Zelda64Recomp/portultra/scheduler.cpp

381 lines
13 KiB
C++

#include <thread>
#include <queue>
#include <atomic>
#include <vector>
#include <variant>
#include <algorithm>
#include "blockingconcurrentqueue.h"
#include "multilibultra.hpp"
class OSThreadComparator {
public:
bool operator() (OSThread *a, OSThread *b) const {
return a->priority < b->priority;
}
};
class thread_queue_t : public std::priority_queue<OSThread*, std::vector<OSThread*>, OSThreadComparator> {
public:
// TODO comment this
bool remove(const OSThread* value) {
auto it = std::find(this->c.begin(), this->c.end(), value);
if (it == this->c.end()) {
return false;
}
// remove element and re-heap
this->c.erase(it);
std::make_heap(this->c.begin(), this->c.end(), this->comp);
return true;
}
void print() {
std::vector<OSThread*> backup = this->c;
debug_printf("[Scheduler] Scheduled Threads:\n");
while (!empty()) {
OSThread* t = top();
pop();
debug_printf(" %d: pri %d state %d\n", t->id, t->priority, t->state);
}
this->c = backup;
}
bool contains(OSThread* t) {
return std::find(this->c.begin(), this->c.end(), t) != this->c.end();
}
};
struct NotifySchedulerAction {
};
struct ScheduleThreadAction {
OSThread* t;
};
struct StopThreadAction {
OSThread* t;
};
struct CleanupThreadAction {
OSThread* t;
};
struct ReprioritizeThreadAction {
OSThread* t;
OSPri pri;
};
struct YieldedThreadAction {
OSThread* t;
};
struct BlockedThreadAction {
OSThread* t;
};
struct UnblockThreadAction {
OSThread* t;
};
using ThreadAction = std::variant<std::monostate, NotifySchedulerAction, ScheduleThreadAction, StopThreadAction, CleanupThreadAction, ReprioritizeThreadAction, YieldedThreadAction, BlockedThreadAction, UnblockThreadAction>;
static struct {
moodycamel::BlockingConcurrentQueue<ThreadAction> action_queue{};
OSThread* running_thread;
} scheduler_context{};
void handle_thread_queueing(thread_queue_t& running_thread_queue, const ScheduleThreadAction& action) {
OSThread* to_schedule = action.t;
debug_printf("[Scheduler] Scheduling thread %d\n", to_schedule->id);
// Do not schedule the thread if it's waiting on a message queue
if (to_schedule->state == OSThreadState::BLOCKED_STOPPED) {
to_schedule->state = OSThreadState::BLOCKED_PAUSED;
}
else {
to_schedule->state = OSThreadState::PAUSED;
running_thread_queue.push(to_schedule);
}
}
void handle_thread_stopping(thread_queue_t& running_thread_queue, const StopThreadAction& action) {
OSThread* to_stop = action.t;
debug_printf("[Scheduler] Stopping thread %d\n", to_stop->id);
running_thread_queue.remove(to_stop);
if (running_thread_queue.contains(to_stop)) {
assert(false);
}
if (to_stop->state == OSThreadState::BLOCKED_PAUSED) {
to_stop->state = OSThreadState::BLOCKED_STOPPED;
}
else {
to_stop->state = OSThreadState::STOPPED;
}
}
void handle_thread_cleanup(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread, const CleanupThreadAction& action) {
OSThread* to_cleanup = action.t;
debug_printf("[Scheduler] Destroying thread %d\n", to_cleanup->id);
running_thread_queue.remove(to_cleanup);
// If the cleaned up thread was the running thread, schedule a new one to run.
if (to_cleanup == cur_running_thread) {
// If there's a thread queued to run, set it as the new running thread.
if (!running_thread_queue.empty()) {
cur_running_thread = running_thread_queue.top();
}
// Otherwise, set the running thread to null so the next thread that can be run gets started.
else {
cur_running_thread = nullptr;
}
}
to_cleanup->context->host_thread.join();
delete to_cleanup->context;
to_cleanup->context = nullptr;
}
void handle_thread_reprioritization(thread_queue_t& running_thread_queue, const ReprioritizeThreadAction& action) {
OSThread* to_reprioritize = action.t;
OSPri pri = action.pri;
debug_printf("[Scheduler] Reprioritizing thread %d to %d\n", to_reprioritize->id, pri);
running_thread_queue.remove(to_reprioritize);
to_reprioritize->priority = pri;
running_thread_queue.push(to_reprioritize);
}
void handle_thread_yielded(thread_queue_t& running_thread_queue, const YieldedThreadAction& action) {
OSThread* yielded = action.t;
debug_printf("[Scheduler] Thread %d has yielded\n", yielded->id);
// Remove the yielded thread from the thread queue. If it was in the queue then re-add it so that it's placed after any other threads with the same priority.
if (running_thread_queue.remove(yielded)) {
running_thread_queue.push(yielded);
}
yielded->state = OSThreadState::PAUSED;
debug_printf("[Scheduler] Set thread %d to PAUSED\n", yielded->id);
}
void handle_thread_blocked(thread_queue_t& running_thread_queue, const BlockedThreadAction& action) {
OSThread* blocked = action.t;
debug_printf("[Scheduler] Thread %d has been blocked\n", blocked->id);
// Remove the thread from the running queue.
running_thread_queue.remove(blocked);
// Update the thread's state accordingly.
if (blocked->state == OSThreadState::STOPPED) {
blocked->state = OSThreadState::BLOCKED_STOPPED;
}
else if (blocked->state == OSThreadState::RUNNING) {
blocked->state = OSThreadState::BLOCKED_PAUSED;
}
else {
assert(false);
}
running_thread_queue.remove(blocked);
}
void handle_thread_unblocking(thread_queue_t& running_thread_queue, const UnblockThreadAction& action) {
OSThread* unblocked = action.t;
// Do nothing if this thread has already been unblocked.
if (unblocked->state != OSThreadState::BLOCKED_STOPPED && unblocked->state != OSThreadState::BLOCKED_PAUSED) {
return;
}
debug_printf("[Scheduler] Thread %d has been unblocked\n", unblocked->id);
// Update the thread's state accordingly.
if (unblocked->state == OSThreadState::BLOCKED_STOPPED) {
unblocked->state = OSThreadState::STOPPED;
}
else if (unblocked->state == OSThreadState::BLOCKED_PAUSED) {
// The thread wasn't stopped, so put it back in the running queue now that it's been unblocked.
unblocked->state = OSThreadState::PAUSED;
running_thread_queue.push(unblocked);
}
else {
assert(false);
}
}
void swap_running_thread(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread) {
if (running_thread_queue.size() > 0) {
OSThread* new_running_thread = running_thread_queue.top();
// If the running thread has changed or the running thread is paused, run the running thread
if (cur_running_thread != new_running_thread || (cur_running_thread && cur_running_thread->state != OSThreadState::RUNNING)) {
if (cur_running_thread && cur_running_thread->state == OSThreadState::RUNNING) {
debug_printf("[Scheduler] Need to wait for thread %d to pause itself\n", cur_running_thread->id);
return;
}
debug_printf("[Scheduler] Switching execution to thread %d (%d)\n", new_running_thread->id, new_running_thread->priority);
Multilibultra::resume_thread_impl(new_running_thread);
if (cur_running_thread) {
cur_running_thread->context->descheduled.store(true);
cur_running_thread->context->descheduled.notify_all();
}
cur_running_thread = new_running_thread;
} else if (cur_running_thread && cur_running_thread->state != OSThreadState::RUNNING) {
Multilibultra::resume_thread_impl(cur_running_thread);
}
} else {
cur_running_thread = nullptr;
}
}
void scheduler_func() {
thread_queue_t running_thread_queue{};
OSThread* cur_running_thread = nullptr;
Multilibultra::set_native_thread_name("Scheduler Thread");
Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::VeryHigh);
while (true) {
using namespace std::chrono_literals;
ThreadAction action{};
OSThread* old_running_thread = cur_running_thread;
//scheduler_context.action_queue.wait_dequeue_timed(action, 1ms);
scheduler_context.action_queue.wait_dequeue(action);
if (std::get_if<std::monostate>(&action) == nullptr) {
// Determine the action type and act on it
if (const auto* notify_action = std::get_if<NotifySchedulerAction>(&action)) {
// Nothing to do
}
else if (const auto* stop_action = std::get_if<StopThreadAction>(&action)) {
handle_thread_stopping(running_thread_queue, *stop_action);
}
else if (const auto* cleanup_action = std::get_if<CleanupThreadAction>(&action)) {
handle_thread_cleanup(running_thread_queue, cur_running_thread, *cleanup_action);
}
else if (const auto* schedule_action = std::get_if<ScheduleThreadAction>(&action)) {
handle_thread_queueing(running_thread_queue, *schedule_action);
}
else if (const auto* reprioritize_action = std::get_if<ReprioritizeThreadAction>(&action)) {
handle_thread_reprioritization(running_thread_queue, *reprioritize_action);
}
else if (const auto* yielded_action = std::get_if<YieldedThreadAction>(&action)) {
handle_thread_yielded(running_thread_queue, *yielded_action);
}
else if (const auto* blocked_action = std::get_if<BlockedThreadAction>(&action)) {
handle_thread_blocked(running_thread_queue, *blocked_action);
}
else if (const auto* unblock_action = std::get_if<UnblockThreadAction>(&action)) {
handle_thread_unblocking(running_thread_queue, *unblock_action);
}
}
running_thread_queue.print();
// Determine which thread to run, stopping the current running thread if necessary
swap_running_thread(running_thread_queue, cur_running_thread);
std::this_thread::yield();
if (old_running_thread != cur_running_thread && old_running_thread && cur_running_thread) {
debug_printf("[Scheduler] Swapped from Thread %d (%d) to Thread %d (%d)\n",
old_running_thread->id, old_running_thread->priority, cur_running_thread->id, cur_running_thread->priority);
}
}
}
extern "C" void do_yield() {
std::this_thread::yield();
}
namespace Multilibultra {
void init_scheduler() {
std::thread scheduler_thread{scheduler_func};
scheduler_thread.detach();
}
void schedule_running_thread(OSThread *t) {
debug_printf("[Thread] Queuing Thread %d to be scheduled\n", t->id);
scheduler_context.action_queue.enqueue(ScheduleThreadAction{t});
}
void swap_to_thread(RDRAM_ARG OSThread *to) {
OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Scheduling swap from thread %d to %d\n", self->id, to->id);
// Tell the scheduler that the swapped-to thread is ready to run and that this thread is yielding.
schedule_running_thread(to);
yield_self(PASS_RDRAM1);
// Wait for the scheduler to resume this thread.
wait_for_resumed(PASS_RDRAM1);
}
void reprioritize_thread(OSThread *t, OSPri pri) {
debug_printf("[Thread] Adjusting Thread %d priority to %d\n", t->id, pri);
scheduler_context.action_queue.enqueue(ReprioritizeThreadAction{t, pri});
}
void stop_thread(OSThread *t) {
debug_printf("[Thread] Queueing stopping of thread %d\n", t->id);
scheduler_context.action_queue.enqueue(StopThreadAction{t});
}
void Multilibultra::yield_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d yielding itself\n", self->id);
scheduler_context.action_queue.enqueue(YieldedThreadAction{ self });
}
void Multilibultra::block_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d has been blocked\n", self->id);
scheduler_context.action_queue.enqueue(BlockedThreadAction{ self });
}
void Multilibultra::unblock_thread(OSThread *t) {
debug_printf("[Thread] Unblocking thread %d\n", t->id);
scheduler_context.action_queue.enqueue(UnblockThreadAction{ t });
}
void halt_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d pausing itself\n", self->id);
stop_thread(self);
yield_self(PASS_RDRAM1);
wait_for_resumed(PASS_RDRAM1);
}
void cleanup_thread(OSThread *t) {
scheduler_context.action_queue.enqueue(CleanupThreadAction{t});
}
void notify_scheduler() {
scheduler_context.action_queue.enqueue(NotifySchedulerAction{});
}
void resume_thread_impl(OSThread* t) {
if (t->state == OSThreadState::PREEMPTED) {
// Nothing to do here
}
t->state = OSThreadState::RUNNING;
debug_printf("[Scheduler] Set thread %d to RUNNING\n", t->id);
t->context->scheduled.store(true);
t->context->scheduled.notify_all();
}
}
extern "C" void pause_self(uint8_t* rdram) {
Multilibultra::halt_self(rdram);
}