cemu_graphic_packs/Quality/BreathOfTheWild_1440p/10584c6fc5857351_0000000000000079_ps.txt

84 lines
2.8 KiB
Plaintext
Raw Normal View History

#version 420
#extension GL_ARB_texture_gather : enable
// shader 10584c6fc5857351 // bloom pre-blur
uniform ivec4 uf_remappedPS[2];
layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf5c7b800 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1
layout(location = 0) in vec4 passParameterSem0;
layout(location = 1) in vec4 passParameterSem1;
layout(location = 0) out vec4 passPixelColor0;
uniform vec2 uf_fragCoordScale;
int clampFI32(int v)
{
if( v == 0x7FFFFFFF )
return floatBitsToInt(1.0);
else if( v == 0xFFFFFFFF )
return floatBitsToInt(0.0);
return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0));
}
float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; }
void main()
{
vec2 R0f = vec2(0.0);
vec4 R1f = vec4(0.0);
vec4 R2f = vec4(0.0);
vec4 R3f = vec4(0.0);
vec4 R123f = vec4(0.0);
vec4 R126f = vec4(0.0);
vec4 R127f = vec4(0.0);
float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f;
vec4 PV0f = vec4(0.0), PV1f = vec4(0.0);
float PS0f = 0.0, PS1f = 0.0;
vec4 tempf = vec4(0.0);
float tempResultf;
int tempResulti;
ivec4 ARi = ivec4(0);
bool predResult = true;
vec3 cubeMapSTM;
int cubeMapFaceId;
R0f = vec2((passParameterSem0.x + passParameterSem1.x)/2, (passParameterSem0.y + passParameterSem0.w)/2); //center point
vec2 res = vec2( passParameterSem1.x - passParameterSem0.x, passParameterSem0.w - passParameterSem0.y ) * uf_fragCoordScale;
int r = int(floor(1.0 / uf_fragCoordScale.y + 0.5));
float count = 0.0;
for( int x=-r; x<=r; x++ ) {
for( int y=-r; y<=r; y++ ) {
if( pow(x,2) + pow(y,2) <= pow(r,2) ) {
R1f += texture( textureUnitPS0, R0f + vec2(x,y)*res );
count += 1.0;
}
}
}
PV0f = R1f/count;
R127f.xzw = PV0f.xzw;
R126f.y = PV0f.y;
// 3
tempf.x = dot(vec4(PV0f.x,PV0f.y,PV0f.z,-0.0),vec4(intBitsToFloat(uf_remappedPS[0].x),intBitsToFloat(uf_remappedPS[0].y),intBitsToFloat(uf_remappedPS[0].z),0.0));
PV1f.x = tempf.x;
PV1f.y = tempf.x;
PV1f.z = tempf.x;
PV1f.w = tempf.x;
PS1f = mul_nonIEEE(PV0f.w, intBitsToFloat(uf_remappedPS[0].w));
// 4
tempf.x = dot(vec4(R127f.x,R126f.y,R127f.z,PS1f),vec4(intBitsToFloat(uf_remappedPS[0].x),intBitsToFloat(uf_remappedPS[0].y),intBitsToFloat(uf_remappedPS[0].z),1.0));
tempf.x = clamp(tempf.x, 0.0, 1.0);
PV0f.x = tempf.x;
PV0f.y = tempf.x;
PV0f.z = tempf.x;
PV0f.w = tempf.x;
R127f.y = tempf.x;
PS0f = 1.0 / PV1f.x;
// 5
PV1f.z = PS0f * intBitsToFloat(uf_remappedPS[1].x);
PV1f.z = clamp(PV1f.z, 0.0, 1.0);
// 6
PV0f.y = mul_nonIEEE(R127f.y, PV1f.z);
// 7
PV1f.x = mul_nonIEEE(PV0f.y, intBitsToFloat(uf_remappedPS[1].z));
// 8
R1f.x = mul_nonIEEE(R127f.x, PV1f.x);
R1f.y = mul_nonIEEE(R126f.y, PV1f.x);
R1f.z = mul_nonIEEE(R127f.z, PV1f.x);
R1f.w = mul_nonIEEE(R127f.w, PV1f.x);
// export
passPixelColor0 = vec4(R1f.x, R1f.y, R1f.z, R1f.w);
}