2017-12-18 23:00:11 -08:00

121 lines
4.1 KiB
C++

#pragma once
#include <unordered_map>
#include <unordered_set>
#include <vcpkg/base/checks.h>
#include <vcpkg/base/span.h>
namespace vcpkg::Graphs
{
enum class ExplorationStatus
{
// We have not visited this vertex
NOT_EXPLORED,
// We have visited this vertex but haven't visited all vertices in its subtree
PARTIALLY_EXPLORED,
// We have visited this vertex and all vertices in its subtree
FULLY_EXPLORED
};
template<class V, class U>
struct AdjacencyProvider
{
virtual std::vector<V> adjacency_list(const U& vertex) const = 0;
virtual std::string to_string(const V& vertex) const = 0;
virtual U load_vertex_data(const V& vertex) const = 0;
};
namespace details
{
template<class V, class U>
void topological_sort_internal(const V& vertex,
const AdjacencyProvider<V, U>& f,
std::unordered_map<V, ExplorationStatus>& exploration_status,
std::vector<U>& sorted)
{
ExplorationStatus& status = exploration_status[vertex];
switch (status)
{
case ExplorationStatus::FULLY_EXPLORED: return;
case ExplorationStatus::PARTIALLY_EXPLORED:
{
System::println("Cycle detected within graph:");
for (auto&& node : exploration_status)
{
if (node.second == ExplorationStatus::PARTIALLY_EXPLORED)
{
System::println(" %s", f.to_string(node.first));
}
}
Checks::exit_fail(VCPKG_LINE_INFO);
}
case ExplorationStatus::NOT_EXPLORED:
{
status = ExplorationStatus::PARTIALLY_EXPLORED;
U vertex_data = f.load_vertex_data(vertex);
for (const V& neighbour : f.adjacency_list(vertex_data))
topological_sort_internal(neighbour, f, exploration_status, sorted);
sorted.push_back(std::move(vertex_data));
status = ExplorationStatus::FULLY_EXPLORED;
return;
}
default: Checks::unreachable(VCPKG_LINE_INFO);
}
}
}
template<class VertexRange, class V, class U>
std::vector<U> topological_sort(const VertexRange& starting_vertices, const AdjacencyProvider<V, U>& f)
{
std::vector<U> sorted;
std::unordered_map<V, ExplorationStatus> exploration_status;
for (auto&& vertex : starting_vertices)
{
details::topological_sort_internal(vertex, f, exploration_status, sorted);
}
return sorted;
}
template<class V>
struct Graph final : AdjacencyProvider<V, V>
{
public:
void add_vertex(const V& v) { this->m_edges[v]; }
void add_edge(const V& u, const V& v)
{
this->m_edges[v];
this->m_edges[u].insert(v);
}
std::vector<V> vertex_list() const
{
std::vector<V> vertex_list;
for (auto&& vertex : this->m_edges)
vertex_list.emplace_back(vertex.first);
return vertex_list;
}
std::vector<V> adjacency_list(const V& vertex) const override
{
const std::unordered_set<V>& as_set = this->m_edges.at(vertex);
return std::vector<V>(as_set.cbegin(), as_set.cend()); // TODO: Avoid redundant copy
}
V load_vertex_data(const V& vertex) const override { return vertex; }
// Note: this function indicates how tied this template is to the exact type it will be templated upon.
// Possible fix: This type shouldn't implement to_string() and should instead be derived from?
std::string to_string(const V& spec) const override { return spec->spec.to_string(); }
private:
std::unordered_map<V, std::unordered_set<V>> m_edges;
};
}