#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader b3fb199c73caa796 //BB title const float dither = $dither ; const float scaleShader = $scaleShader; const float scaleBlur = $scaleBlur; const int sampleScale = 4; const float lightBloom = 0.95; highp float lineRand(vec2 co) { highp float a = 12.9898; highp float b = 78.233; highp float c = 43758.5453; highp float dt = dot(co.xy, vec2(a, b)); highp float sn = mod(dt, 3.14); return fract(sin(sn) * c); } uniform ivec4 uf_remappedPS[4]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf551a000 res 1280x720x1 dim 1 tm: 4 format 001a compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 0 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf470a000 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 0 layout(location = 0) in vec4 passParameterSem0; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; // FabriceNeyret2 CC, single shader gaussian by intermediate MIPmap level. www.shadertoy.com/view/ltScRG const int samples = 8 * sampleScale, //8 or 4 balances xy position LOD = 2, // gaussian done on MIPmap at scale LOD sLOD = 1 << LOD; // tile size = 2^LOD const float sigma = float(samples) * .25; float gaussian(vec2 i) { return exp(-.5* dot(i /= sigma, i)) / (6.28 * sigma*sigma); } vec4 blur(sampler2D sp, vec2 U, vec2 scale) { vec4 O = vec4(0); int s = samples / sLOD; for (int i = 0; i < s*s; i++) { vec2 d = vec2(i%s, i / s)*float(sLOD) - float(samples) / 2.; O += gaussian(d) * textureLod(sp, U + scale * d, float(LOD)); } return O / O.a; } int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ return min(a*b,min(abs(a)*3.40282347E+38F,abs(b)*3.40282347E+38F)); } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R5f = vec4(0.0); vec4 R6f = vec4(0.0); vec4 R7f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R124f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem0; R0f.xy = R0f.xy - (lineRand(gl_FragCoord.xy)*0.0012 *dither); R0f.xy = R0f.xy + (lineRand(gl_FragCoord.xy*vec2(0.1, 0.09))*0.0011 *dither); // 0 R1f.x = R0f.x + intBitsToFloat(uf_remappedPS[0].x); R1f.y = R0f.y + intBitsToFloat(uf_remappedPS[0].y); R0f.z = R0f.x + intBitsToFloat(uf_remappedPS[0].z); R0f.w = R0f.y + intBitsToFloat(uf_remappedPS[0].w); // 1 backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg0f = R0f.x; backupReg1f = R0f.y; R0f.x = backupReg0f + intBitsToFloat(uf_remappedPS[1].x); R0f.y = backupReg1f + intBitsToFloat(uf_remappedPS[1].y); R1f.z = backupReg0f + intBitsToFloat(uf_remappedPS[1].z); R1f.w = backupReg1f + intBitsToFloat(uf_remappedPS[1].w); vec2 coord = passParameterSem0.xy*textureSize(textureUnitPS0, 0); // vec2 ps = vec2(1.0) / textureSize(textureUnitPS0, 0); vec2 uv = coord * ps; R2f.xyzw = (texture(textureUnitPS1, R1f.xy).xyzw); R3f.xyzw = (texture(textureUnitPS1, R0f.zw).xyzw); R4f.xyzw = (texture(textureUnitPS1, R0f.xy).xyzw); R5f.xyzw = (texture(textureUnitPS1, R1f.zw).xyzw); R6f.xyz = blur(textureUnitPS0, R1f.xy, ps*scaleBlur).xyz; //1.0 4k //.66 2k //0.075 1k R7f.xyz = R6f.xyz; R0f.xyz = R6f.xyz; R1f.xyz = R6f.xyz; /* R6f.xyzw = (texture(textureUnitPS0, R1f.xy).xyzw); R7f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw); R0f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); R1f.xyzw = (texture(textureUnitPS0, R1f.zw).xyzw); */ // 0 PV0f.x = R2f.z + R3f.z; PV0f.y = R2f.y + R3f.y; PV0f.z = R2f.x + R3f.x; PV0f.w = R2f.w + R3f.w; // 1 PV1f.x = PV0f.x + R4f.z; PV1f.y = PV0f.y + R4f.y; PV1f.z = PV0f.z + R4f.x; PV1f.w = PV0f.w + R4f.w; R127f.x = R6f.x + R7f.x; PS1f = R127f.x; // 2 PV0f.x = PV1f.x + R5f.z; PV0f.y = PV1f.y + R5f.y; PV0f.z = PV1f.z + R5f.x; PV0f.w = PV1f.w + R5f.w; R127f.w = R6f.y + R7f.y; PS0f = R127f.w; // 3 PV1f.x = PV0f.x * intBitsToFloat(uf_remappedPS[2].z); PV1f.y = PV0f.y * intBitsToFloat(uf_remappedPS[2].z); PV1f.z = PV0f.z * intBitsToFloat(uf_remappedPS[2].z); PV1f.w = PV0f.w * intBitsToFloat(uf_remappedPS[2].z); R127f.z = R6f.z + R7f.z; PS1f = R127f.z; // 4 PV0f.x = max(PV1f.x, 0.0); PV0f.y = max(PV1f.y, 0.0); PV0f.z = max(PV1f.z, 0.0); PV0f.w = max(PV1f.w, 0.0); R126f.y = R6f.w + R7f.w; PS0f = R126f.y; // 5 R6f.x = min(PV0f.x, 4.0); PV1f.x = R6f.x; R125f.y = min(PV0f.y, 4.0); PV1f.y = R125f.y; R126f.z = min(PV0f.z, 4.0); PV1f.z = R126f.z; R125f.w = min(PV0f.w, 4.0); R124f.x = R127f.x + R0f.x; PS1f = R124f.x; // 6 PV0f.x = PV1f.z + -(intBitsToFloat(uf_remappedPS[2].x)); PV0f.y = PV1f.y + -(intBitsToFloat(uf_remappedPS[3].x)); PV0f.z = PV1f.z + -(intBitsToFloat(uf_remappedPS[3].x)); PV0f.w = PV1f.x + -(intBitsToFloat(uf_remappedPS[3].x)); R127f.y = PV1f.y + -(intBitsToFloat(uf_remappedPS[2].x)); PS0f = R127f.y; // 7 R127f.x = R6f.x + -(intBitsToFloat(uf_remappedPS[2].x)); PV1f.y = max(PV0f.z, 0.0); PV1f.z = max(PV0f.y, 0.0); PV1f.w = max(PV0f.w, 0.0); R126f.x = max(PV0f.x, 0.0); PS1f = R126f.x; // 8 backupReg0f = R127f.y; R125f.x = dot(vec4(intBitsToFloat(uf_remappedPS[3].y),intBitsToFloat(uf_remappedPS[3].y),intBitsToFloat(uf_remappedPS[3].y),-0.0),vec4(PV1f.y,PV1f.z,PV1f.w,0.0)); PV0f.x = R125f.x; PV0f.y = R125f.x; PV0f.z = R125f.x; PV0f.w = R125f.x; R127f.y = max(backupReg0f, 0.0); PS0f = R127f.y; // 9 backupReg0f = R126f.y; backupReg1f = R127f.x; backupReg2f = R127f.w; R127f.x = R127f.z + R0f.z; R126f.y = backupReg0f + R0f.w; PV1f.z = max(backupReg1f, 0.0); R127f.w = backupReg2f + R0f.y; R126f.w = R126f.z * PV0f.x; PS1f = R126f.w; // 10 tempf.x = dot(vec4(intBitsToFloat(uf_remappedPS[2].y),intBitsToFloat(uf_remappedPS[2].y),intBitsToFloat(uf_remappedPS[2].y),-0.0),vec4(R126f.x,R127f.y,PV1f.z,0.0)); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R124f.w = tempf.x; R127f.z = R125f.y * R125f.x; PS0f = R127f.z; // 11 PV1f.x = R125f.w * R125f.x; PV1f.y = R6f.x * R125f.x; R125f.z = R127f.w + R1f.y; R127f.w = R127f.x + R1f.z; R0f.w = R126f.y + R1f.w; PS1f = R0f.w; // 12 backupReg0f = R124f.x; R124f.x = (R125f.y * R124f.w + R127f.z); R125f.y = (R6f.x * R124f.w + PV1f.y); PV0f.z = backupReg0f + R1f.x; R123f.w = (R126f.z * R124f.w + R126f.w); PV0f.w = R123f.w; R127f.x = (R125f.w * R124f.w + PV1f.x); PS0f = R127f.x; // 13 R125f.x = R127f.w * intBitsToFloat(uf_remappedPS[3].z); R126f.y = R125f.z * intBitsToFloat(uf_remappedPS[3].z); PV1f.z = PV0f.z * intBitsToFloat(uf_remappedPS[3].z); R127f.w = R0f.w * intBitsToFloat(uf_remappedPS[3].z); PS1f = min(PV0f.w, intBitsToFloat(uf_remappedPS[2].w)); // 14 PV0f.x = min(R127f.x, intBitsToFloat(uf_remappedPS[2].w)); PV0f.y = min(R125f.y, intBitsToFloat(uf_remappedPS[2].w)); PV0f.z = min(R124f.x, intBitsToFloat(uf_remappedPS[2].w)); R0f.x = max(PV1f.z, PS1f); PS0f = R0f.x; // 15 R0f.y = max(R126f.y, PV0f.z); R0f.z = max(R125f.x, PV0f.y); R0f.w = max(R127f.w, PV0f.x); // export passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w)*0.33; //.25 4k }