#version 400 #extension GL_ARB_texture_gather : enable const float overwriteWidth = 3840.0; //overwidth value.0 const float overwriteHeight = 2160.0; // shader e1e74c17c6b17e64 // night water, roller coaster and war water uniform ivec4 uf_remappedPS[13]; uniform sampler2D textureUnitPS0;// Tex0 addr 0xf4a8c800 res 1280x720x1 dim 1 tm: 4 format 080e compSel: 0 0 0 0 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 0 uniform sampler2D textureUnitPS1;// Tex1 addr 0x2c210000 res 512x512x1 dim 1 tm: 4 format 0035 compSel: 0 1 4 5 mipView: 0x0 (num 0xa) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 0 0 0 border: 0 uniform sampler2D textureUnitPS2;// Tex2 addr 0x2c210000 res 512x512x1 dim 1 tm: 4 format 0035 compSel: 0 1 4 5 mipView: 0x0 (num 0xa) sliceView: 0x0 (num 0x1) Sampler2 ClampX/Y/Z: 0 0 0 border: 0 uniform sampler2D textureUnitPS3;// Tex3 addr 0x364c6000 res 256x256x1 dim 1 tm: 4 format 0031 compSel: 0 1 2 3 mipView: 0x0 (num 0x9) sliceView: 0x0 (num 0x1) Sampler3 ClampX/Y/Z: 0 0 0 border: 0 uniform samplerCubeArray textureUnitPS4;// Tex4 addr 0x29db2000 res 128x128x1 dim 3 tm: 4 format 0033 compSel: 0 1 2 3 mipView: 0x0 (num 0x8) sliceView: 0x0 (num 0x6) Sampler4 ClampX/Y/Z: 2 2 2 border: 0 in vec4 passParameter0; in vec4 passParameter1; in vec4 passParameter2; in vec4 passParameter3; in vec4 passParameter4; in vec4 passParameter5; in vec4 passParameter6; layout(location = 0) out vec4 passPixelColor0; void redcCUBE(vec4 src0, vec4 src1, inout vec3 stm, inout int faceId) { // stm -> x .. s, y .. t, z .. MajorAxis*2.0 vec3 inputCoord = normalize(vec3(src1.y, src1.x, src0.x)); float rx = inputCoord.x; float ry = inputCoord.y; float rz = inputCoord.z; if( abs(rx) > abs(ry) && abs(rx) > abs(rz) ) { stm.z = rx*2.0; stm.xy = vec2(ry,rz); if( rx >= 0.0 ) { faceId = 0; } else { faceId = 1; } } else if( abs(ry) > abs(rx) && abs(ry) > abs(rz) ) { stm.z = ry*2.0; stm.xy = vec2(rx,rz); if( ry >= 0.0 ) { faceId = 2; } else { faceId = 3; } } else //if( abs(rz) > abs(ry) && abs(rz) > abs(rx) ) { stm.z = rz*2.0; stm.xy = vec2(rx,ry); if( rz >= 0.0 ) { faceId = 4; } else { faceId = 5; } } } vec3 redcCUBEReverse(vec2 st, int faceId) { st.yx = st.xy; vec3 v; float majorAxis = 1.0; if( faceId == 0 ) { v.yz = (st-vec2(1.5))*(majorAxis*2.0); v.x = 1.0; } else if( faceId == 1 ) { v.yz = (st-vec2(1.5))*(majorAxis*2.0); v.x = -1.0; } else if( faceId == 2 ) { v.xz = (st-vec2(1.5))*(majorAxis*2.0); v.y = 1.0; } else if( faceId == 3 ) { v.xz = (st-vec2(1.5))*(majorAxis*2.0); v.y = -1.0; } else if( faceId == 4 ) { v.xy = (st-vec2(1.5))*(majorAxis*2.0); v.z = 1.0; } else { v.xy = (st-vec2(1.5))*(majorAxis*2.0); v.z = -1.0; } return v; } int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R5f = vec4(0.0); vec4 R6f = vec4(0.0); vec4 R7f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R124f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; float cubeMapArrayIndex4 = 0.0; R6f = gl_FragCoord.xyzw; R0f = passParameter1; R1f = passParameter2; R2f = passParameter3; R3f = passParameter4; R4f = passParameter5; R5f = passParameter6; vec2 scaleFactor = vec2(overwriteWidth,overwriteHeight)/vec2(1280.0,720.0); R6f.xy = R6f.xy / scaleFactor; R7f.xy = (texture(textureUnitPS1, R4f.xy).xy); R4f.xy = (texture(textureUnitPS2, R4f.zw).xy); R5f.xyz = (texture(textureUnitPS3, R5f.xy).xyz); // 0 R127f.x = (R4f.y * intBitsToFloat(0x3fff0000) + -(1.0)); PV0f.x = R127f.x; R123f.y = (R7f.x * intBitsToFloat(0x3fff0000) + -(1.0)); PV0f.y = R123f.y; R127f.z = (R7f.y * intBitsToFloat(0x3fff0000) + -(1.0)); PV0f.z = R127f.z; R123f.w = (R4f.x * intBitsToFloat(0x3fff0000) + -(1.0)); PV0f.w = R123f.w; R4f.x = mul_nonIEEE(R6f.x, intBitsToFloat(uf_remappedPS[0].x)); PS0f = R4f.x; // 1 PV1f.x = mul_nonIEEE(PV0f.y, PV0f.y); R127f.y = PV0f.y + PV0f.w; PV1f.y = R127f.y; PV1f.z = mul_nonIEEE(PV0f.w, PV0f.w); R125f.w = PV0f.z + PV0f.x; PV1f.w = R125f.w; R4f.y = mul_nonIEEE(R6f.y, intBitsToFloat(uf_remappedPS[0].y)); PS1f = R4f.y; // 2 R6f.x = mul_nonIEEE(intBitsToFloat(uf_remappedPS[1].w), 1.0); PV0f.x = R6f.x; R123f.y = (R127f.x * R127f.x + PV1f.z); R123f.y = clamp(R123f.y, 0.0, 1.0); PV0f.y = R123f.y; R4f.z = mul_nonIEEE(intBitsToFloat(uf_remappedPS[1].z), 1.0); PV0f.z = R4f.z; R123f.w = (R127f.z * R127f.z + PV1f.x); R123f.w = clamp(R123f.w, 0.0, 1.0); PV0f.w = R123f.w; PS0f = 1.0 / R1f.z; // 3 R7f.x = R1f.x * PS0f; PV1f.x = R7f.x; PV1f.y = -(PV0f.w) + 1.0; R6f.z = R1f.y * PS0f; PV1f.z = R6f.z; R127f.w = -(PV0f.y) + 1.0; PV1f.w = R127f.w; R126f.z = R5f.x + 0.0; PS1f = R126f.z; // 4 backupReg0f = R0f.x; backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg1f = R0f.y; backupReg2f = R0f.z; backupReg2f = R0f.z; tempf.x = backupReg0f * backupReg0f + backupReg1f * backupReg1f + backupReg2f * backupReg2f + intBitsToFloat(0x80000000) * 0.0; PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R126f.w = tempf.x; R127f.z = sqrt(PV1f.y); PS0f = R127f.z; // 5 R127f.x = R2f.x * R2f.x + R2f.y * R2f.y + R2f.z * R2f.z + intBitsToFloat(0x80000000) * 0.0; PV1f.x = R127f.x; PV1f.y = R127f.x; PV1f.z = R127f.x; PV1f.w = R127f.x; PS1f = sqrt(R127f.w); // 6 R5f.x = mul_nonIEEE(intBitsToFloat(uf_remappedPS[2].x), R126f.z); PV0f.x = R5f.x; R124f.y = R5f.z + 0.0; PV0f.y = R124f.y; R126f.z = R127f.z + PS1f; PV0f.z = R126f.z; R127f.w = R5f.y + 0.0; PV0f.w = R127f.w; tempResultf = 1.0 / sqrt(R126f.w); R126f.x = tempResultf; PS0f = R126f.x; // 7 tempf.x = R127f.y * R127f.y + R125f.w * R125f.w + PV0f.z * PV0f.z + intBitsToFloat(0x80000000) * 0.0; PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; tempResultf = 1.0 / sqrt(R127f.x); R127f.z = tempResultf; PS1f = R127f.z; // 8 R124f.x = mul_nonIEEE(R2f.z, PS1f); PV0f.x = R124f.x; R126f.y = mul_nonIEEE(R0f.y, R126f.x); PV0f.y = R126f.y; R124f.z = mul_nonIEEE(R0f.x, R126f.x); PV0f.z = R124f.z; R126f.w = mul_nonIEEE(R0f.z, R126f.x); PV0f.w = R126f.w; tempResultf = 1.0 / sqrt(PV1f.x); R125f.z = tempResultf; PS0f = R125f.z; // 9 R126f.x = mul_nonIEEE(R126f.z, PS0f); PV1f.x = R126f.x; R125f.y = mul_nonIEEE(R2f.x, R127f.z); PV1f.y = R125f.y; PV1f.z = mul_nonIEEE(PV0f.y, PV0f.x); R4f.w = mul_nonIEEE(R2f.y, R127f.z); PV1f.w = R4f.w; R127f.x = mul_nonIEEE(R125f.w, PS0f); PS1f = R127f.x; // 10 backupReg0f = R127f.y; R123f.x = (-(PV1f.w) * R126f.w + PV1f.z); PV0f.x = R123f.x; R127f.y = mul_nonIEEE(R126f.w, PV1f.y); PV0f.y = R127f.y; PV0f.z = mul_nonIEEE(R124f.z, PV1f.x); R125f.w = mul_nonIEEE(R124f.z, PV1f.w); PV0f.w = R125f.w; R2f.y = mul_nonIEEE(backupReg0f, R125f.z); PS0f = R2f.y; // 11 tempf.x = R3f.x * R3f.x + R3f.y * R3f.y + R3f.z * R3f.z + intBitsToFloat(0x80000000) * 0.0; PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; R124f.w = (R127f.x * PV0f.x + PV0f.z); PS1f = R124f.w; // 12 backupReg0f = R126f.x; backupReg0f = R126f.x; R126f.x = mul_nonIEEE(R126f.w, backupReg0f); PV0f.x = R126f.x; PV0f.y = mul_nonIEEE(R126f.y, backupReg0f); R123f.z = (-(R124f.x) * R124f.z + R127f.y); PV0f.z = R123f.z; R0f.w = mul_nonIEEE(intBitsToFloat(uf_remappedPS[2].y), R127f.w); PV0f.w = R0f.w; tempResultf = 1.0 / sqrt(PV1f.x); R125f.x = tempResultf; PS0f = R125f.x; // 13 backupReg0f = R126f.y; R2f.x = (R2f.y * R125f.y + R124f.w); PV1f.x = R2f.x; R126f.y = mul_nonIEEE(R3f.x, PS0f); PV1f.y = R126f.y; R123f.z = (R127f.x * PV0f.z + PV0f.y); PV1f.z = R123f.z; R123f.w = (-(R125f.y) * backupReg0f + R125f.w); PV1f.w = R123f.w; R125f.y = mul_nonIEEE(R3f.z, PS0f); PS1f = R125f.y; // 14 backupReg0f = R127f.x; R127f.x = mul_nonIEEE(R3f.y, R125f.x); PV0f.x = R127f.x; R123f.y = (backupReg0f * PV1f.w + R126f.x); PV0f.y = R123f.y; PV0f.z = mul_nonIEEE(PV1f.x, PV1f.y); R125f.w = (R2f.y * R4f.w + PV1f.z); PV0f.w = R125f.w; R4f.w = mul_nonIEEE(intBitsToFloat(uf_remappedPS[2].z), R124f.y); PS0f = R4f.w; // 15 R123f.x = (PV0f.w * PV0f.x + PV0f.z); PV1f.x = R123f.x; R124f.z = (R2f.y * R124f.x + PV0f.y); PV1f.z = R124f.z; R3f.w = (R1f.w * intBitsToFloat(uf_remappedPS[3].x) + intBitsToFloat(uf_remappedPS[3].y)); R3f.w = clamp(R3f.w, 0.0, 1.0); PV1f.w = R3f.w; // 16 R123f.w = (PV1f.z * R125f.y + PV1f.x)*2.0; PV0f.w = R123f.w; // 17 backupReg0f = R127f.x; backupReg1f = R124f.z; R127f.x = (-(R125f.w) * PV0f.w + backupReg0f); PV1f.x = R127f.x; R123f.y = (-(R2f.x) * PV0f.w + R126f.y); PV1f.y = R123f.y; R124f.z = (-(backupReg1f) * PV0f.w + R125f.y); PV1f.z = R124f.z; // 18 PV0f.x = mul_nonIEEE(PV1f.y, intBitsToFloat(uf_remappedPS[4].z)); PV0f.z = mul_nonIEEE(PV1f.y, intBitsToFloat(uf_remappedPS[4].y)); PV0f.w = mul_nonIEEE(PV1f.y, intBitsToFloat(uf_remappedPS[4].x)); // 19 R123f.x = (R127f.x * intBitsToFloat(uf_remappedPS[5].y) + PV0f.z); PV1f.x = R123f.x; R123f.y = (R127f.x * intBitsToFloat(uf_remappedPS[5].x) + PV0f.w); PV1f.y = R123f.y; R123f.w = (R127f.x * intBitsToFloat(uf_remappedPS[5].z) + PV0f.x); PV1f.w = R123f.w; // 20 R123f.x = (R124f.z * intBitsToFloat(uf_remappedPS[6].x) + PV1f.y); PV0f.x = R123f.x; R123f.y = (R124f.z * intBitsToFloat(uf_remappedPS[6].y) + PV1f.x); PV0f.y = R123f.y; R123f.z = (R124f.z * intBitsToFloat(uf_remappedPS[6].z) + PV1f.w); PV0f.z = R123f.z; // 21 redcCUBE(vec4(PV0f.z,PV0f.z,PV0f.x,PV0f.y),vec4(PV0f.y,PV0f.x,PV0f.z,PV0f.z),cubeMapSTM,cubeMapFaceId); R2f.x = cubeMapSTM.x; R2f.y = cubeMapSTM.y; R2f.z = cubeMapSTM.z; R2f.w = intBitsToFloat(cubeMapFaceId); PV1f.x = R2f.x; PV1f.y = R2f.y; PV1f.z = R2f.z; PV1f.w = R2f.w; // 22 PS0f = 1.0 / abs(PV1f.z); // 23 backupReg0f = R2f.x; backupReg1f = R2f.y; R2f.x = (backupReg0f * PS0f + intBitsToFloat(0x3fc00000)); PV1f.x = R2f.x; R2f.y = (backupReg1f * PS0f + intBitsToFloat(0x3fc00000)); PV1f.y = R2f.y; R4f.x = (texture(textureUnitPS0, R4f.xy).x); R2f.xyzw = (texture(textureUnitPS4, vec4(redcCUBEReverse(R2f.yx,floatBitsToInt(R2f.w)),cubeMapArrayIndex4)).xyzw); // 0 PV0f.x = mul_nonIEEE(R2f.x, intBitsToFloat(uf_remappedPS[7].x)); R123f.y = (R4f.x * intBitsToFloat(0x40000000) + -(1.0)); PV0f.y = R123f.y; PV0f.z = mul_nonIEEE(R2f.y, intBitsToFloat(uf_remappedPS[7].y)); PV0f.w = mul_nonIEEE(R2f.z, intBitsToFloat(uf_remappedPS[7].z)); // 1 R123f.x = (R5f.x * PV0f.x + 0.0); PV1f.x = R123f.x; R123f.y = (PV0f.y * intBitsToFloat(uf_remappedPS[8].w) + R6f.x); PV1f.y = R123f.y; R123f.z = (PV0f.y * intBitsToFloat(uf_remappedPS[8].z) + R4f.z); PV1f.z = R123f.z; R123f.w = (R0f.w * PV0f.z + 0.0); PV1f.w = R123f.w; R127f.x = (R4f.w * PV0f.w + 0.0); PS1f = R127f.x; // 2 R123f.x = (R6f.z * intBitsToFloat(uf_remappedPS[9].z) + PV1f.z); PV0f.x = R123f.x; R126f.y = (intBitsToFloat(uf_remappedPS[10].x) * R2f.w + PV1f.x); PV0f.y = R126f.y; R125f.z = (intBitsToFloat(uf_remappedPS[10].y) * R2f.w + PV1f.w); PV0f.z = R125f.z; R123f.w = (R6f.z * intBitsToFloat(uf_remappedPS[9].w) + PV1f.y); PV0f.w = R123f.w; // 3 backupReg0f = R127f.x; R127f.x = (intBitsToFloat(uf_remappedPS[10].z) * R2f.w + backupReg0f); PV1f.x = R127f.x; R123f.y = (R7f.x * intBitsToFloat(uf_remappedPS[11].w) + PV0f.w); PV1f.y = R123f.y; R124f.z = (R7f.x * intBitsToFloat(uf_remappedPS[11].z) + PV0f.x); PV1f.z = R124f.z; // 4 PV0f.x = -(PV1f.x) + intBitsToFloat(uf_remappedPS[12].z); PV0f.y = -(R125f.z) + intBitsToFloat(uf_remappedPS[12].y); PV0f.z = -(R126f.y) + intBitsToFloat(uf_remappedPS[12].x); PS0f = 1.0 / PV1f.y; // 5 R3f.x = (PV0f.z * R3f.w + R126f.y); PV1f.x = R3f.x; R3f.y = (PV0f.y * R3f.w + R125f.z); PV1f.y = R3f.y; R3f.z = (PV0f.x * R3f.w + R127f.x); PV1f.z = R3f.z; PV1f.w = R124f.z * PS0f; // 6 PV0f.x = -(R1f.w) + -(PV1f.w); // 7 R3f.w = mul_nonIEEE(intBitsToFloat(uf_remappedPS[0].w), PV0f.x); R3f.w = clamp(R3f.w, 0.0, 1.0); PV1f.w = R3f.w; // export passPixelColor0 = vec4(R3f.x, R3f.y, R3f.z, R3f.w); }