110000) {
printf(" Only bottom-to-top, left-to-right pixel order supported\n");
}
texture_dimensions.x = size_x;
texture_dimensions.y = size_y;
create_texture(texture_handle, reinterpret_cast<const Rml::byte*>(file_data.data() + 18), texture_dimensions, true);
return true;
}
return false;
}
bool GenerateTexture(Rml::TextureHandle& texture_handle, const Rml::byte* source, const Rml::Vector2i& source_dimensions) override {
return create_texture(texture_handle, source, source_dimensions);
}
bool create_texture(Rml::TextureHandle& texture_handle, const Rml::byte* source, const Rml::Vector2i& source_dimensions, bool flip_y = false) {
texture_handle = texture_count_++;
std::unique_ptr<RT64::RenderTexture> texture =
render_context_->device->createTexture(RT64::RenderTextureDesc::Texture2D(source_dimensions.x, source_dimensions.y, 1, RmlTextureFormat));
if (texture != nullptr) {
uint32_t image_size_bytes = source_dimensions.x * source_dimensions.y * RmlTextureFormatBytesPerPixel;
// Calculate the texture padding for alignment purposes.
uint32_t row_pitch = source_dimensions.x * RmlTextureFormatBytesPerPixel;
uint32_t row_byte_width, row_byte_padding;
CalculateTextureRowWidthPadding(row_pitch, row_byte_width, row_byte_padding);
uint32_t row_width = row_byte_width / RmlTextureFormatBytesPerPixel;
// Calculate the real number of bytes to upload including padding.
uint32_t uploaded_size_bytes = row_byte_width * source_dimensions.y;
// Allocate room in the upload buffer for the uploaded data.
uint32_t upload_buffer_offset = allocate_upload_data_aligned(uploaded_size_bytes, 512);
// Copy the source data into the upload buffer.
uint8_t* dst_data = upload_buffer_mapped_data_ + upload_buffer_offset;
if (row_byte_padding == 0) {
// Copy row-by-row if the image is flipped.
if (flip_y) {
for (uint32_t row = 0; row < source_dimensions.y; row++) {
memcpy(dst_data + row_byte_width * (source_dimensions.y - row - 1), source + row_byte_width * row, row_byte_width);
}
}
// Directly copy if no padding is needed and the image isn't flipped.
else {
memcpy(dst_data, source, image_size_bytes);
}
}
// Otherwise pad each row as necessary.
else {
const Rml::byte *src_data = flip_y ? source + row_pitch * (source_dimensions.y - 1) : source;
uint32_t src_stride = flip_y ? -row_pitch : row_pitch;
size_t offset = 0;
for (uint32_t row = 0; row < source_dimensions.y; row++) { //(offset + increment) <= image_size_bytes) {
memcpy(dst_data, src_data, row_pitch);
src_data += src_stride;
offset += row_pitch;
dst_data += row_byte_width;
}
}
// Prepare the texture to be a destination for copying.
list_->barriers(
RT64::RenderTextureBarrier::Transition(texture.get(), RT64::RenderTextureState::COPY_DEST));
// Copy the upload buffer into the texture.
list_->copyTextureRegion(
RT64::RenderTextureCopyLocation::Subresource(texture.get()),
RT64::RenderTextureCopyLocation::PlacedFootprint(upload_buffer_.get(), RmlTextureFormat, source_dimensions.x, source_dimensions.y, 1, row_width, upload_buffer_offset));
// Prepare the texture for being read from a pixel shader.
list_->barriers(RT64::RenderTextureBarrier::Transition(texture.get(), RT64::RenderTextureState::PIXEL_SHADER_ACCESS));
// Create a descriptor heap with this texture in it.
std::unique_ptr<RT64::RenderDescriptorHeap> heap = heap_base_->builder.create(render_context_->device);
heap->setTexture(heap_base_->gTexture, 0, texture.get(), RT64::RenderTextureState::PIXEL_SHADER_ACCESS);
textures_.emplace(texture_handle, TextureHandle{ std::move(texture), std::move(heap) });
return true;
}
return false;
}
void ReleaseTexture(Rml::TextureHandle texture) override {
textures_.erase(texture);
}
void SetTransform(const Rml::Matrix4f* transform) override {
transform_ = transform ? *transform : Rml::Matrix4f::Identity();
recalculate_mvp();
}
void recalculate_mvp() {
mvp_ = projection_mtx_ * transform_;
}
void start(RT64::RenderCommandList* list, uint32_t image_width, uint32_t image_height) {
list_ = list;
list_->setPipeline(pipeline_.get());
list_->setGraphicsPipelineLayout(layout_.get());
projection_mtx_ = Rml::Matrix4f::ProjectOrtho(0.0f, static_cast<float>(image_width), static_cast<float>(image_height), 0.0f, -10000, 10000);
recalculate_mvp();
// The following code assumes command lists aren't double buffered.
// Clear out any stale buffers from the last command list.
stale_buffers_.clear();
// Reset and map the upload buffer.
upload_buffer_bytes_used_ = 0;
upload_buffer_mapped_data_ = reinterpret_cast<uint8_t*>(upload_buffer_->map());
}
void end(RT64::RenderCommandList* list) {
list_ = nullptr;
// Unmap the upload buffer if it's mapped.
if (upload_buffer_mapped_data_) {
upload_buffer_->unmap();
upload_buffer_mapped_data_ = nullptr;
}
}
};
struct {
struct UIRenderContext render;
struct {
SystemInterface_SDL system_interface;
std::unique_ptr<RmlRenderInterface_RT64> render_interface;
Rml::Context* context;
} rml;
} UIContext;
// TODO make this not be global
extern SDL_Window* window;
void init_hook(RT64::RenderInterface* interface, RT64::RenderDevice* device) {
printf("RT64 hook init\n");
UIContext.render.interface = interface;
UIContext.render.device = device;
// Setup RML
UIContext.rml.system_interface.SetWindow(window);
UIContext.rml.render_interface = std::make_unique<RmlRenderInterface_RT64>(&UIContext.render);
Rml::SetSystemInterface(&UIContext.rml.system_interface);
Rml::SetRenderInterface(UIContext.rml.render_interface.get());
Rml::Initialise();
int width, height;
SDL_GetWindowSizeInPixels(window, &width, &height);
UIContext.rml.context = Rml::CreateContext("main", Rml::Vector2i(width, height));
Rml::Debugger::Initialise(UIContext.rml.context);
{
const Rml::String directory = "assets/";
struct FontFace {
const char* filename;
bool fallback_face;
};
FontFace font_faces[] = {
{"LatoLatin-Regular.ttf", false},
{"LatoLatin-Italic.ttf", false},
{"LatoLatin-Bold.ttf", false},
{"LatoLatin-BoldItalic.ttf", false},
{"NotoEmoji-Regular.ttf", true},
};
for (const FontFace& face : font_faces) {
Rml::LoadFontFace(directory + face.filename, face.fallback_face);
}
}
if (Rml::ElementDocument* document = UIContext.rml.context->LoadDocument("assets/demo.rml")) {
document->Show();
}
}
void draw_hook(RT64::RenderCommandList* command_list, RT64::RenderTexture* swap_chain_texture) {
command_list->barriers(RT64::RenderTextureBarrier::Transition(swap_chain_texture, RT64::RenderTextureState::RENDER_TARGET));
// command_list->setGraphicsPipelineLayout(UIContext.render.layout.get());
// command_list->setPipeline(UIContext.render.pipeline.get());
// command_list->setIndexBuffer(&UIContext.render.index_buffer_view);
// command_list->drawIndexedInstanced(6, 1, 0, 0, 0);
// TODO process SDL events
int width, height;
SDL_GetWindowSizeInPixels(window, &width, &height);
UIContext.rml.render_interface->start(command_list, width, height);
UIContext.rml.context->Update();
UIContext.rml.context->Render();
UIContext.rml.render_interface->end(command_list);
}
void deinit_hook() {
}
void set_rt64_hooks() {
RT64::SetRenderHooks(init_hook, draw_hook, deinit_hook);
}