ras0219 aef838536e
[vcpkg] Track compiler information in ABI (#11654)
* [vcpkg] Refactor out abi_tags_from_pre_build_info()

* [vcpkg] Track Windows toolchain file in triplet hash

* [vcpkg] Improve error messages when constructing PreBuildInfo

* [vcpkg] Extract InstallPlanAction::BuildAbiInfo

* [vcpkg] Extract Build::EnvCache and private-impl VcpkgPaths

* [vcpkg] Enable compiler hash detection when binarycaching is enabled

* [vcpkg] Downgrade warning about missing ABI keys

When binarycaching is not enabled, this warning is spurious and provides no user value.

* [vcpkg] Cleanup

* [vcpkg] Refactor compiler tracking into triplet abi computation

Move several static global caches into VcpkgPaths/EnvCache.
Add feature flag 'compilertracking' to enable the new feature.

* [vcpkg] Refactor out PreBuildInfo::using_vcvars()

Move VcpkgTripletVar into build.cpp because it is not used outside that file.

* [vcpkg] Address some code analysis warnings

Co-authored-by: Robert Schumacher <roschuma@microsoft.com>
2020-06-22 14:14:36 -07:00

241 lines
6.1 KiB
C++

#pragma once
#include <algorithm>
#include <functional>
#include <map>
#include <mutex>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
namespace vcpkg::Util
{
template<class Container>
using ElementT =
std::remove_reference_t<decltype(*std::declval<typename std::remove_reference_t<Container>::iterator>())>;
namespace Vectors
{
template<class Container, class T = ElementT<Container>>
void append(std::vector<T>* augend, const Container& addend)
{
augend->insert(augend->end(), addend.begin(), addend.end());
}
template<class Vec, class Key>
bool contains(const Vec& container, const Key& item)
{
return std::find(container.begin(), container.end(), item) != container.end();
}
}
namespace Sets
{
template<class Container, class Key>
bool contains(const Container& container, const Key& item)
{
return container.find(item) != container.end();
}
}
namespace Maps
{
template<class K, class V1, class V2, class Func>
void transform_values(const std::unordered_map<K, V1>& container, std::unordered_map<K, V2>& output, Func func)
{
std::for_each(container.cbegin(), container.cend(), [&](const std::pair<const K, V1>& p) {
output[p.first] = func(p.second);
});
}
}
template<class Range, class Func>
using FmapOut = std::remove_reference_t<decltype(std::declval<Func&>()(*std::declval<Range>().begin()))>;
template<class Range, class Func, class Out = FmapOut<Range, Func>>
std::vector<Out> fmap(Range&& xs, Func&& f)
{
std::vector<Out> ret;
ret.reserve(xs.size());
for (auto&& x : xs)
ret.push_back(f(x));
return ret;
}
template<class Cont, class Func>
using FmapFlattenOut = std::decay_t<decltype(*begin(std::declval<Func>()(*begin(std::declval<Cont>()))))>;
template<class Cont, class Func, class Out = FmapFlattenOut<Cont, Func>>
std::vector<Out> fmap_flatten(Cont&& xs, Func&& f)
{
std::vector<Out> ret;
for (auto&& x : xs)
for (auto&& y : f(x))
ret.push_back(std::move(y));
return ret;
}
template<class Container, class Pred>
void erase_remove_if(Container& cont, Pred pred)
{
cont.erase(std::remove_if(cont.begin(), cont.end(), pred), cont.end());
}
template<class Container, class V>
auto find(Container&& cont, V&& v)
{
using std::begin;
using std::end;
return std::find(begin(cont), end(cont), v);
}
template<class Container, class Pred>
auto find_if(Container&& cont, Pred pred)
{
using std::begin;
using std::end;
return std::find_if(begin(cont), end(cont), pred);
}
template<class Container, class Pred>
auto find_if_not(Container&& cont, Pred pred)
{
using std::begin;
using std::end;
return std::find_if_not(begin(cont), end(cont), pred);
}
template<class K, class V, class Container, class Func>
void group_by(const Container& cont, std::map<K, std::vector<const V*>>* output, Func&& f)
{
for (const V& element : cont)
{
K key = f(element);
(*output)[key].push_back(&element);
}
}
template<class Range, class Comp = std::less<typename Range::value_type>>
void sort(Range& cont, Comp comp = Comp())
{
using std::begin;
using std::end;
std::sort(begin(cont), end(cont), comp);
}
template<class Range, class Pred>
bool any_of(Range&& rng, Pred pred)
{
return std::any_of(rng.begin(), rng.end(), std::move(pred));
}
template<class Range>
Range&& sort_unique_erase(Range&& cont)
{
using std::begin;
using std::end;
std::sort(begin(cont), end(cont));
cont.erase(std::unique(begin(cont), end(cont)), end(cont));
return std::forward<Range>(cont);
}
template<class Range1, class Range2>
bool all_equal(const Range1& r1, const Range2& r2)
{
using std::begin;
using std::end;
return std::equal(begin(r1), end(r1), begin(r2), end(r2));
}
template<class AssocContainer, class K = std::decay_t<decltype(begin(std::declval<AssocContainer>())->first)>>
std::vector<K> extract_keys(AssocContainer&& input_map)
{
return fmap(input_map, [](auto&& p) { return p.first; });
}
struct MoveOnlyBase
{
MoveOnlyBase() = default;
MoveOnlyBase(const MoveOnlyBase&) = delete;
MoveOnlyBase(MoveOnlyBase&&) = default;
MoveOnlyBase& operator=(const MoveOnlyBase&) = delete;
MoveOnlyBase& operator=(MoveOnlyBase&&) = default;
~MoveOnlyBase() = default;
};
struct ResourceBase
{
ResourceBase() = default;
ResourceBase(const ResourceBase&) = delete;
ResourceBase(ResourceBase&&) = delete;
ResourceBase& operator=(const ResourceBase&) = delete;
ResourceBase& operator=(ResourceBase&&) = delete;
~ResourceBase() = default;
};
template<class T>
struct LockGuardPtr;
template<class T>
struct LockGuarded
{
friend struct LockGuardPtr<T>;
LockGuardPtr<T> lock() { return *this; }
private:
std::mutex m_mutex;
T m_t;
};
template<class T>
struct LockGuardPtr
{
T& operator*() { return m_ptr; }
T* operator->() { return &m_ptr; }
T* get() { return &m_ptr; }
LockGuardPtr(LockGuarded<T>& sync) : m_lock(sync.m_mutex), m_ptr(sync.m_t) {}
private:
std::unique_lock<std::mutex> m_lock;
T& m_ptr;
};
namespace Enum
{
template<class E>
E to_enum(bool b)
{
return b ? E::YES : E::NO;
}
template<class E>
bool to_bool(E e)
{
return e == E::YES;
}
}
template<class... Ts>
void unused(const Ts&...)
{
}
template<class T>
T copy(const T& t)
{
return t;
}
}